企业配电网电能质量检测及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力工业是关系国计民生的基础产业,随着国民经济的发展和人民生活水平的不断提高,人们对电力的需求快速增长,同时对配电网电能质量提出了更高的要求。
     本文重点针对企业配电网的谐波及无功电流的实时检测方法、动态补偿控制方法和综合补偿技术进行了深入研究。本文所做研究的特色和创新之处以及获得的有益结论主要体现在以下几个方面:
     1.首先介绍了自适应噪声消除原理及传统LMS(Least Mean Square)算法,在归一化LMS算法基础上提出了改进LMS算法,该算法具有较快的收敛速度和良好的平稳性。将改进LMS算法用于调整自适应滤波器的权值,提出了两种基于定步长的自适应谐波与无功检测算法。对两种算法进行观测比较,并且在配电网单相系统仿真及三相滤波器系统的谐波补偿控制仿真中对两算法进行检验。仿真结果显示应用检测算法二的滤波器系统拥有较好的动态响应性能,但在稳态精度方面仍有待改进。以检测算法二为基础,提出一种模糊自适应谐波与无功电流检测方法,通过建立起对应的模糊规则并利用模糊推理来实时调整算法的步长,能够协调好系统稳态性能与收敛速度之间的矛盾,并能在一定程度上改善滤波器的补偿精度。最后对模糊自适应谐波与无功电流检测方法进行仿真研究,仿真结果显示了所提方法的正确性和有效性。
     2.以IHAPF(Hybrid Active Power Filter With Injection Circuit)为研究对象,提出了基于π补偿smith预估器和BP神经网络(Neural Network, NN)的谐波电流信号跟踪控制方法,能够降低系统控制延时对滤波器性能的影响。使用π补偿smith预估器可以将系统延时从控制闭环内部转移到外部,提高系统的响应速度和稳定性。基于PSO-BP(Particle Swarm Optimization and BP Neural Network)算法的神经网络则用来在线寻求PI控制器的最优参数,PSO-BP算法不仅可以克服传统BP算法的收敛速度慢和易陷入局部极值的局限,而且较好的提高了BP神经网络学习能力。对于π补偿smith预估器模型的辨识,则是利用时间乘以误差绝对值积分(Integral Time Absolute Error, ITAE)准则建立起预估器参数与PI控制器参数间的数学关系式,应用该等式关系便可得到预估器模型的具体参数值,完成对预估器模型的辨识。最后,对所提控制方法进行仿真和实验研究,仿真结果显示所提方法的可行性和有效性,实验结果进一步验证了方法的正确性。
     3.针对TCR-MSC型静止无功补偿器(Static Var Compensator, SVC)的无功动态补偿控制方法进行了深入研究,提出了将SVC电压稳定控制和SVC负荷不平衡补偿相结合的复合控制方法,该方法易于实现、计算量小。首先介绍了SVC系统的拓扑结构,并设计了SVC的整体控制器,然后分别对电压的稳定控制方法和SVC负荷不平衡补偿方法进行了介绍。在电压稳定控制的实现过程中采用了一种改进的Z-N(Ziegler-Nichols)方法对控制器参数进行了优化,获得了优越的SVC系统控制性能。对三相负荷不平衡的补偿控制采用了基于虚拟对称三相系统的同步参考旋转坐标变换的补偿电纳计算方法,应用该方法计算量小,使用该方法的SVC不需要利用锁相环来获取同步旋转角,能够快速准确地补偿负荷的无功功率。最后对所提控制方法进行了仿真研究,仿真结果验证了方法的可行性与有效性。
     4.针对IHPQC(Injection Hybrid Power Quality Compensator)系统的控制技术进行了深入研究,提出了将SVC模式控制与IHAPF电流控制相复合的控制方法。在第四章所提电压稳定和负荷不平衡补偿控制方法的基础上,结合提出的电网功率因数校正控制方法,即构成了本文的SVC模式控制方法,通过该方法可以实现企业配电网电压的稳定、负荷电流负序分量的补偿和电网功率因数的校正。IHAPF电流控制主要包含配电网谐波与无功电流的检测及跟踪补偿控制环节,在谐波与无功的检测中使用了特定次数谐波检测并进行相位补偿的方法,可以实现电网谐波分量的准确检测,并能够减小控制延时在检测环节对系统产生的影响,该方法不仅可用于三相对称系统,同样适用于三相不对称系统。采用电流的反馈-前馈跟踪控制方法实现对电网谐波电流的动态补偿,其中电流的反馈控制环节应用了提出的迭代学习控制算法,该算法克服了传统迭代学习算法在IHPQC应用中的不足,改善了配电网谐波电流的跟踪补偿效果。采用单纯形加速算法对电流反馈控制器的参数进行在线优化,能够获得控制器的最优参数,提高系统的控制性能。PSIM仿真和实验结果验证了所提方法的可行性和有效性,采用复合控制方法后的IHPQC系统能够有效地实现电网的动态谐波治理和无功补偿。
Power industry is a basic industry relative to the people's livelihood. With the development of national economy and the improvement of people's living standards, the people's demand for electric power have rapid growth, and there are more and more requests for the power quality of distribution network.
