柴油机氧化催化器及颗粒物氧化催化器对排放特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机氧化催化器(Diesel Oxidation Catalyst,DOC)和颗粒物氧化催化器(Particulate Oxidation Catalyst,POC)组合是柴油机满足欧Ⅳ排放标准的重要后处理技术方案之一,目前已在国内外部分柴油机产品中得到应用。为了该技术进一步的推广应用提供理论数据,本文以高压共轨车用柴油机为基础,选取五种不同后处理器组合,结合HORIBA气体分析仪和AVL部分流采集系统,运用气相色谱—质谱联用技术(GC-MS),开展了不同特性的DOC和POC对柴油机常规污染物、非常规污染物影响规律的研究。研究结果表明:
     1.在稳态循环(ESC)和瞬态循环(ETC)下,发动机加装DOC+POC组合后,CO比排放量最大降低幅度分别为98%和97.1%,HC比排放量最大降低幅度分别为95.8%和94.2%,PM比排放量最大降低幅度分别为60.4%和65%,NOx比排放量降低幅度较小,均低于10%,整机达到国Ⅳ排放标准。
     2.在稳态工况下,发动机加装DOC+POC组合后,甲醛、乙醛和一氧化氮比排放量均明显降低。DOC催化活性越强,空速越低,DOC+POC组合对甲醛、乙醛和一氧化氮催化氧化效果就越好,最大降低幅度分别为82%、98%和62%。加装DOC+POC组合后,二氧化硫排放量也有不同程度的降低,DOC催化活性越强,空速越低,二氧化硫比排放量降低幅度就越大,DOC+POC组合抗硫能力就越差。
     3.发动机加装DOC+POC组合后,微粒中的可溶性有机物(SOF)及总多环芳香烃(PAHs)比排放量均明显降低。在ESC和ETC试验下,SOF最大降低幅度分别为75%和40%。DOC和POC的催化活性越强,空速越低,DOC+POC组合对总PAHs的催化氧化效果就越好,ESC和ETC试验下最大降低幅度分别为28%和55%。
     4.发动机加装DOC+POC组合后,2环、3环和4环芳香烃比排放量均降低,其中4环芳香烃降低幅度最大。DOC和POC的催化活性越强,空速越低,DOC+POC组合对4环芳香烃的催化氧化效果最好,ESC和ETC试验下,4环芳香烃最大降低幅度分别为61%和81%。
As an important aftertreatment way to meet Euro IV standard emissions regulation, diesel oxidation catalyst (DOC) and particulate oxidation catalyst (POC) have presently been applied on several diesel engines in the world. To provide fundamental database for the further acceptance, tests for five different DOC and/or POC aftertreatments were conducted on a common–rail heavy-duty diesel engine, coupled with AVL partial flow dilution channel system and Horibar exhaust gas analyzer. Meanwhile, the polycyclic aromatic hydrocarbons (PAHs) in soluble organic fraction (SOF) were measured by gas chromatography-mass spectrometry (GC-MS). The effects of DOC and/or POC on the regulated emissions and unregulated emissions were investigated and the main research conclusions of this dissertation are as follows:
     1. At the European steady state cycle (ESC), the presence of DOC+POC on the diesel engine led to a maximum decrease of 98% in the brake specific emission of carbon monoxide (CO), 97.1% in the brake specific emission of hydrocarbon (HC) and 60.4% in the brake specific emission of particulate matter (PM), respectively. However, a slightly change was observed for the brake specific emission of nitrogen oxides (NOx), with a less than 10% reduction. At the European transient cycle (ETC), the application of DOC+POC on the diesel engine resulted in a maximum decrease of 97.1% in the brake specific emission of CO, 94.2% in the brake specific emission of HC and 65% in the brake specific emission of PM, respectively. However, a slightly change was also observed for the brake specific emission of NOx, with a less than 10% reduction.The engine dynometer test result showed that the diesel engine with DOC+POC could meet the Chinese phaseⅣemissions regulation.
