江西东乡铜矿成矿元素分布规律及构造成矿特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东乡铜矿位于江南地体与华夏地体的交接部位,在大地构造位置上属于东南地洼区的赣桂地洼系,是赣东北有色金属成矿带的一部分。本文针对东乡铜矿成矿特点,结合前人工作成果,在对区域地质背景分析的基础上,从铜矿地质特征着手,对铜元素分布规律、铜矿构造成矿特征及富矿预测进行深入剖析。通过对矿区基础地质资料和矿山开采实践资料的二次开发,完成了矿区不同矿体、不同勘探线、不同断面铜矿的三维数字品位模型的设计。在此基础上,结合矿山实际情况,在整个矿区进行了伽玛能谱的测量,并着重在Ⅶ号矿体63勘探线以西开展浅层地震勘探的应用研究。通过5条地震勘探剖面和12条伽玛能谱剖面的野外施工和室内地质解译,对矿区找矿前景进行预测分析。研究认为:
     1.东乡铜矿成矿机制的复杂性与其所处的大地构造背景密切相关。东乡铜矿位于萍乡—广丰EW向深大断裂与赣东北深断裂的切交接部位,又恰好处于江南地体与华夏地体的衔接地带。深部的幔源物质与浅部的成矿物质混合,南北两大构造单元各自的成矿特征又在此集中体现,使东乡铜矿成为一个以铜为主,伴生铁、钨、硫、银、金、铋、铯、碲等元素的多金属矿床;
     2.铜矿成矿与矿区构造关系密不可分。矿区基本构造为一个被几组断裂破坏的单斜构造,其上发育的次一级的开阔型横向和纵向褶皱对矿床的形成和空间定位起着十分重要的作用。矿区广泛发育的断裂构造为成矿物质的活化富集提供了良好的通道和赋矿空间。NE—NEE组断裂是矿区最主要的控矿构造,特别是F1断裂,横贯整个矿区,是最大的控矿构造;
     3.应用数字品位模型(DTM)可以形象直观地反映矿区铜元素分布规律及不同矿体的产状、规模;展示矿区构造与铜元素矿化的关系;可以为矿山开采和巷道开拓提供重要的参考资料;还可以由已知推未知,为矿区外围找矿提供辅助性信息。
     4.浅层地震勘探(SSE)分析技术和伽玛能谱(GS)方法,揭示了富铜矿体深部的构造成矿特征及赋矿部位。研究结果表明,矿体的形成过程中,向斜构造的凹部和背斜构造的轴部虚托部位都是成矿的有利位置,但仅此还不够,还应该有较好的通道条件和丰富的含矿流体来源。
Dongxiang copper deposit is located at the transition zone between Cathaysia and Jiangnan terrains, which is Geotectonically included in Jiangxi-Guangxi Diwa System, Southeast Diwa Region. Dongxiang copper deposit is a part of northeast Jiangxi colored-metal zone. In this paper, based on former researching works and regional geologic background analysis, we studied the distribution law of copper and geotectonic metallogenic characteristics of the ore deposit, and forecasted copper enrichment trend from copper deposit geologic characteristics' view, aiming at full understanding the metallogenic characteristics of Dongxiang copper deposit. We propose the concept of Digital Tenor Model(DTM) for the first time, and applied it in practice to solve some problems of deposit. On the base of basic geologic reference of the deposit, we designed many Digital Tenor Models of different ore-bodies, prospecting lines and profiles. We could use those models to study the shape, the distribution and the scale of ore-bodies, a
    nd learn the location and distribution of copper deposit. We could also use the model to reveal some information about effects of regional stratum, faults and magmatic rocks on ore-rich body, and to help solve some practical problems during mining and laneway digging. After considering practical conditions of deposit, we applied Gamma Spectrometry(GS) methods to the whole deposit area and Shallow Seismic Exploration(SSE) methods to the west of No.63 prospecting line of VII ore-body. Based on field and theoretical studies of five Shallow Seismic Exploration profiles and twelve Gamma Spectrometry profiles, we designed five experimental drills, and forecasted the future of exploration. From above analysis and research, we can draw some conclusions as follows:
    1. The complexity of metallogenic mechanisms of Dongxiang copper deposit have close relationship with it's geotectonic background. Dongxiang copper deposit located in the transition zone between Pingxiang-Guangfeng deep faults and northeast Jiangxi deep faults, and in the transition zone between Cathaysia and Jiangnan terrains. As results of mix of deep mantle-source materials and shallow metallogenic materials, and tectonic movement of south unit and north unit, Dongxiang copper deposit become a multi-metal deposit especially enriching Cu, together with Fe, W, S, Ag, Au, Bi, Cs and Te etc.