     In this paper the real-time detection method and dynamic compensation method as well as synthesis compensation technique are proposed. The characteristics, innovation and beneficial conclusion are mainly embodied in the following aspects:
     1. In this chapter the adaptive noise cancellation principle and conventional LMS (Least Mean Square) algorithm are introduced firstly. An improved LMS algorithm based on normalized LMS is further proposed, and it owns a better convergence speed comparing with conventional LMS algorithm and good stability. Improved LMS algorithm is applied to adjust the weights of adaptive filters, and this dissertation proposes two adaptive detection algorithms of harmonic and reactive current with invariable step-length. Two proposed detection methods are tested and compared in single-phase system simulation and harmonic compensation control simulation of three-phase filter system. Simulation results show that the filter system with the second detection algorithm possesses a good dynamic response performance, but steady precision of using it still needs to be improved. An adaptive detection method of harmonic and reactive current based on fuzzy algorithm optimization is further proposed. The step-length of algorithm is adjusted through establishing the corresponding fuzzy rules and using fuzzy inference, which result in the improvement of compensation precision of filter. Finally the adaptive detection method of harmonic and reactive current based on fuzzy optimization is applied in simulation of three-phase filter system, and the simulation results have shown that the proposed method is correct and effective.
     2. In this chapter IHAPF (Hybrid Active Power Filter with Injection Circuit) is regarded as research object. A novel current tracking control method, which is based on n compensation smith predictor and neural network with a modified weight algorithm, is proposed. The use of π compensation smith predictor, which can transfer the system delay to external of control closed-loop from inside of closed-loop, has some advantages such as eliminating system delay effectively, as well as improving system stability and response speed. The neural network, which is based on PSO-BP (Particle Swarm Optimization and BP Neural Network) algorithm, is used for optimizing PI controller parameters and then improving control system precision. PSO-BP algorithm can not only overcome the problems such as slow convergence speed and sinking into the local extremum easily, but also has higher control precision and better learning ability of BP Neural Network. Meanwhile, after obtaining the relation of π compensation smith predictor parameters and PI controller parameters by ITAE (Integrated Time Absolute Error) criterion, parameter estimation of two controllers can be got, which avoids the case of identifying two controller parameters separately, and reduces the sensitive dependence on the grid parameters of two controllers. Simulation and experimental results have verified the effectiveness of proposed method.
     3. In this chapter, it makes an intensive study for the reactive current dynamic compensation method of SVC (Static Var Compensator). A compound control method composed of the voltage stability control and the compensation method of imbalance load in SVC system is proposed. The proposed method is easily carried out and the calculation with the method is small, so it is worth using for reference. In the paper, it introduces the topology structure of SVC, and designs the whole controller of SVC, then introduces the voltage control method and compensation method of the imbalance load respectively. In the voltage control method, an improved Ziegler-Nichols method is applied to optimize the parameters of controller and get a good control performance, and the method is easy to be realized and its calculation is small. In the compensation control of three-phase imbalance load, a calculation method of electrical susceptance based on synchronization reference rotating coordinate transformation of structuring symmetrical three-phase system is proposed. Proposed computing method has the advantage of small computation. The SVC system based on the proposed computing method can acquire synchronous rotation angle of not using phaselocked loop, and it can compensate reactive power of load quickly and accurately. Simulation results have verified the feasibility and effectiveness of proposed method.
