新建电气化铁路对电网电能质量影响的预测与对策分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电气化铁路大规模的工程建设带来了大量的科学、技术问题。随着新建电气化铁路建设、既有电气化铁路的扩容、机车技术的进步、电力系统自身的发展,新建电气化铁路带来的电能质量问题将达到何种程度,对电力系统自身的规划是否会造成影响,值得研究。
     本文首先针对大量牵引变电所馈线电流的实测数据,统计分析了其分布特性和数字特征。统计分析表明:带电有效系数从某种程度反映了给电运行时负荷电流的波动性;牵引负荷带电电流的95%概率大值与平均值之比分布比较集中,平均取值在2.4左右。
     在总结、分析了牵引负荷分布特征的基础上,通过随机过程理论和数值分析方法,采用β分布拟合牵引变电所馈线电流的概率密度函数,误差分析结果表明了该方法的有效性。针对新建电气铁路牵引变电所,基于设计使用的边界条件,求得β分布的参数,即可建立新建规划线路的负荷预测模型。采用蒙特卡洛抽样方法,获得牵引变电所馈线电流的子样。以某变电站供电区域的子电网为例,预测了某新建电气化铁路牵引负荷对电网电能质量影响。
     针对谐波的复杂性,IEC提出了“三级评估”原则,其中第三级评估方法对电铁牵引畸变负荷是适用的。本文根据中、低电压级电气设备承受谐波能力的裕度,提出采用综合渗透(传递)系数法来制定IEC“三级评估”考核值。以某变电站供电区域的子电网为例,评估了某新建电气化铁路牵引负荷对电网谐波的影响。
     最后,针对牵引供电系统日渐突出的负序问题,提出同相供电技术是同时解决负序问题及铁路的电过分相问题的理想选择。建立了同相供电系统潮流控制器综合补偿的数学模型,给出了针对任意三相-两相接线变压器的潮流控制器综合补偿电流的通用表达式;进而提出了以牵引变电所完全补偿和满意补偿为目标的潮流控制器容量综合配置方法。利用某新建电气化铁路牵引负荷的预测数据,分别对按照2类补偿目标设计的潮流控制器容量综合配置方案进行分析和比较。实例分析表明,采用本文所提出的容量配置方法,潮流控制器可在负荷周期内满足满意补偿的目标,且显著降低了自身的工程造价。
A large number of scientific and technical problems arise with large-scale engineering construction of electrified railway. With the building of the new electrified railway, the expanding capacity of existed electrified railway, the improving of locomotive technology and the development of power system, researches on power quality influenced by the new electrified railway and the effection to the planning of power grid are important.
     Firstly, for a large number of measured data of feeder current from traction substation, the distribution characteristics and digital characteristic were statistically analyzed. Statistical results show that the charged effective coefficient reflects the fluctuation of charged load current in some degree. The distribution of the ratio between the95%probability value and the average value of charged traction load current centralized relatively. The average ratio is about2.4.
     Probability density function for feeder current of traction substation is fitted by using β function through the theory of stochastic process and method of numerical analysis on the basis of summarizeing and analyzing the distribution characteristics of traction load. Error anlaysis verifies the effectiveness of the proposed method. As a new electrified railway traction load, according to the basic information derived from railway departments, the prediction model of new electrified railway traction load can be obtained. The feeder current sampleis obtained by using Monte Carlo method.Taking a subnetwork supplied by regional power grid substation as an example, the influence of negative sequence unbalance caused by the new electrified railway is evaluated.
     Considering the complexity of harmonic,"stage3" evaluation method was proposed by IEC. The third stage evaluation method is applicative for the traction distortion load. According to the bearing harmonic capacity abundance of electric equipment of the MV and LV system, and the comprehensive penetration coefficient method is put forward for IEC "Stage3about harmonic emission limit.The influence of harmonic caused by the new electrified railway traction load is evaluated through the example.
     Finally, for the increasingly prominent negative sequence problem in traction power supply system, cophased traction power supply technology is proposed because it is the best comprehensive solution for negative sequence power quality and electrical neutral section. Mathematical modeling of Power Flow Controller for comprehensive compensation is built in this paper. Aiming at any wiring transformers, the general expression for PFC comprehensive compensating current is given.Then the method for PFC comprehensive capacity configuration taking complete and flexible compensation as the objectives is designed. Three different traction loads are used. The PFC comprehensive capacity configuration scheme is analysed and compared according to two compensation objectives. Example analysis results that adopting the configuration method proposed in this paper, the objective of satisfaction compensation within full load can be attained by PFC. The proposed method reduces project cost obviously.