    .2. Ore-forming of copper deposit has much to do with the geotectonic of deposit area. The studied deposit area is located on a monocline geotectonic unit divided by several groups of faults. Therefore, the secondary widen transverse and lognitudinal drapes may have great influence on ore forming and location. Faults distributed extensively in the deposit offer essential channels and space for activation and enrichment of metallogenic materials. NE-NEE orientation faults are the most important ore-controlling tectonic, as is especially the case for Fl fault, which traversing the whole deposit area.
    3. We can apply these Digital Tenor Models to solve problems confronted during deposit exploration. Those models can help study shape, scale and distribution of different ore bodies in the deposit area, reveal the relationship between tectonics of
    
    
    the deposit area and copper deposit realization, they can also offer some information for deposit exploration and laneway digging.
    4. The Shallow Seismic Exploration technology and the Gamma Spectrometry technique reveal the tectono-metallogenic characteristic of the ore body, so as the storing place of mine. Through the study we know the valley of syncline and the peak of anticline are all good storing places of ore-forming element. To form large industrial ore deposit, the condition of magma channels and the metallogenic fluid must be up to the mustard synchronously.
引文
1. Arnaud N O, Vidal Ph. Tapponier P, Matte Ph and Deng W M. 1992. The high-K_2Ovolcanism of northwestern Tibet: geochemistry and tectonic implications. Earth and Planetary Science Letters, 111:353~367
    2. Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362:144~146.
    3. Barnes H L and Gould W W. 1992. Hydrothermal replacement of carbonates by surfides[A]. in: Kharaka and Maest. Water-Rock Interaction[C]. Balkemaa, Rotterdam, 1565~1567.
    4. Brimhall G H. and Crerar D A. 1987. Ore fluid: magmatic to supergene [A]. in: Carmichaell S E. and Eugster H P. Thermodynamic modeling of geological materials: Minerals, fluids and melts[C]. Reviews in Mineralogy, Mineralogical Society of America, 17:235-322
    5. Carter N.L., Anderson D.A. 1982. Creep and creep rupture of granitic rocks. Am. Geophys. Union. Geophys. Monogr, 24:61~82
    6. Chen Fanrong, Wang Dezi, Liu Changshi. 1995. Comparative Anatomy of Two Contrasting Mesozoic Volcanic-intrusive Complexes in NE Jiangxi and its Vicinities,China. Geochirnica, 24(2): 169-179.
    7. Chen G D. 1981. Polygenetic compound ore deposit and their origin in the context of regularities in crustal evolution. [J]. Geotectonica et Metallogenica, 6(1): 1-32.
    8. Chen G D. 1988. Tectonics of China[M]. Beijing: International Academic Publishes, 1-258.
    9. Chen J F and Jahn B M. 1998. Crustal evolution of southeastern China: Ndand Sr isotopic evidence. Tectonophysics, 284:101-133
    10. Clemens J D and Vielzeuf D. Constrains on melting and magma production in the crust. Earth and Planetary Science Letters, 1987,86:28~306.
    11. Craw D, Teagle D A H, Belocky R. 1993. Fluid immiscibility in later-Alpine gold-bearing veins, Eastern and Northwestern European Alps[J]. Mineral Deposit, 28:28-36.
    12. Defent M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting young subducted lithosphere. Nature, 347:662~665
    13. Faure M. 1996. Extensional tectonics within a subduction-type orogen. The case study of the Wugongsgan dome (Jiangxi Province, southeastern China). Tectonophysics, 263:77~106
    14. Gupta S. 1989. Comment on "Mesozoic overthrust tectonics in South China". Geology, 17:669~671.
    15. Hodges K V. 1998. Possible thermal buffering by crustal anatexis in collisional orogens: thermobarametric evidence from the Nepslese Himalaya[J]. Geology, 16:707-710
    16. Hsu K J, Li Jiliang and Chong Haihong et al. 1990. Tectonic of South China: Key to understanding West Pactific geology. Tectonophys, 183(1):9~39.