     4. In this chapter a control technology of IHPQC (Injection Hybrid Power Quality Compensator) is studied, and control method composed of SVC mode control and IHAPF current control is proposed. In the paper, SVC mode control method consists of proposed reactive power control method in the fourth chapter and the grid power factor correction method proposed in this chapter. Stabilizing voltage of distribution system and compensating negative sequence components of load current as well as improving power factor can be realized by SVC mode control method, and it is easy to be realized and has reference value for large-scale SVC engineering application. IHAPF current control mainly consists of detection method of harmonic and reactive current and tracking compensation control. The detection method of detecting selected harmonic and compensating phase can realize the accurate detection of the harmonic component in the power grid, and can reduce the influence of detection delay. Proposed detection method can be used not only in three-phase symmetric system, but also for three-phase asymmetric system. Current tracking control method based on feedback-feedforward control is proposed to realize the dynamic compensation of harmonic in the power grid. An improved iterative learning control algorithm is applied in current feedback control, and proposed iterative algorithm avoids some defects of conventional iterative algorithm. In order to improve the control performance for tracking harmonic, the simplex method is used to optimize parameters of iterative controller. A feedforward link based on derivative learning law of harmonic current error as the control input is presented to the iterative feedback controller, which can improve the response performance of tracking harmonic. Simulation and experimental results have confirmed that IHPQC system with the proposed control method can effectively realize dynamic supression for load harmonic current and TCR harmonic, and dynamic compensation for reactive power of power grid.
引文
[1]吴竞昌.中国电力百科全书:电力系统卷.北京:中国电力出版社,1995
    [2]程志友.暂态电能质量检测与分析的研究:[安徽大学博士学位论文].安徽合肥:安徽大学,2007,1-1
    [3]余丹.数字信号处理在电能质量检测与分析中的应用研究:[西南交通大学硕士学位论文].四川成都:西南交通大学,2006,1-1
    [4]陈桂明,张明照,戚红雨.应用MATLAB语言处理数字信号与数字图象.北京:科学出版社,2001
    [5]国家技术监督局.电能质量供电电压允许偏差(GB 12325-1990).北京:标准出版社,1990
    [6]国家技术监督局.电能质量电压波动和闪变(GB 12326-2000).北京:标准出版社,2000
    [7]国家技术监督局.电能质量公用电网谐波(GB/T 14549-1993).北京:标准出版社,1993
    [8]国家技术监督局,电能质量三相电压允许不平衡度(GB/T 15543-1995).北京:标准出版社,1995
    [9]国家技术监督局.电能质量电力系统频率允许偏差(GB/T 15945-1995).北京:标准出版社,1995
    [10]国家技术监督局. 电能质量 暂时过电压和瞬态过电压(GB/T18481-2001).北京:标准出版社,2001
    [11]Phipps J K, Nelsom J P, Sen P K. Power quality and harmonic distortion on distribution systems. IEEE Transactions on Industry Applications,1994, 30(2):476-484
    [12]彭玉华.小波变换与工程应用.北京:科学出版社,1999
    [13]肖湘宁.电能质量分析与控制.北京:中国电力出版社,2004
    [14]Strockwell R G, Mansinha L, Lowe R P. Localization of the Complex Spectrum:The S-Transform. IEEE Transactions on Signal Processing,1996, 44(4):998-1001
    [15]Dash P K, Panigrahi B K, Sahoo D K, et al. Power quality disturbance data compression, detect ion, and classification using integrated spline wavelet and S-transform. IEEE Transactions on Power Delivery,2003,18(2):595-600
    [16]占勇,程浩忠,丁屹峰等.基于s变换的电能质量扰动支持向量机分类识 别.中国电机工程学报,2005,25(4):51-56
    [17]吕干云,方奇品.利用关联向量机和S变换识别电能质量扰动.高电压技术,2010,36(10):2565-2569
    [18]Lee I W C, Dash P K. S-transform-based intelligent system for classification of power quality disturbance signals. IEEE Transactions on Industrial Electronics,2003,50(4):800-805