引文
[1]李群湛,贺建闽.牵引供电系统分析[M].北京:西南交通大学出版社,2007.
    [2]李群湛著.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社,1993.
    [3]西南交通大学.电气化铁道负荷对电网电能质量影响的评估及其治理技术的研究报告[R].2009
    [4]铁道部电气化工程局电气化勘测设计部编.电气化铁道设计手册(牵引供电系统)[M].北京:中国铁道出版社,1988
    [5]简克良.电力系统分析[M].成都:西南交通大学出版社.1992.
    [6]GB-T 15543-2008.电能质量 三相电压不平衡[S].北京:国家质量技术监督局,2008.
    [7]GB/Z17625.4-2000,电磁兼容限值中、高压电力系统中畸变负荷发射限值的评估[S].国家技术监督局,北京,2000.
    [8]GB/T14549-1993,电能质量 公用电网谐波[S].国家技术监督局,北京,1993.
    [9]林海雪.电力系统谐波电压标准的研讨[J].大功率变流技术.2011(04):1-8.
    [10]西南交通大学.云南电气化铁路对云南电网的影响与对策分析研究[R].2009
    [11]李群湛,贺建闽,解绍锋.电气化铁路电能质量分析与控制.成都:西南交通大学出版社.2012.
    [12]李群湛.牵引变电所供电分析及综合补偿分析[M].北京:中国铁道出版社,2006.
    [13]李群湛,贺建闽.牵引变电所基波和谐波通用模型,铁道学报.1992(3):22-30.
    [14]李群湛.牵引变电所电气量的通用变换方法及其应用.铁道学报,1994(03):17-22.
    [15]贺建闽,李群湛.YN/V平衡变压器电气分析与计算.铁道学报,1994(06):28-37.
    [16]张进思.电牵引负荷谐波的分布计算.西南交通大学出版社,1984(04):82-92.
    [17]李春茂.电牵引负荷谐波全相分析模型.华北水利水电学院学报,1996,17(02):64-71.
    [18]Kutsmeda K J, Fehrle K G, Trick P J. Computer modeling simulation and validation by field testing of a traction power system for electric trolley buses, Railroad Conference[Z]. Baltimore md:Railroad Conference,Proceedings of the 1995 IEEE/ASME Joint,1995:87-91.
    [19]Galvin R J, Goodman C J, Johnston W B, Taskin T. Feasibility study for maximum demand control on the Central Division of Queensland Railway[Z]. York:Intl. Conf.'Mainline Railway Electrificaiton', Conf. Publn.312:378-382.
    [20]Goodman G J, Siu L K, Ho T K. A review of simulation models for railway systems[Z]. London:IEE International Conference on Developments in Mass Transit System,1998:80-85.
    [21]张进思.电气化铁道负荷过程及负荷行为的计算机仿真.西南交通大学学报[J],1986(04):21-29.
    [22]马林,张进思,李群湛.电牵引列车操纵优化策略及其仿真研究.铁道学报TDXB[J],1991(S1):109-118.
    [23]杨耀华,赵宗汉,王刚.不同行车方案运行图编制优化及运行图法牵引供电仿真计算应用软件.大连铁道学院学报DLTD[J],1991(01):97-99.
    [24]Ye Zhongming, Edward Lo, Yuen K. H.etc. Probabilistic characterization of current harmonics of electrical traction power supply system by analytic method[C]. Industrial Electronics Society,1999.IECON'99 Proceedings. The 25th Annual Conference of the IEEE,1999:360-3661
    [25]李建华,韩奕,黄石柱等.韶山Ⅰ型电力机车概率谐波电流计算[J].电力系统自动化.2000(14):16-20.
    [26]韩奕,李建华,黄石柱等.SS4型电力机车的动态模型及随机谐波电流计算[J].电力系统自动化.2001(04):31-36.
    [27]黄石柱,李建华,赵娟,等.电气化铁路牵引变电所概率谐波电流的仿真计算[J].电力系统自动化.2002(05):26-31.
    [28]万庆祝,吴命利,陈建业,等.基于牵引计算的牵引变电所馈线电流仿真计算[J].电工技术学报.2007(06):108-113.
    [29]万庆祝,陈建业,王赞基.电气化铁道系统计算机仿真的研究进展[J].机车电传动.2006(03):1-5.
