吉林西部水田土壤碳库时空模拟及水稻生产的碳足迹研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,二氧化碳气体浓度增加所引起的全球变暖问题引起了各国科学家的关注。在强化碳截存、减少碳排放的研究中,水田土壤因其巨大固碳能力,成为研究的热点之一。本研究选取吉林西部为研究区进行水田土壤碳库的时空分布研究,并在此基础上分析了该区水稻生产的碳足迹。
     首先,通过卫星遥感解译获取了该区的土地利用/覆被状况,分析了1989、1996、2000、2004和2008年5个年份水田的面积变化、空间分布及与其它土地利用类型的相互转化情况;其次,通过对研究区不同开发年份水田土壤的实测数据,分析了该区水田土壤碳随时间积累规律以及纵向分布情况;然后,借助DNDC模型模拟了该区水田土壤碳库19年间的时空变化,分析这一期间的碳汇状况;同时,以该模型模拟了水田温室气体的排放情况,并以IPCC2007的估算模式分析了19年间水田土壤所产生的全球变暖潜势;最后,借助生命周期评价的方法,综合分析了吉林西部水稻生产所产生的平均碳足迹。
     本研究以吉林西部水田土壤和水稻生产的碳动态为研究目标,具有很强的针对性,采用了包括遥感解译、实验室测试、模型模拟在内的多种研究手段,全面评估了水田土壤的碳动态以及水稻生产的碳足迹,在水田土壤碳库的多角度研究及水稻生产的碳足迹的生命周期评价方面有一定新意,不论从丰富水田碳动态研究的技术层面,还是在探索区域尺度的碳循环研究的理论层面方面,以及对评估和指导低碳农业发展的实际生产层面,都有着重要的意义。
Soil is the most active carbon pool in the Earth's surface, and its variation diretctly impact on the concentrations of greenhouse gases in atmosphere. Since the industrial revolution, because of the human beings’excessive request for the natural resources such as fossil fuels, land resources and woods, the carbon balance between atmosphere and soil was broken. And the unbalanced statu directly caused CO_2 concentration in atmosphere increasing which directly led to the global warming and other interrelated issues. Based on concerns of the greenhouse effect, countries all around the world are seeking for the way to reduce CO_2 emissions and increase CO_2 sequestration. But it is difficult to find effective ways to reduce CO_2 emissions in industry, camparing with the relatively simple ways in agricultural carbon sequestration. Under this background, the farmland ecological system, especially paddy fields, because of its wide distribution, huge area and strong carbon sink capacity, became one of the hottest topics in global change researches. Western Jilin Province, as a national important grain production base, because of its special environment and the typical developing process of paddy fields was selected as the study area. Moreover, since the implementation of local land development projects in 2007, paddy fields area had been increasing rapidly. In this condition, reseach on the carbon dynamics in paddy soils and the carbon footprint of rice production has important meaning.
     Research on carbon dynamics of croplands is prevalent in both domestic and international studies. A series of achievements had been acchived and a number of carbon dynamics simulation models had been established. However, in previous researches, paddy soil organic carbon (SOC) was studied in one certain aspect, such as the spatial divisions, vertical distributions and temporal variations. But in entirety, one aspect of regional paddy fields carbon dynamics was inadequate. And the achievement of rice carbon footprint was still rarely.
     The study was supported by the National Natural Science Foundation named "Effect of LUCC on soil organic carbon and the driving mechanism during the past 50 years in Western Jilin Province". By interpreting the remote sensing (RS) images, land use / cover change (LUCC) situation in western Jilin Province between 1989 and 2008 was achieved. Through the paddy soils sampling and analysis, SOC accumulation rule and vertical distribution were obtained. And by simulation of a biogeochemical model named Denitrification-Decomposition model (DNDC model), the SOC pool and temporal and spatial distribution were achieved, as well as the amount of greenhouse gases (GHGs). And what’s more, the total global warming potentials (GWPs) of the 5 years were calculated. Based on all of the results above, the carbon footprint of rice production was assessed.