    [19]Yuce E, Minaei S, Tokat S. Root-Mean-Square Measurement of Distinct Voltage Signals. IEEE Transactions on Instrumentation and Measurement, 2007,56(6):2782-2787
    [20]张贤达.现代信号处理(第二版).北京:清华大学出版社,2002
    [21]孙晓明,高孟平,刘涤尘,等.采用改进自适应Prony方法的电力故障信号的分析与处理.中国电机工程学报,2010,30(28):80-87
    [22]Zygarlicki J, Zygarlicki M, Zygarlicki J, et al. A Reduced Prony's Method in Power-Quality Analysis-Parameters Selection. IEEE Transactions on Power Delivery,2010,25(2):979-986
    [23]Feilat E A. Detection of Voltage Envelope Using Prony Analysis-Hilbert Transform Method. IEEE Transactions on Power Delivery,2006, 21(4):2091-2093
    [24]丁屹峰,程浩忠,吕干云,等.基于Prony算法的谐波和间谐波频谱估计.电工技术学报,2005,20(10):94-97
    [25]Bracale A, Caramia P, Carpinelli G. Adaptive Prony Method for Waveform Distortion Detection in Power Systems. Electrical Power and Energy Systems, 2007,29(5):371-379
    [26]苏小林,周双喜.Prony法在同步发电机参数辨识中应用.电力自动化设备,2006,26(9):1-4
    [27]Ribeiro M P, Ewins D J, Robb D A. Non-Stationary Analysis and Noise Filtering using a Technique Extended from the Original Prony Method. Mechanical Systems and Signal Processing,2003,17(3):533-549
    [28]崔屹.图像处理与分析数学形态学方法及应用.北京:科学出版社,2000
    [29]Shukla S, Mishra S, Singh B. Empirical-Mode Decomposition With Hilbert Transform for Power-Quality Assessment. IEEE Transactions on Power Delivery,2009,24(4):2159-2165
    [30]Senroy N, Suryanarayanan S, Ribeiro P F. An Improved Hilbert-Huang Method for Analysis of Time-Varying Waveforms in Power Quality. IEEE Transactions on Power Systems,2007,22(4):1843-1850
    [31]Shipp D D, Vilcheck W, Swartz M E, et al. Expert System for Analysis of Electric Power System Harmonics. IEEE Industry Applications Magazine, 1995, 1(2):34-39
    [32]Styvaktakis E, Bollen M H J, Gu I Y H. Expert System for Classification and Analysis of Power System Events. IEEE Transactions on Power Delivery, 2002,17(2):423-428
    [33]Zhu T X, Tso S K, Lo K L. Wavelet-Based Fuzzy Reasoning Approach to Power-Quality Disturbance Recognition. IEEE Transactions on Power Delivery,2004,19(4):1928-1935
    [34]Jain S K, Agrawal P, Gupta H O. Fuzzy logic controlled shunt active power filter for power quality improvement. IEE Proceedings Electric Power Applications,2002,149(5):317-328
    [35]Ibrahim W R A, Morcos M M. A Power Quality Perspective to System Operational Diagnosis Using Fuzzy Logic and Adaptive Techniques. IEEE Transactions on Power Delivery,2003,18(3):903-909
    [36]Dai Y T, Dai W J. Harmonic and Reactive Power Compensation with Artificial Neural Network Technology. In:Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China,2008,9001-9006
    [37]Gupta N, Singh S P, Dubey S P. Neural Network Based Shunt Active Filter for Harmonic and Reactive Power Compensation under Non-ideal Mains Voltage. In:5th IEEE Conference on Industrial Electronics and Applicationsis. Taichung,2010,370-375
    [38]Moiss V Ribeiro, Seop Hyeong Park, Joo Marcos T. Romano, et al. A Novel MDL-based Compression Method for Power Quality Applications. IEEE Transactions on Power Delivery,2007,22(1):27-36
    [39]Kirawanich P, O'Connell R M. Fuzzy Logic Control of an Active Power Line Conditioner. IEEE Transactions on Power Electronics,2004,19(6):1574-1585
    [40]赵曙光,王宇平,焦李成,等.基于自适应遗传算法的无源滤波器综合优化方法.中国电机工程学报,2004,24(7):173-176
    [41]刘观起,李庚银,周明,等.混合滤波器系统中无源滤波器的参数优化设计软件包.电力系统自动化,2000,24(11):56-59
    [42]王庆平,陈超英,王金星,等.无源滤波器设计的优化方法及其仿真研究.电网技术,2001,25(10):38-42
    [43]涂春鸣,罗安,刘娟.无源滤波器的多目标优化设计.中国电机工程学报,2002,22(3):17-20
    [44]何娜,黄丽娜,武健,等.基于粒子群优化算法的混合有源滤波器中无源滤波器的多目标优化设计.中国电机工程学报,2008,28(27):63-69.