    [30]董祥.电气化铁路对电网电能质量影响的预测研究.西南交通大学硕士学位论文[D],2009.
    [31]康婕.电气化铁路牵引负荷的概率分布模型及其应用.西南交通大学硕士学位论文[D],2011.
    [32]张定华,桂卫华,王卫安,等.牵引变电所电能质量混合动态治理技术[J].中国电机工程学报.2011(07):48-55.
    [33]张志芳.牵引变电所TCR+FC补偿效果分析[J].铁道标准设计.2009(07):104-106.
    [34]赵伟,罗安,曹一家,等.三相-两相牵引变电所用无功动态补偿与谐波治理混合系统的研究[J].中国电机工程学报.2009(28):107-114.
    [35]盘宏斌,罗安,彭可,等.混合型有源滤波器与静止无功补偿器组成综合补偿系统的电流控制[J].中国电机工程学报.2009(31):73-79.
    [36]严春平.基于TSC+STATCOM无功补偿的控制策略研究[D].中南大学,2009.
    [37]方璐,罗安,徐先勇,等.高速电气化铁路新型电能质量补偿系统[J].电工技术学报.2010(12):167-176.
    [38]缪耀珊.交流电气化铁道牵引供电系统的综合补偿[J].电气化铁道.2005(05):1-5.
    [39]李夏青,李力.牵引供电系统采用SVG实现有源无功补偿方法研究与仿真[J].铁道学报.1999(02):55-58.
    [40]朱学军,赖惠鸽.牵引供电系统动态无功补偿及优化规划研究.高电压技术[J],2002(09):17-19.
    [41]唐敏,李群湛,贺建闽.牵引变电所无功谐波综合补偿方案研究.电网技术[J],2004(02):47-52.
    [42]张定华,桂卫华,王卫安,等.新型电气化铁道电能质量综合补偿系统的研究及工程应用[J].电工技术学报.2009(03):189-194.
    [43]高明振,任震,唐卓尧等.无源-有源混合滤波器容量优化设计.铁道学报[J],1999(05):43-46.
    [44]涂春鸣,罗安,刘娟.无源滤波器的多目标优化设计.中国电机工程学报[J],2002(03):18-22.
    [45]朱革兰,任震.无源电力滤波器的最小容量优化设计.华南理工大学学报(自然科学版)[J],2002(03):46-49.
    [46]肖金凤,苏泽光.无源滤波器的优化设计.南华大学学报(理工版)[J],2001(03):14-17.
    [47]王庆平,陈超英,王金星等.无源滤波器设计的优化方法及其仿真研究.电网技术[J],2001(10):38-42.
    [48]邓红英,赵勇,陈志鹏,李建华,夏道止.考虑谐波源随机性的有源滤波器最优配置.电力系统自动化[J],2000(12):12-15.
    [49]赵勇,邓红英,李建华,陈志鹏,夏道止.基于机会约束规划的配电网络滤波装置优化配置.中国电机工程学报[J],2001(01):13-18.
    [50]沈红,赵勇,李建华,夏道止.考虑谐波源随机过程的配电网络滤波装置优化配置.电网技术[J],2002(11):15-19.
    [51]刘凡,杨洪耕,叶茂清,杨华.串联混合型有源滤波器在电铁谐波抑制中的研究.四川电力技术[J],2002(06):12-13+21.
    [52]杨洪耕,刘静萍,张一中.投入无功补偿电容器装置对谐波分布的影响[J].成都科技大学学报,1990(01):119-124.
    [53]任震,余得伟,唐卓尧.基于模糊优化设计的混合滤波器——治理电气化铁道谐波的一种新方法.中国电机工程学报[J],2001(02):67-69+80.
    [54]马庆安, 李群湛.新型无功补偿装置的滤波能力分析.机车电传动[J],2003(02):15-17.
    [55]张丽,李群湛,贺建闽.无功反送正计条件下最佳固定补偿容量的选择.铁道学报[J],2003(02):34-38.
    [56]Chou CJ,Liu C W, Lee, J Y. Optimal planning of large passive harmonic-Filters set at high voltage level [J]. IEEE Trans on Power System, 2000,15(1):433-441.
    [57]Bhattacharya S, Divan, D.M.Cheng, P-T. Hybrid solutions for improving passive filter performance in high power applications. IEEE Trans. Ind. 1997,33(3):732-747.