     Firstly, TM images of the study area in 1989,1996,2000,2004 and 2008 was purchased, after the steps of atmospheric modification, geometrical correction, information enhanced, images mosaic, unsupervised classification, the LUCC status was acchieved by a manual visual interpretation according to a certain land use classification system. The results were highly accurate according to the accuracy testing. And the area variations, spatial distributions and conversion area between different land use types were gained. Results showed that: the area of dryland, grassland and saline-alkaline land were the main land use types of the study area. Farmland, forest land, urban land, saline-alkaline land kept increasing in the 19 years, while grassland, wetland, water area, beach land and sandy land were decreasing at the same period. Since 2000, particularly since 2004, the regional ecological environment has been recovered to a certain extent. But the whole trend was still getting worse. The distribution of land use showed a typical characteristic of ecotone between agriculture and animal husbandry. The major conversions between land use types were: grasslands to farmlands, high cover ratio grasslands and wetlands to medium cover ratio grasslands and low cover ratio grasslands, co-transformation between s saline-alkaline lands (sandy lands) and the low cover ratio grasslands, water area to grasslands or paddy fields, etc.
     Secondly, adopting the concept of space as a substitute for time, paddy soil samples covered different developmental years were collected. And the SOC content was tested by potassium dichromate - sulfuric acid method. Then the temporal and vertical varations of SOC had been analyzed. The results were compared with other land use types. The results indicated that: both SOC content and soil organic carbon density (SOCD) of paddy field increased with the increasing of the developmental years, the accruable laws with years showed an obvious exponential curve; the vertical distribution of paddy profiles showed a significant exponential curve too; SOCD range in a diminishing sequence in different soil layers was surface soils, subsoils and bottom soils. Compared with other land use types, paddy soils had a higher SOC content averagely.
     Thirdly, the LUCC data and soil data were collected to construct a coupled database. The database, combined with farm management, weather and other data, were inputted together into the DNDC model to estimate the SOC pool of paddy soils in 1989,1996,2000,2004 and 2008. The temporal and spatial variations were analyzed too. And based on simulative results, the carbon sequestration of paddy soil during the 19 years was educed. The results showed that: soil organic carbon storage in the years of 1989,1996,2000,2004 and 2008 were 1,060.67×10~4t, 1,883.00×10~4t, 2,217.39×10~4t, 2,839.10×10~4t and 3,403.20×10~4t, respectively, and the average SOCD of the five years were 93.97t/hm~2, 111.59t/hm~2, 119.69t/hm~2, 125.21t/hm~2 and 129.46t/hm~2. The region with highest SOCD located at joint of Qianguo County and Songyuan City. SOCD of Taoer river irrigation district was 110-160t/hm~2 in the year of 2008. Zhenlai irrigation district had a shorter developmental histroy and its average SOCD was lower. Total carbon sequestration by paddy soils during 1989-2008 was 9.95×10~6t, and the carbon sequestration rate was 1.99t/hm·yr. Overall, the development of paddy fields was a process of carbon sequestration in the aspect of soils, in which a longer period of paddy field had a smaller carbon sinks amount, while the shorter developmental period paddy had a larger amount of paddy carbon sinks.
     Fourthly, synthetically considering the emissions of GHGs and carbon sequestration in paddy soils, 100-year GWPs was calculated according to the IPCC method. The statistical relation between average SOCDs and GWPs was analyzed, too. The results showed that: the average emission rate of CH_4 wre 0.33t/hm~2·a, 0.45 t/hm~2·a, 0.44t/hm~2·a, 0.43t/hm~2·a and 0.46 t/hm~2·a in the years of 1989, 1996, 2000, 2004 and 2008 as well as the emission rates of N_2O were 3.64 kg/hm~2·a, 2.82 kg/hm~2·a, 2.58 kg/hm~2·a, 2.20 kg/hm~2·a and 2.04 kg/hm~2·a, respectively. The total amount of paddy soil GWPs in the five years in were 606,512 tCO_2-eq., 1,393,681 tCO_2-eq., 1,553,270 tCO_2-eq., 1,744,756 tCO_2-eq. and 2,448,500 tCO_2-eq., showed an increasing trend. And the average production rate showed a continuing upward trend too. The highest GWP production rate region located at the northeast of Qianguo County. Average SOCDs and GWPs of paddy fields in the five years showed a significant linear relationship.