     2. Under steady operating conditions, the brake specific emissions of formaldehyde, acetaldehyde and nitric oxide (NO) showed obvious decreases when the DOC+POC were used. The higher the catalytic activity of DOC and the lower air speed were, the more noticeable reductions for formaldehyde, acetaldehyde and NO were obtained. The maximum decreases were 82% for formaldehyde, 98% for acetaldehyde and 62% for NO, respectively. The brake specific emission of sulfur dioxide (SO2) also gave a decrease when the DOC+POC were used. The lower brake specific emission of SO2 and resistance of DOC+POC to sulfide were attained in the case of the higher catalytic activity of DOC and the lower air speed.
     3. With DOC+POC on the diesel engine, the brake specific emissions of PAHs and SOF presented pronounced decreases.Under the ESC and ETC conditions, the maximum decreases of SOF were 75% and 40%, respectively. The higher catalytic activity of DOC and POC and the lower air speed resulted in a more effective oxidation of PAHs. The maximum decreases of PAHs were 28% for the ESC and 55% for ETC, respectively.
     4. The brake specific emissions of 2, 3 and 4 aromatic rings in PAHs showed noticeable decreases with DOC+POC on the diesel engine, where the decrease for 4-ring PAHs was the most significant. The higher the catalytic activity of DOC and POC and the lower the air speed, the more effective the oxidation of 4-ring PAHs. Under the ESC and ETC conditions, the maximum reductions of 4-ring PAHs were 61% and 81%, respectively.
引文
[1]周颖超,甲醇柴油混合燃料理化性质及羰基污染物排放特性的研究:[硕士学位论文],天津,天津大学,2007
    [2]聂彦鑫,徐俊芳,我国柴油轿车的发展前景,汽车工程师,2009,(9):12~14
    [3]林静,国外柴油发动机现状及发展趋势,汽车与配件, 2005,(2):29~31
    [4]郝吉明,吴烨,傅立新等,中国城市机动车排放污染控制现状体系研究,应用气象学报,2002,13 (1):195~203
    [5]樊小年,张光德,试论汽车排气污染及其控制技术,岳阳职业技术学院学报,2004,19(4):91~94
    [6]杨玉林,程雨梅,城市汽车排放污染的影响因素及防治污染对策的研究,科教文汇,2007,(3):204~205
    [7]莫耀祖,邓海英,韩志刚,我国城市汽车排放污染现状及其治理,中南林学院学报,2004,24(1):63~66
    [8]刘巽俊,内燃机的排放与控制,北京:机械工业出版社,2002.11~25
    [9] S.P. Edward, G.R. Fr?nkle, K. Binder, et al. Strategic analysis of technologies for future truck engines. SAE paper 2000-01-3458, 2000
    [10] R.Allansson,C.Goersmann,M.Lavenius, et al. The Development and In-Field Performance of Highly Durable Particulate Control Systems. SAE paper 2004-01-0072,2004
    [11] Sougato Chatterjee, Andrew P. Walker, Philip G. Blakeman. Emission Control Options to Achieve Euro IV and Euro V on Heavy Duty Diesel Engines. SAE paper 2008-28-0021, 2008
    [12]孔繁伟,李明海,张岩,改进燃油喷射系统,降低柴油机有害排放,内燃机车,2005,(6):1~3
    [13]杜愎刚,朱会田,许力,车用柴油机排放控制现状与技术进展,内燃机工程,2004,25(3):71~74
    [14] Thornas, W.Ryan l11, Janet Buckingham, et al. The Effects of Fuel properties on Emissions from a 2.5gm NOx Heavy Duty Diesel Engine. SAE paper 98249.
    [15] Naber , D.Lange, W.W. Reglitzky, et a1.The influence of fuel properties on exhaust emissions from advanced Mercedes Benz diesel engine. SAE paper 932685.
    [16] Barry E.G,et al. Heavy duty diesel engine/fuels combustion performance and emissions - Acooperative research programmed. SAE paper852078.