    [45]Bhim Singh, Kamal A1-Haddad, Ambrish Chandra. A review of active filters for power quality improvement. IEEE Transactions on Industrial Electronics, 1999,46(5):1-12
    [46]吴敬兵,罗安,徐先勇,等.MRAC方法及在单相并联APF中的应用.高电压技术,2010,36(2):507-512
    [47]Rahman S, A1-Haddad K, Kanaan H Y. A comparative study of shunt hybrid and shunt active power filters for single-phase applications:Simulation and experimental validation. Mathematics and Computers in Simulation,2006, 71(4-6):345-359
    [48]Wajiha Shireen, Li Tao. A DSP-based active power filter for low voltage distribution systems. Electric Power Systems Research,2008, 78(9):1561-1567
    [49]Kunjumuhammed L P, Mishra M K. A Control Algorithm for Single-Phase Active Power Filter. IEEE Transactions on Power Electronics,2006, 21(3):822-825
    [50]Kuo-Kai Shyu, Ming-Ji Yang, Yen-Mo, et al. Model reference adaptive control design for a shunt active-power-filter system. IEEE Transactions on Industrial Electronics, 2008,55(1):97-106
    [51]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿.北京:机械工业出版社,2006
    [52]Malesani L, Mattavelli P, Tomasin P. High-performance hysteresis modulation technique for active filters. IEEE Transactions on Power Electronics,1997, 12(5):876-884
    [53]Mehmet Ucar, Engin Ozdemir. Control of a 3-phase 4-leg active power filter under non-ideal mains voltage condition. Electric Power Systems Research, 2008,78(1):58-73
    [54]Ortuzar M E, Carmi R E, Dixon J W, et al. Voltage source active power filter based on multilevel converter and ultra capacitor DC link. IEEE Transactions on Industrial Electronics,2006,53(2):477-485
    [55]Singh G K, Singh A K, Mitra R. A simple fuzzy logic based robust active power filter for harmonics minimization under randomload variation. Electric Power Systems Research,2007,77(8):1101-1111
    [56]Li D, Chen Q, Jia Z, et al. A high-power active filtering system with fundamental magnetic flux compensation. IEEE Transactions on Power Delivery,2006,21(2):823-830
    [57]Wu Longhui, Zhuo Fang, Zhang Pengbo, et al. Study on the Influence of Supply-Voltage Fluctuation on Shunt Active Power Filter. IEEE Transactions on Power Delivery,2007,22(3):1743-1749
    [58]Zhang C, Chen Q, Zhao Y, et al. A novel active power fitlter for high-voltage power distribution systems application. IEEE Transactions on Power Delivery, 2007,22(2):911-917
    [59]Madtharad C, Premrudeepreechacharn S. Active power filter for three-phase four-wire electric systems using neural networks. Electric Power Systems Research,2002,60(2):179-192
    [60]Afonso J, Couto C, Martins J. Active filters with control based on the p-q theory. IEEE Industrial Electronics Society Newsletter,2000,47(3):5-10
    [61]Herrera R S, Salmeron P, Kim H. Instantaneous Reactive Power Theory Applied to Active Power Filter Compensation:Different Approaches, Assessment, and Experimental Results. IEEE Transactions Industrial Electronics,2008,55(1):184-196
    [62]Singh B N, Singh B, Chandra A, et al. Design and digital implementation of active filter with power balance theory. IEE Proceedings Electric Power Applications,2005,152(5):1149-1160