    [58]Lina Huang, Na He, Dianguo Xu. Optimal Design for Passive Power Filters in Hybrid Power Filter Based on Particle Swarm Optimization [C]. Automation and Logistics,2007 IEEE International Conference on, 2007:1468-1472.
    [59]Ruihua Zhang, Yuhong Liu, Yaohua Li. Optimal parameters for filter using improved genetic algorithms[C]. Sustainable Power Generation and Supply, 2009. SUPERGEN'09. International Conference on,2009:1-5.
    [60]Sharaf A. M., El-Gammal A. A. Optimal Hybrid Power Filter Compensator Design Using Multi-objective Particle Swarm Optimization(MOPSO)[C]. Computer Modelling and Simulation,2009. UKSIM'09.11th International Conference on,2009:391-397.
    [61]贺建闽,黄治清,李群湛.牵引变电所固定并联电容补偿有效性评价.铁道学报.2004,26(3):41-45.
    [62]黄足平,姜齐荣.京沪线南翔牵引变电所有源无源混合补偿方案[J].电气化铁道.2009(05):1-5.
    [63]方重秋.电气化铁道牵引负荷谐波电流统计建模、分析.西南交通大学硕士学位论文[D],2008.
    [64]吴帆.基于实测数据的牵引变电所运行特性仿真及评价.西南交通大学硕士学位论文[D],2009.
    [65]李群湛.电牵引负荷的概率分布及其应用[J].西南交通大学95周年校庆论文集—研究生专集.西南交通大学出版社,1991:327-332
    [66]Esposito T., Varilone P. Some approaches to approximate the probability density functions of harmonics[C]. Harmonics and Quality of Power,2002. 10th International Conference on,2002:365-3721.
    [67]解绍锋,李群湛,赵丽平.电气化铁道牵引负载谐波分布特征与概率模型研究.中国电机工程学报[J],2005(16):79-83.
    [68]杨洪耕,秦东,张正书等.用Laguerre多项式描述谐波随机求和问题.电网技术[J],2005(14):26-29+39.
    [69]王刚,杨洪耕.基于Laguerre多项式的电力机车谐波电流估计.电力自动化设备[J],2006(06):44-47.
    [70]王刚,杨洪耕.基于最小二乘法的正交多项式级数在谐波估计中的应用.继电器[J],2006(12):25-29.
    [71]杨洪耕,张瑾,张一中.电力用户谐波限值的评估方法.四川大学学报(工程科学版)[J],2000(05):82-85.
    [72]Yaw-Juen Wang, Pierrat L. Probabilistic modelling of current harmonics produced by an AC/DC converter under voltage unbalance. Power Delivery, IEEE Transactions on[J],1993,8 (4):2060-2066.
    [73]Crucq J. M, Robert A. Statistical approach for harmonics measurements and calculations[C]. Electricity Distribution,1989. CIRED 1989.,10th International Conference on,1989:91-962.
    [74]Caramia P, Caramia P, Carpinelli G.etc. Probabilistic iterative harmonic analysis of power systems. Generation, Transmission and Distribution, IEE Proceedings[J],1994,141(4):329-338.
    [75]Ribeiro P. F, Ribeiro P. F. An overview of probabilistic aspects of harmonics:state of the art and new developments[C]. Power Engineering Society General Meeting,2005. IEEE,2005:2243-22463.
    [76]Morrison R. E, Morrison R. E. Probabilistic analysis of harmonic currents in power systems[C]. Power Engineering Society Winter Meeting, 2002. IEEE,2002:1082-10832.
    [77]Carpinelli G., Carpinelli G. Some considerations on probabilistic aspects and harmonic standards[C]. Harmonics and Quality of Power,2000. Proceedings. Ninth International Conference on,2000:254-2561.
    [78]Martinon J., Martinon J, Fauquembergue P. etc. A new statistical approach of harmonic propagation in transmission systems. Power Delivery, IEEE Transactions on [J],1996,11(2):1032-1040.
    [79]Stankovic A. M, Stankovic A. M, Marengo E. A. A dynamic characterization of power system harmonics using Markov chains. Power Systems, IEEE Transactions on [J],1998,13(2):442-448.
    [80]Carbone R, Carbone R, Castaldo D.etc. Probabilistic modeling of industrial systems for voltage distortion analyses[C]. Harmonics and Quality of Power,2000. Proceedings. Ninth International Conference on, 2000:608-6132.