    [17] Hublin, M.Gadd, K.G.Hall, D.E.Schindler. European Programs on Emissions, Fuels and Engine Technologies (EPEFE) light duty diesel study. SAE paper 961073
    [18]邓元望,朱梅林等,燃料性质对发动机排放性能的影响,小型内燃机与摩托车,2001,30(4):23~26.
    [19] Ullman.T. L, Spreen.K. B , Mason, R. L. Effects of Cetane Number, Cetane Improver, Aromatics, and Oxygenates on 1994 Heavy-Duty Diesel Engine Emissions. SAE Technical Paper 941020.
    [20]王忠俊,张凌,柴油机排放及控制技术,船海工程,2004,(4):13~15
    [21] Matsumoto T. Advanced Emission Control for PM Reduction in Heavy-Duty Diesel Applications[C]. SAE 2003-01-1862
    [22] Z. Gerald Liu and Devin R. Berg.Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions. SAE paper 2008-01-0333.
    [23] Yasoharu Kanno,et al. Low Sulfate Generation Diesel Oxidation Catalyst[C]. SAE paper 2004-01-1427.
    [24]郭猛超,姜大海,李幸丹等,柴油机排放控制技术发展综述,内燃机,2008,(1):7~10
    [25]刘巽俊,谈减轻我国汽车发动机污染的实胜技术,汽车技术,1997,(2):1~4
    [26] Timothy V. Johnson, Corning Incorporated. Diesel Emission Control in Review. SAE paper 2006-01-0030.
    [27] Walker A, et al. , The Development and On-Road Performance and Durability of the Four–Way Emission Control SCRTTM System[C].US Department of Energy Diesel Engine Emission Reduction Conference, Newport, August 2003:1~7
    [28] Grosjean, D., Grosjean, E., Gertler, A.W., On-road emissions of carbonyls from light-duty and heavy-duty vehicles. Environmental Science and Technology, 2001,(35):45~53
    [29] Howran Chao, Tachang Lin, Murong Chao, Fenghsiang Chang, Chaoi Huang, Chungbang Chen. Journal of Hazardous Materials, 2000, B73: 39~54.
    [30] E.zervas, X.montagne, J.lahaye, Emission of Alcohols and Carbonyl Compounds from a Spark Ignition Engine. Influence of Fuel and Air/F uel Equivalence Ratio. Environmental science and Technology, 2002,(36):2414-2421
    [31] Turrio-Baldassarri L, Battistelli CL, Conti L et al. Emission comparison of urban bus engine fueled with diesel oiland‘biodiesel’blend. Science of the Total Environment 327 (2004) 147~162
    [32] Sharp C, Howell S, Jobe J. The effect of biodiesel fuel on transient emissions from modern diesel engines, Part II: Unregulated emissions and chemical characterization. SAE Tech Pap Ser 2000, No.2000-01-1968.
    [33] Krahl J, Munack A, Bahadir M, Schumacher L, Elser N. Review: utilization of rapeseed oil, rapeseed oil methyl ester or diesel fuel: exhaust gas emissions and eastimation of environmental effects.International fall fuels and lubricant meeting. SAE Tech Pap Ser 1996; No. 962096.