    [63]Keypour R, Seifi H, Varjani A Y. Genetic based algorithm for active power filter allocation and sizing. Electric Power Systems Research,2004, 71(l):41-49
    [64]Matas J, Vicuna L G, Miret J, et al. Feedback Linearization of a Single-Phase Active Power Filter via Sliding Mode Control. IEEE Transactions on Power Electronics,2008,23(1):116-125
    [65]Valiviita S, Ovaska S J. Delayless Method to Generate Current Reference for Active Filters. IEEE Transactions on Industrial Electronics,1998, 45(4):559-567
    [66]Huayun Yang, Shiyan Ren. A Practical Series-Shunt Hybrid Active Power Filter Based on Fundamental Magnetic Potential Self-Balance. IEEE Transactions Power Delivery,2008,23(4):2089-2096
    [67]Akagi H, Hatada T. Voltage Balancing Control for a Three-Level Diode-Clamped Converter in a Medium-Voltage Transformerless Hybrid Active Filter. IEEE Transactions on Power Electronics,2009,24(3):571-579
    [68]吴敬兵,罗安,徐先勇,等.大功率混合有源电力滤波器的智能控制策略.电力自动化设备,2010,30(4):36-41
    [69]Luo A, Shuai Z K, Zhu W J, et al. Development of Hybrid Active Power Filter Based on the Adaptive Fuzzy Dividing Frequency-Control Method. IEEE Transactions on Power Delivery,2009,24(1):424-432
    [70]Luo A, Zhao W, Deng X, John Shen Z, Peng J C. Dividing Frequency Control of Hybrid Active Power Filter With Multi-Injection Branches Using Improved ip-iq Algorithm. IEEE Transactions on Power Electronics,2009, 24(10):2396-2405
    [71]Luo A, Xu X Y, Fang L, et al. Feedback-Feedforward PI-type Iterative Learning Control Strategy for Hybrid Active Power Filter with Injection Circuit. IEEE Transactions on Industrial Electronics,2010,57(11):1-13
    [72]Corasaniti V F, Barbieri M B, Arnera P L, et al. Hybrid Active Filter for Reactive and Harmonics Compensation in a Distribution Network. IEEE Transactions on Industrial Electronics,2009,56(3):670-677
    [73]Sriangthumrong S, Akagi H. A medium-voltage transformerless ac/dc power conversion system consisting of a diode rectifier and a shunt hybrid filter. IEEE Transactions on Industry Applications,2003,39(3):874-882
    [74]Basic D, Ramsden V S, Muttik P K. Harmonic filtering of high-power 12-pulse rectifier loads with a selective hybrid filter system. IEEE Transactions on Industrial Electronics,2001,48(6):1118-1127
    [75]Luo A, Tang C, Shuai Z K, et al. A Novel Three-Phase Hybrid Active Power Filter with a Series Resonance Circuit Tuned at the Fundamental Frequency. IEEE Transactions on Industrial Electronics,2009,56(7):2431-2440
    [76]Luo A, Shuai Z K. Design Considerations for Maintaining DC-Side Voltage of Hybrid Active Power Filter with Injection Circuit. IEEE Transactions on Power Electronics,2009,24(1):75-84
    [77]Valiviita S, Ovaska S J. Delayless Method to Generate Current Reference for Active Filters. IEEE Transactions on Industrial Electronics,1998, 45(4):559-567
    [78]董密,成剑,罗安.并联混合型有源滤波器电流跟踪的迭代学习控制.中国电机工程学报,2006,26(9):104-107
    [79]罗邵屏,罗安,周柯.注入式混合有源滤波器的三重滑模变结构控制.电力电子技术,2007,41(7):24-26(转第30页)
    [80]汤赐,罗安,范瑞祥,等.新型注入式混合有源滤波器应用中的问题.中 国电机工程学报,2008,28(18):47-53