    17. Jahn B M, Zhou X H, Li J L. 1990. Formtion tectonic evolution of SE China and Taiwan:isotopic and geochemical constraints. Tectonophysics, 183:145-160.
    18. Keppler H, Wyllie P J. 1992. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the system haplogranite-H_2O-HCl and haplogranite-H_2O-HF. Contrib Mineral Petrol, 109:139-150.
    19. Khitarov N I, Malinin S P, Lebedev Y B and Shibayeva N P. 1982. The distribution ofZn, Cu,
    
    Pb and Mo between a fluid phase and a silicate melt of granitic composition at high temperratures and pressures. Geochem Int., 19(4): 123-136.
    20. Koukes D P and Senge D A. 1990. Deposit model (Translation). Beijing: Geological Publishing House, 12-86.
    21. Li Xianfu, Li Jianwei and Fu Zhaoren. 1998.Tectonic-Geomorphic Features of the Strike-Slip Fault Zone in Eastern Hunan and Western Jiangxi. Geotectonica et Metallogenia, 22(3~4): 153-159.
    22. Li P Z, Zeng X D, Deng J Q and Tian S H. 1998. Relationship between regional tectonic evolution and metallogeny in northeastern Jiangxi Province. Mineral Deposit Geology, 17:103-106.
    23. Li P Z, Deng G P and Tao H. 1999. Analysis of tectonic exolution and major Cu (Au) polymetallic metallogenic series in northeast Jiangxi Province. Geotectonica et metallogenica, 23(2): 166-172.
    24. Ma C X, Xing K and Xi Y. 1994. Some of features of Precambtian terrane edges in Northeastern Jiangxi. In: Shi Y S, Lu H F, Ma R S and Sun Y., Symposium of the Researches on Modern Geology (V. 2), Nanjing, Nanjing University Press, 137-146.
    25. Manning D A C and Pichavant M. 1983. The role of fluorine and boron in the generation of granitic melts. In: Alderton D P and Gribble C D (eds) "Recent Advances in the Geology of Related Mineral DepositS ". Can Inst Metall Spec, 39:13-24.
    26. Naden J and Shepherd T J. 1989. The role of methane and carbon dioxide in gold deposition[J]. Nature, 342: 793-795.
    27. Peng S L, Liu L M and Lai J Q. 2001. Key role of metallogenic theory of polyfenic compound ore deposit in location prediction of hidden ore deposits in DIWA regions. Geotectonica et Metallogenica, 25(1~2):99-105.
    28. Shen W Z, Ling H F, Li W X, Wang D Z, Huang X and Pan J. 1998. Sr and Nd isotope of Mesozoic granitoids in Jiangxi Province. Chinese Sci. Bull.,43(24):2653~2657
    29. Spera F J. 1987. Dynamics of translithospheric migration of metasomatic fluid and alkaline magma[A]. In: Menzies, M A, et al. Mantle metasomatism [C]:1-20.
    30. Spycher N F and Reed M H. 1989. Evolution of a Broadlands-type epithermalore fluid along alterative PT paths[J]. Econ. Geol., 84: 328-359.
    31. Stone M, Exley C S. 1984. High heat production granites of Southwest England and their associated mineralization: a view. Trens Mineral Metall, 86:B25-B36.
    32. Taylor H P. 1974. The application of oxygen and hydrogen isotope studies of problem of alteration and oer deposition[J]. Econ. Geol., 69(6):843-883.
    33. Tullis J. 1992. The brittle-ductile transition in felspar aggregates: An experimental study, Faulting mechanism and transport properties of rocks[M]. New York: Academic press.
    34. Wan Q. H. , Zhao H. R. and Peng Y. M. et al. 1993.The effect of underlying geological structure on the propagation of seismic waves. Acta Seismologica Sinica, 6(2):427-436.
    35. Wang X Q, Wei M, Yang L P and Zhao J M. 2000. Grade and tonnage model of contact metasomatic copper deposit in China. Journal of China University of Geosciences, 11(1):74-78.
    36. Ye Song, Ye Delong, Mo Xuanxue, Ye Nan and Wang Qun. 1999.Tectonomagmatic metallogenic system of Dexing ore field, Jiangxi, China. Journal of China University of
    
    Geosciences, 10(1):72-75.