    [34]彭华,吴新杰,李明等,汽车使用乙醇汽油后醛酮类变化趋势的研究,环境科学与技术,2005,28(3):51~52
    [35]吕胜春,李晖,Eddy等,甲醇/汽油混合燃料发动机非常规排放成分测量方法研究,内燃机学报,2006,24(1):57~61
    [36] Xiaobing Pang, Xiaoyan Shi, Yujing Mu, Hong He, Shijin Shuai, Hu Chen, Rulong Li , Characteristics of carbonyl compounds emission from a diesel-engine using biodiesel–ethanol–diesel as fuel,Atmospheric Environment, 2006,( 40):7057~7065
    [37]陈薛,车用柴油机燃用乙醇/柴油混合燃料的排放特性及其微粒生物毒性的研究:[硕士毕业论文],天津,天津大学,2000
    [38] Homdutt Sharma, V.K. Jain, Zahid H. Khan, Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi. Chemosphere,2007,66(2):302~310
    [39] DEH (Department of the Environment and Heritage), In: Review of Fuel Quality Requirements for Australian Transport. Coffey Geosciences Pty Ltd for Environment, Australia,2000:6~90
    [40] Hsi-Hsien Yang, Chia-Mei Chen,Emission Inventory and Sources of Polycyclic Aromatic Hydrocarbons in the Atmosphere at a Suburban Area in Taiwan. Chemosphere, 2004,(56): 879~887
    [41]中国环境优先监测研究课题组编,“优先控制污染物”,中国环境出版社,1989
    [42] Dennis S, Frank S Lee, Thomas J Prater,“The identification of polynuclear aromatic hydrocarbon (PAH) derivatives in mutagenic fractions of diesel paticulate extract”, Environ. Anal. Chem,1981:93~144
    [43] Sarah G ddlea,Chris A Jal(0ber,Michael A Robert,eta1.Large PAHs detected in fine particulate matter emitted from 1ight-duty gasoline Vehicles[J].Atmospheric Environment,2007,4l (38):8658~8668.
    [44] Moacir Tavares Jr,Jurandir P Pinto,Alexandre L Souza,et a1.Emission of PAHs from diesel engine in a bus station,Londrina,Brazil.Atmospheric Envir0nment,2004,(38):5039~5044.
    [45] Sandro Brandenberger,Martin Mohr,Koni Grob,et a1.Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars[J].Atmospheric Environment,2005,(39):6985~6994
    [46]宋崇林,涂险峰,柴油机多环芳香烃排放规律的研究,汽车技术,2004,(4):11~13
    [47]潭建军,郑菁英,柴油机尾气中PAHs的分析,中国环境监测,1997,l3(1):34~36
    [48]蔡智鸣,杨科峰,张辉等,柴油车尾气冷凝物有机污染物的测定,环境与健康杂志,2002,l9(5):361~363
    [49]邹建国,钟秦,柴油机排放颗粒物组成分析,中国环境监测,2006,22(3):23~26
    [50]中华人民共和国国家环境保护总局,中华人民共和国国家质量监督检验检疫总局,GB 17691-2005,中华人民共和国国家标准,北京:中国标准出版社,2005-05-30
    [51]达到国Ⅳ排放标准重型柴油机有三条技术路线,重发科技,2007,(1):38~39
    [52] Sougato Chatterjee, Andrew P. Walker, Philip G. BlakemanEmission Control Options to Achieve Euro IV and Euro V on Heavy Duty Diesel Engines. SAE paper 2008-28-0021.
    [53]董红义,帅石金,李儒龙,王建昕,柴油机后处理技术最新进展与发展趋势,小型内燃机与摩托车,2007,36( 3):87~92
    [54]范亦工,秦晓东,满足欧Ⅳ排放的不同柴油机技术路线对润滑油规格发展的影响,润滑油,2007,22(6):1~5
    [55]余乐,聂彦鑫,柴油机颗粒物排放后处理技术,汽车工程师,2009,(10):41~44
    [56]李树会,POC-轻型柴油车国Ⅲ/国Ⅳ后处理方案,内燃机,2008,12(6):40~46
    [57] Aulis Vakkilainen, Reijo Lylykangas. Particle Oxidation Catalyst (POC) for Diesel Vehicles SAE paper 2004-28-0047.
    [58]涂险峰,内燃机排气中多环芳烃的测量及排放特性的研究,[硕士学位论文],吉林,吉林工业大学,1999
    [59]张文美,现代柴油机燃烧过程中微粒及多环芳香烃变化规律的研究,[硕士学位论文],天津,天津大学,2007
    [60] Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by high performance liquid chromatography (HPLC) [S] ,Compendium of Methods for Determination of Toxic Organic compounds,EPA TO-11A Janu,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700