     Finally, the carbon footprint of rice production was assessed by using the method of life cycle assessment. The standard steps of life cycle assessment (LCA) set by International Organization for Standardization (ISO) were: goal scope and definition, inventory analysis, impact assessment and interpretation. The results indicated that: production of 1000 kg rice in West Jilin Province consumed a total energy of 2,926.89MJ, it was higher in the whole country and the main difference was the growing phase. Carbon footprint of 1,000 kg rice yields was 1,330.26 kg CO_2-eq. and the carbon footprint of rice planted in saline- alkali paddy was 1,611.13 kg CO_2-eq., and it was a lower level because of the less emission of the GHGs. The production and application of urea was the key element in both of energy consumpion and carbon footprint.
     In this study, carbon effect of paddy soil and rice production in western Jilin was set as the research goal. The research method included RS image interpretation, laboratory testing, model simulation, and it was a miscellaneous investigation. In the apects of multi-angle study of paddy soil carbon and the carbon footprint of rice production, the paper had a certain progress of creation. It had great significance in the aspects of enriching the technical approaches of paddy SOC dynamics, enhancing the knowledges of carbon cycle in regional scale, and guiding the development of low-carbon agriculture.
引文
[1] IPCC. Climate Change 2007. Synthesis Report. 2007. http://www.ipcc.ch/pdf/ assessment-report/ar4/syr/ar4_syr.pdf .2010.10.7.
    [2]京都议定书.http://www.tri.org.tw/unfccc/download/kp_c.pdf.2011.1.13.
    [3]韩冰,王效科,欧阳志云等.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境.2005, 21(4): 6-11.
    [4] Turner II B. L., Skole D. L., Sanderson S. et al. Land use and land cvover change. Science/Research Plan[R]. IGBP Report No. 35 and HDP report No. 7,Stockholm and Geneva,1995.
    [5] Integrated approach to the planning and management of land resources. Draft report of the UN Secretary-General on the implementation of Chapter 10 of Agenda 21(UNCED) to the Commission on Sustainable Development[R], Roma. 1994.
    [6]路云阁,蔡运龙,许月卿.走向土地变化科学——土地利用\覆被变化研究的新进展[J].中国土地科学.2006, 20(1):55~61.
    [7]何蔓,张军岩.全球土地利用与覆盖变化(LUCC)研究及其进展[J].国土资源,2005,9:22-25
    [8]刘东生.全球变化与可持续发展科学.地学前缘, 2002, 9(1):1-9.
    [9] IIASA. Modeling Land-Use and Land-Cover Changes in Europe and Northern Asia[J]. 1999 Research plan: 14-21. Laxenburg, Austria. 1998.
    [10]陈怀亮,徐祥德,刘玉洁.土地利用与土地覆盖变化的遥感监测及环境影响研究综述[J].气象科技, 2005,33(4):289-294.
    [11]周广胜,王玉辉,蒋延玲.全球变化与中国东北样带(NECT).[J]地学前缘, 2002,9(1):198-216.
    [12]魏晓,孙峰华,黄丽萍.中国土地资源研究的历史、现状与趋势[J].浙江师范大学学报(社会科学版),2006,32(3):21-25.
    [13] Eswarran H E,Van Den Berg E V ,Reich P., Organic carbon in soils of the world[J]. Soil Science Society of America Journal, 1993, 57:192~194.
    [14] Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications. 2000, 10(2):423~436.
    [15] Batjes N H. Total carbon and nitrogen in the soils of the worlds [J]. European Journal of Soil Science,1996,47:151~163.
    [16] Schlesinger W H. Evidence from chronoseauence studies for a low carbon storage potential of soil [J]. Nature, 1990, 348(15):232~234.
    [17] Rozhkov.V.A. et al. Soil carbon estimates and soil carbon map for Russia. Working paper of IIASA, Laxemburg, Austria, 1996.
    [18] Lacelle B .Canadas soil organic carbon database [A].Lal R,et al.Soil Processes and the Carbon Cycle[C]. Boca Raton: CRC Press, 1997.93~102.
    [19]解宪丽,孙波,周慧珍,李忠佩,李安波.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35~43.
    [20]王绍强,周成虎,李克让,朱松丽,黄方红.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533~544.