    37. Zhai Y S and Yao S Z.1995. Cu-Au metallogenic series ralated to volcanic-intrusive complexe in esatem China. Journal of China University of Geosciences, 6(1): 107-113.
    38. Zhang D H, Yu C G, Bao Z Y, et al. 1997. Ore zoning and the dynamics of ore-forming progresses of Yinshan polymetallic deposit, Jiangxi[J]. Chinese Journal of Geochemistry, 16(2): 123-132.
    39. Zhao P. 1995. Some key thoughts and ways to exploration of mineral resource. The Third Academic Conference of the China Mineral Exporation. Dagang.
    40. Zhao Y., Wang C., Cheng Y. et al. 1996. Ming application of seismic tomography and geological interpretation. Geology Science, 31(4):1-7.
    41. Zhou G Q. 1996. Jadeitic high pressure metamorphic rocks in Northeastern Jiangxi, China and their polycyclic collision orogeny geodynamics. Continental Dynamics, 1(2):156-163.
    42. Zhou T F and Yue S C. 1998. Geochronology and geochemistry of the Cu, Au mineralization belt in the middle and lower reaches of the Yangtze River area, China. Chinese Science Bulletin, 43(sup):164.
    43. Zhou X M, Zou H B, Yang J D and Wang Y X. 1989. Sm-Nd isochron age of Fuchuan ophiolite, Xixian County, southern Anhui Province and its geological significance: Chinese Science Bulletin, 34:1243-1245.
    44.陈繁荣,王德滋,刘昌实.1995.赣杭地区中生代两类不同火山-侵入杂岩的对比研究.地球化学,24(2):169-179.
    45.陈广浩,张湘炳,王岳军等.1998.江西瑞昌洋鸡山金矿构造控矿特征及找矿意义.地质与勘探,35(5):13-15.
    46.陈广浩,张湘炳,王岳军,彭渤,肖拥军,许德如.2002.构造成矿理论的研究进展及在金矿找矿中的应用.地质科学,37(4):462-472.
    47.陈国达。1978.成矿构造研究法.北京:地质出版社,1-6.
    48.陈国达,1996.地洼学说-活化构造及成矿理论体系概论.长沙:中南工业大学出版社,340-347.
    49.陈鸿达,谭海明.1991.从铜的地球化学行为探讨常宁铜鼓塘铜矿床的成因.湖南地质,10(4):311-316.
    50.陈述彭,鲁学军,周成虎.2000.地理信息系统导论.北京:科学出版社,96-165.
    51.陈思本,许绪中.1988.江西东北部前震旦纪变火山岩的同位素年龄及地质意义.中国区域地质,(2):187-188.
    52.陈正乐,周显强,杨农,陈宣华.1996.地质力学学报,2(2):90-93.
    53.储国正,王讯诚,周育才,谢超国,郭祥焱,史东方.2000.安徽铜陵地区铜金矿化关系及其成因初探.贵金属地质,9(2):73-77.
    54.付守会,陈广浩.2003.江西东乡铜矿成矿地质特征与找矿实践.大地构造与成矿学,27(3)(已录用待刊).
    55.郭令智,施央申,马瑞士,1984.中国东南地体构造的研究.南京大学学报(自然科学版),(4):1-9.
    56.郭涛,吕古贤.1999.阜山金矿区构造变形岩相填图与成矿流体构造物理化学特征研究.地质找矿论从,14(3):50-56.
    57.郭涛,郑军,吕古贤.1999.焦家金矿床容矿裂隙特征及流体运移机制[J].地质找矿论从,14(2):16-22.
    
    
    58.何江.1993.永平铜矿床成矿地球化学及成因分析.矿产与地质,33(1):1-7.
    59.候恩科,吴立新.2000.三维地学模拟几个方面的研究现状与发展趋势.煤田地质与勘探,28(6):5-7.
    60.侯新生,汪云亮,周蓉生.地面伽玛能谱测量在西范坪铜矿勘查中的应用.物探化探计算技术,22(1):52-55.
    61.侯新生,马英杰,周蓉生.地面γ能谱和α杯测量在寻找铀(金、银)矿产中的应用.成都理工学院学报,25(1):8-12.