    [81]汤赐,罗安,周柯,等.新型注入式混合有源滤波器的滑模变结构控制.中国电机工程学报,2007,27(19):99-103
    [82]赵伟.高压配电网谐波与无功综合动态治理理论与应用研究: [湖南大学博士学位论文].湖南长沙:湖南大学,2010
    [83]常亮亮,涂春鸣,罗安,等.新型注入式混合有源滤波器的检测与控制策略.电力系统及其自动化学报,2010,22(6):17-22
    [84]廖敏,昃萌.分级可控并联电抗器的控制策略及保护配置.电力系统自动化,2010,34(15):56-59
    [85]周辉,潘建,高健,等.变电站并联电容器谐波放大及改进措施.电力自动化设备,2007,35(6):70-73
    [86]Twining E, Newman M J, Loh P C, et al. Voltage compensation in weak distribution networks using a D-STATCOM. In:The Fifth International Conference on Power Electronics and Drive Systems. Singapore,2003, 178-183
    [87]Blazic B, Papic I. Improved D-StatCom Control for Operation With Unbalanced Currents and Voltages. IEEE Transactions on Power Delivery, 2006,21(1):225-233
    [88]Kuang Li, Jinjun Liu, Zhaoan Wang, et al. Strategies and Operating Point Optimization of STATCOM Control for Voltage Unbalance Mitigation in Three-Phase Three-Wire Systems. IEEE Transactions on Power Delivery,2007, 22(1):413-421
    [89]Singh B, Murthy B B, Gupta S. Analysis and Design of STATCOM-Based Voltage Regulator for Self-Excited Induction Generators. IEEE Transactions on Energy Conversion,2004,19(4):783-790
    [90]Ben-Sheng Chen, Yuan-Yih Hsu. A Minimal Harmonic Controller for a STATCOM. IEEE Transactions on Industrial Electronics,2008, 55(2):655-664
    [91]Ji Y C, Hu Y X, Liu Z. Novel four-bridge PWM static Var compensator. IEE Proceedings Electric Power Applications,1997,144(4):249-256
    [92]Lee S Y, Wu C J. Reactive power compensation and load balancing for unbalanced three-phase four-wire system by a combined system of an SVC and a series active filter. IEE Proceedings Electric Power Applications,2002, 147(6):563-578
    [93]徐先勇,罗安,方璐.静止无功补偿器的新型最优非线性比例积分电压控 制.2009,29(1):80-86
    [94]Abdel-Rahman M H, Youssef F M H, Asber A A. New Static Var Compensator Control Strategy and Coordination With Under-Load Tap Changer. IEEE Transactions on Power Delivery,2006,21 (3):1630-1635
    [95]Venayagamoorthy G K, Jetti S R. Dual-Function Neuron-Based External Controller for a Static Var Compensator. IEEE Transactions on Power Delivery, 2008,23(2):997-1006
    [96]Ahmed T, Noro O, Hiraki E, et al. Terminal Voltage Regulation Characteristics by Static Var Compensator for a Three-Phase Self-Excited Induction Generator. IEEE Transactions on Industry Applications,2004, 40(4):978-988
    [97]盘宏斌,罗安,赵伟.基于DSP的不平衡补偿和单纯形优化的静止无功补偿器.电力自动化设备,2009,29(3):51-55
    [98]单任仲,尹忠东,肖湘宁,等.新型正弦脉宽调制控制电压源型动态静止无功补偿器.中国电机工程学报,2009,29(16):95-99
    [99]单任仲,尹忠东,肖湘宁,等.双向连续可调无功的SPWM型静止无功补偿器.电力系统自动化,2008,32(15):75-78
    [100]刘玉雷,解大,张延迟.静止无功补偿器用于抑制厂用电系统电压波动仿真.电力系统自动化,2006,30(16):97-101
    [101]李杨.暂态电能质量检测与控制方法的研究:[湖南大学硕士学位论文].湖南长沙:湖南大学,2007,4-4
    [102]李晓萌,张秀娟,周金明,等.动态电压调节器的电磁兼容设计及测试.电力系统自动化,2004,28(9):70-73
    [103]刘昊,韩民晓,尤勇,等.线电压补偿型DVR的补偿能力分析.电力系统自动化,2003,27(21):54-57
    [104]韩民晓,尤勇,刘昊.线电压补偿型动态电压调节器(DVR)的原理与实现.中国电机工程学报,2003,23(12):49-53
    [105]Akagi H, Fujita H. A New Power Line Conditioner for Harmonic Compensation in Power Systems. IEEE Transactions on Power Delivery,1995, 10(3):1570-1575
    [106]祁才君,王小海.基于插值FFT算法的间谐波参数估计.电工技术学报,2003,18(1):92-95