    [81]BaSudan 0,Hegazy Y. G. Probabilistic modeling of distribution system loads for harmonic studies[C]. Power Engineering Society Summer Meeting, 2001.IEEE,2001:1778-17813.
    [82]唐开林,李群湛,张丽艳,et al.电气化铁道牵引网馈线电流概率分布[J].电力系统及其自动化学报.2010(06):12-16.
    [83]杨少兵,吴命利.电气化铁道牵引变电所负荷概率模型[J].电力系统自动化.2010(24):40-45.
    [84]杨少兵,吴命利.电气化铁道牵引馈线负荷概率模型[J].铁道学报.2011(05):38-42.
    [85]陈立周,何晓峰,翁海珊.工程随机变量优化方法设计——原理与应用[M].北京:科学出版社,1997.
    [86]孙芳垂翻译.工程规划与设计中的概率概念[M].北京:冶炼工业出版社,1991.
    [87]李春喜,姜丽娜,绍云.现代数据分析[M].北京:科学出版社,2008.
    [88]金光炎.工程数据统计分析[M].南京:东南大学出版社,2002.
    [89]唐开林.新建电气化铁路电能质量影响预测研究.西南交通大学硕士学位论文[D],2012.
    [90]Pearson, E. S. and Johnson, N. L. Tables of the incomplete beta-function.2nd Ed. Cambridge Univ. Press,Cambridge, England,1968.
    [91]Pearson,K. Tables of the incomplete B-function, Cambridge Univ. Press, Cambridge, England,1934.
    [92]张建中编.蒙特卡洛方法[M].北京:科学出版社,1990.
    [93]吉庆丰著.蒙特卡洛方法及其在水力学中的应用[M].东南大学出版社,2004.
    [94]中国电力科学研究院.海南东环电气化铁路负序问题研究报告[R].2008.
    [95]中国电力科学研究院.海南东环电气化铁路谐波问题研究报告[R].2008.
    [96]梁道辉.南宁至昆明电气化铁路电力牵引系统负序电流计算方法[J].广西电力,(4),2003:33-36
    [97]张华,熊继峰,王虎,程虹.浙赣铁路电气化牵引站负序电流及谐波对江西电网的影响[J].江西能源,(2),2005:2-5
    [98]西南电力设计院.遂渝铁路(重庆段)电铁供电方案专题报告[R].2003.
    [99]于坤山,周胜军等.电气化铁路供电与电能质量[M].北京:中国电力出版社,2011.
    [100]TB/T2799-1997中华人民共和国铁道行业标准[S].北京:中华人民共和国铁道部,1997.
    [101]何晓群.应用多元统计分析[M].北京:中国统计出版社,2010.
    [102]谢中华MATLAB统计分析与应用[M].北京:北京航空航天大学出版社,2010.
    [103]李群湛.试论公用电网谐波(国标)的限值.[J].铁道学报.1995(04):123-127.
    [104]IEC/TR 61000-3-6 EMC Part 3:Limits-Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems[S]. Basic EMC publication,2008-02.
    [105]赵乾钊.电气化铁路谐波预测评估方法的研究.[J].电气化铁道,2004,3:1-7.
    [106]解绍锋.电气化铁道谐波过程分析与推荐限值制定思路研究[D].西南交通大 学,2004.
    [107]杜晨红.电气化铁道牵引负荷谐波推荐限值的研究[D].河北:华北电力大学,2009.
    [108]X. Shaofeng and L. Quanzhan, A Practical Method for Assessment of Harmonic Emission of Electrified Railway, in IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006, pp.2827-2831.
    [109]The Engineering Recommendation G5/4-Planning levels for harmonic voltage distortion and the connection of non-linear equipment to transmission systems and distribution networks in the United Kingdom[S]. The Electricity Association,2001.
    [110]姚世全.电磁兼容标准实施指南[M].北京:中国标准出版社,1999.
    [111]林海雪.几种国外谐波电压标准的分析[J].供用电,2008(3):4-7.
    [112]林海雪.关于电气化铁道的谐波标准[J].河北电力技术,1993(5):16-23.
    [113]铁道部电铁谐波专家小组.电气化铁路谐波计算方法暂行规定.2001.北京.
    [114]贺建闽,黄治清, 李群湛.电网背景谐波电压测量与方法[J].铁道学报,2006,27(6):28-33.
    [115]吴命利.电力系统谐波、负序过程仿真及应用[D].西南交通大学硕士学位论文,1996.