    62.华仁民.1993.流体在金属矿床形成过程中的作用和意义——水岩反应研究进展系列评述(3)[J].南京大学学报(地球科学),5(3):351-359.
    63.华仁民.1994.成矿过程中由流体混合而导致金属沉淀的研究[J].地球科学进展,9(4):15-21.
    64.华仁民,李晓峰,陆建军,陈培荣,邱德同,王果.德兴大型铜金矿集区构造环境和成矿流体研究进展.地球科学进展,15(5):525-533.
    65.黄永泉.1982.从氧同位素组成探讨枫林、德兴铜矿床成因.江西地质科技,1(1):117-127.
    66.花友仁,胡志国.1980.枫林钨铜矿床的成因探讨.地质与勘探.11(1):8-14.
    67.季克俭,王立本.1994.热液源研究的重要进展和“三源”交代热液成矿学说[J].地学前缘,1(4):126-142.
    68.九一二地质队.1980.江西“枫林式”铜钨矿床地质特征及找矿方向.(单行本)
    69.李培铮,邓国萍,陶红,吴延之.1999.赣东北壳体构造演化与铜(金)多金属成矿系.列.大地构造与成矿学,23(4):300-307.
    70.李兆麟.1996.地质作用中的流体形成演化及成矿作用[J].地学前缘,3(4):237-244.
    71.梁光河,蔡新平,张宝林,徐兴旺.浅层地震勘探方法在金矿深部预测中的应用.地质与勘探,37(6):29-33.
    72.林文蔚,殷秀兰.1998.成矿流体的浓缩作用及浓缩方式研究.地球化学,19(2):158-165.
    73.马长信,刘荣贵,吕桂德等.1992.赣东北前震旦地质.北京:地质出版社.
    74.马振东,单光祥.1997.长江中下游地区多位一体大型、超大型铜矿形成机制的地质、地球化学研究.矿床地质,16(3):225-234.
    75.潘勇飞.伽玛能谱法找矿.物探与化探,18(6):444-455.
    76.邱家骧,林景仟.1991.岩石化学.北京:地质出版社,64-74.
    77.吴学益,杨元根,肖化云,吴惠明.1999.赣东北断裂带铜、金成矿控制因素耦合作用及其模拟实验.大地构造与成矿学,23(1):3-15.
    78.王德滋,刘昌实,沈渭洲,陈繁荣.1991.江西东乡—相山中生代S型火山岩带的发现及其地质意义.科学通报,36(19):1491-1493.
    79.徐光平,翟建平,胡凯.成矿过程中流体的作用及其出要研究方法.地质找矿论从,14(4):1-7.
    80.许静.1988.枫林铜硫—含钨赤铁矿矿床地质特征及成因探讨.江西地质,2(4):414-419.
    81.徐跃通.1997.江西东乡矿区沉积硅质岩的地球化学特征和成因。沉积学报,15(3):110-114.
    82.姚姚.地震勘探新技术与新方法.1991.武汉:中国地质大学出版社,9-57.
    83.岳文浙,黄福泉,王庆元,林志坚.1980.东乡枫林铜矿床成因探讨.江西地质科技,No.1:28-42.
    
    
    84.张德会.1997.关于成矿流体地球化学研究的几个问题[J].地质地球化学,25(3):49-55.
    85.张德会.1997.成矿流体中金属沉淀机制研究综述.地质科技情报,16(3):53-58.
    86.赵风清,金文山,甘晓春,孙大中.1997.赣东北—浙西北登山群和松木坞群中火山岩的地球化学.前寒武纪研究进展,20(2):51-57.
    87.张国林.2001.东乡铜矿剥离断层系统及其控矿意义.矿产与地质,15(3):157-161
    88.张文淮,张志坚,伍刚.1996.成矿流体及成矿机制.地学前缘,3(3~4):245-252.
    89.张祖海,吴延之,黄定堂,樊键强.1996.赣东北隐伏矿床大比例尺成矿预测.北京:地质出版社,18-40.
    90.张湘炳.1994.构造成矿规律及非线性成矿动力学机制.矿床地质,13(增刊):84-85.
    91.周涛发,岳书仓,袁峰,刘晓东,赵勇.2000.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究.中国科学(D辑),30(增刊):122-128。
    92.朱永峰.1999.液态不混容作用:成矿机制之一[J].矿物岩石地球化学通报,1999,18(1):6-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700