    [107]Mazumdar J, Harley R G, Lambert F C, et al. Neural Network Based Method for Predicting Nonlinear Load Harmonics. IEEE Transactions on Power Electronics,2007,22(3):1036-1045
    [108]王建赜,冉启文,纪延超,柳焯.基于小波变换的时变谐波检测.电力系统自动化,1998,22(8):52-55
    [109]戴丽萍,刘开培.基于自适应预测滤波器的谐波检测.电力自动化设备,2005,25(8):63-65
    [110]谭甜源,乐健,阮江军.基于自适应滤波器的动态谐波电流预测方法.电力系统自动化,2010,34(11):43-47
    [111]Tey L H, So P L, Chu Y C. Improvement of power quality using adaptive shunt active filter. IEEE Transactions on Power Delivery,2005,20(2):1558-1568
    [112]王群,谢品芳.模拟电路实现的神经元自适应谐波电流检测方法.中国电机工程学报,1999,19(6):42-46
    [113]Simon Haykin著,郑宝玉等译.白适应滤波器原理.北京:电子工业出版社,2003
    [114](Paulo S.R.Diniz)迪尼,刘郁林,景晓军,等.自适应滤波算法与实现.北京:电子工业出版社,2004
    [115]Martin T. Hagan, Howard B. Demuth, Mark H. Beale(戴葵等译).神经网络设计.北京:机械工业出版社,2002
    [116]何娜,黄丽娜,武健.一种新型快速自适应谐波检测算法.中国电机工程学报,2008,28(22):124-129
    [117]夏向阳,罗安,范瑞祥,等.有源滤波器控制延时的新型补偿方法.电工技术学报,2008,23(11):166-172
    [118]范瑞祥,罗安,唐杰.谐振注入式有源滤波器数字化控制系统延时研究.中国电机工程学报,2007,27(13):104-110
    [119]Astrom K J, Hang C C, Lim B C. A new smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions Automatic Control,1994,39(2):343-345
    [120]Simon Haykin著;叶世伟,史忠植译.神经网络原理.北京:机械工业出版社,2004
    [121]范瑞祥.并联混合型有源电力滤波器的理论与应用研究:[湖南大学博士学位论文].湖南长沙:湖南大学,2007,29-32
    [122]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003
    [123]SHI Y, EBERHART R C.A modified Swarm optimizer. In:IEEE International Conference on Evolutionary Computation. Anchorage AK USA,1998,69-73
    [124]Kenned J, Ebemart R C. Partical swarm optimization. In:Proceeding of 1995 IEEE international conference on neural networks. New York,1995,192-194
    [125]项国波.ITAE最优控制.北京:机械工业出版社,1986
    [126]胡寿松.自动控制原理.科学出版社,2001
    [127]盘宏斌.综合型电能质量调节装置的理论与技术研究: [湖南大学博士学位论文].湖南长沙:湖南大学,2009
    [128]Ziegler J G, Nichols N B. Optimum settings for automatic controllers. ASME Transactions,1942,64,759-768
    [129]Rajani K Mudi, Chanchal Dey, Tsu-Tian Lee. An improved auto-tuning scheme for PI controllers. ISA Transactions,2008,47(1):45-52
    [130]Gyugyi L, Otto R A, Putman T H. Principles and Applications of Static, Thyristor-Controlled Shunt Compensators. IEEE Transactions on Power Apparatus and Systems,1978,97(5):1935-1945
    [131]李鹏,石新春,粱志瑞.对电弧炉平衡化补偿实用公式推导及验证.电工技术学报,2001,16(1):77-80
    [132]林海雪.电力系统电压第五分册.北京:中国电力出版社,1998
    [133]纪飞峰,周荔丹,姚钢,等.基于同步对称分量法的静止无功补偿装置.中国电机工程学报,2005,25(6):24-29
    [134]王树文,纪延超,马文川.新型静止无功补偿器稳定系统电压的研究.中国电力,2006,39(7):52-55
    [135]San Yi Lee, Chi Jui Wu, Wei Nan Chang. A compact control algorithm for reactive power compensation and load balancing with static Var compensator. Electric Power Systems Research,2001,58(2):63-70
    [136]丁仁杰,刘建,赵玉伟,等.不平衡电路的瞬时功率分析及不对称负荷补偿方法.电工技术学报,2007,22(1):120-124
    [137]董密,成剑,罗安.并联混合型有源滤波器电流跟踪的迭代学习控制.中国电机工程学报,2006,26(9):104-107
    [138]谢胜利,田森平,谢振东.迭代学习控制的理论与应用.北京:科学出版社,2005
    [139]BlaSko V. Adaptive filtering for selective elimination of higher harmonics from line currents of a voltage source converter. In:Proceedings of the IEEE IAS Annual Meeting, St. Louis, Missouri, USA,1998,1222-1228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700