    [116]王猛.电牵引负荷谐波在三相电力系统中的分布与计算[D].西南交通大学硕士学位论文,2003.
    [117]张丽艳.基于系统潮流的牵引变电所综合补偿方案研究[D].西南交通大学硕士学位论文,2003.
    [118]林海雪,周胜军.电气化铁路的谐波标准问题[J].中国电力.1999(09):57-60.Lin haixue, Zhou shengjun. Problem on harmonic standard for electrified railway[J].China Electric power.1999(09).
    [119]Mack Grady,W.;Santoso,S. Understanding power system harmonics. IEEE Power Engineering Review, Vol.21,Issuell,Nov2001:8-11.
    [120]Verd, P.. Cost of harmonic effects as meaning of standard limits, harmonics and quality of power, Ninth International Conference on, Vol.1,2000,257-259.
    [121]X. Shaofeng, L. Qunzhan and Z. Liping, "Influence on harmonic emission limits of coincidence factor of electrified railway load," in Power Electronics Specialists Conference,2004 IEEE 35th Annual,2004, pp.984-987 Vol.2.
    [122]缪耀珊.交流电气化铁道牵引负荷的谐波估计.[J].电气化铁道,2008,4:1-9.
    [123]李群湛.我国高速铁路牵引供电发展的若干关键技术问题[J],铁道学报,2010Vol.32(4):119-124.
    [124]李群湛,张进思,贺威俊.适于重载电力牵引的新型供电系统的研究[J].铁道学报.1988(04):23-31.
    [125]解绍锋,李群湛,贺建闽,吴命利.同相供电系统对称补偿装置控制策略研究[J].铁道学报.2002(02):109-113.
    [126]魏光.同相牵引供电系统负序、谐波、无功电流实时检测方法及其补偿策略[J].电力系统保护与控制.2010(20):51-56.
    [127]Shu, Zeliang;Xie Shaofeng;Li Qunzhan, Single-Phase Back-to-Back Converter for Active Power Balancing, Reactive Power Compensation and Harmonic Filtering in Traction Power System. IEEE Transactions on Power Electronics,2011,26(2):334-343.
    [128]S.Zeliang, X. Shaofeng, and L.Qun-zhan, "Development and implementation of a prototype for cophasedtraction power supply system, " IEEE Proc. of Power and Energy Engineering Conference (APPEEC), 2010, Chengdu, China.
    [129]魏光,李群湛等.新型同相牵引供电系统方案[J].电力系统及其自动化,2008,32(10):80-83.
    [130]段胜朋,李群湛,杜雪松,申宁. 同相供电系统的改进型电流检测方法[J].电网技术.2010,34(9):65-69.
    [131]周福林,李群湛,邱大强.基于混合补偿的同相牵引供电系统[J].铁道学报,2012,34(1):19-23.
    [132]解绍锋,李群湛,陈民武.一种电气化铁道同相牵引供电系统[P].中国:201010123860.6,2010-06-23.
    [133]SUN Zhou, JIANG Xin-jian, ZHU Dong-qi. A Novel Active Power Quality Compensator Topology for Electrified Railway[J],IEEE Transactions on Power Electronics,2004.7:1036-1042.
    [134]张秀峰,谢杰.同相供电有源补偿的特性与最小容量[J].西南交通大学学报. 2011(03):445-449.
    [135]李欲奇,赵联文等.非参数统计方法[M].成都:西南交通大学出版社,2010.
    [136]景德炎.电气化铁路的负荷特性及电能质量分析[J].中国标准化2010(12)
    [137]邹大云.电气化铁路对电网电能质量影响仿真技术研究[D].西南交通大学硕士学位论文,2012.
    [138]万庆祝.牵引供电系统负序问题研究[D].清华大学博士学位论文,2008.
    [139]万庆祝,张辉,陈建业,吴命利,朱桂萍等.SVC和STATCOM在电气化铁路中应用新进展[J].大功率变流器,2010(05):53-58.
    [140]吴命利.电牵引负荷谐波在三相电力系统中的分布计算—算法、程序设计与算例[J].铁道学报,1999(4):105-108
    [141]陈玉祥,张汉亚.预测技术与应用[M].北京:机械工业出版社,1985.
    [142]吴诚鸥,秦伟良.近代实用多元统计分析[M].北京:气象出版社,2007.
    [143]王学民.多元统计分析[M].上海:上海财经大学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700