    [21]于东升,史学正,孙维侠,王洪杰,刘庆花,赵永存.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12): 2279~2283.
    [22]梁二,蔡典雄,张丁辰等.中国陆地土壤有机碳储量估算及其不确定性分析[J].中国土壤与肥料, 2010,(6):75~79.
    [23] Titlyanove A A, Bulavko G P, Kudryashova S, et al. The reserves and losses of organic carbon in the soils of Siberia [J].Pochrovedemie, 1998, 1:51~59.
    [24] Franzmeier D P, Lemme G D and Miles R J. Organic carbon in soil of North central United States[J]. Soil Science Society of America Journal, 1985, 49:702~708.
    [25]史利江,郑丽波,张卫国等.上海土壤有机碳储量及其空间分布特征[J].长江流域资源与环境,2010,19(12):1142~1147.
    [26]曾永年,冯兆东,曹广超,薛亮.黄河源区高寒草地土壤有机碳储量及分布特征[J].地理学报,2004.59(4):497~504.
    [27]傅清,赵小敏,袁芳.江西省农田耕层土壤有机碳量分析[J].土壤通报,2010,41(4):835~838.
    [28]徐香兰,张科利,徐宪立,彭文英.黄土高原地区土壤有机碳估算及其分布规律分析[J].水土保持学报,2003,17(3):13~15.
    [29]奚小环,杨忠芳,崔玉军等.东北平原土壤有机碳分布与变化趋势研究[J].地学前缘,2010.17(3): 213~221.
    [30]李随民,栾文楼,宋泽峰等.河北省南部平原区土壤有机碳储量估算[J].中国地质.2010,37(2):525~529.
    [31]金峰,杨浩,蔡祖聪,赵其国.土壤有机碳密度及储量的统计研究,土壤学报,2001,38(4):522~528.
    [32]田玉强,欧阳华,徐兴良等.青藏高原土壤有机碳储量与密度分布[J].土壤学报, 2008,45(5) :933-942.
    [33] Post W M, Emanuel W R, Zinke P J. et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298: 156~159.
    [34] Scott NA, Tate KR, Giltrap DJ, et al. Monitoring land-use effects on soil carbon in New Zealand: quantifying baseline soil carbon stocks [J]. Environmental pollution, 2002,116: 167-186.
    [35]毛子龙. 1890~2029年白城市土地利用/覆被变化与土壤碳库研究[D].长春:吉林大学.2010.
    [36]于兵.大庆地区土地利用/覆被变化对植被和土壤碳氮储量的影响[D].哈尔滨:东北林业大学.2010.
    [37] Brown S, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle[J].Biotropia,1982,(4 ):161~187.
    [38] Lugo A E. Landuse and organic carbon content of some subtropical soils [J]. Plant and Soil.1986,(96): 185~196.
    [39] Woodwell G M .The biota and world carbon budget [J].Science,1978,199:14 1~146.
    [40] Dixon R K ,Brown S, Houghton R A. et al . Carbon Pools and Flux of Global Forest Ecosystem [J].Science, 1994, 264(14):185~190.
    [41]刘子刚,张坤民.黑龙江省三江平原湿地土壤碳储量变化[J].清华大学学报(自然科学版),2005,45(6):788~791.
    [42]殷书柏,杨青,吕宪国.三江平原典型环型湿地土壤有机碳剖面分布及碳贮量[J].土壤通报,2006,37(4):659~661.
    [43]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J],植物生态学报,2000,24(5):518~522.
    [44]周广胜.全球碳循环[M].北京:气象出版社, 2003.
    [45] Parton W J, Cole C M, Stewart J W B. et al. Simulating regional patterns of soil C,N and P dynamics in US central grassland region: Cholm M and Bergstrom L, Ecology of arable lands Kluw a Academic Publ[J]. Dordrecht, the Netherlands, 1989, 99~108.
    [46] Parton W J, Schimel D S, Cole C M, Ojima D S. Analysis of factors controlling soil organic matter levels in the great plains grasslands soil[J]. Soil Sci Soc. Am. J, 1987, 51: 1173~1179.
    [47]肖向明,王义凤,陈佐忠.内蒙古锡林河流域草原初级生产力和土壤有机质的动态及其对气候变化的反映[J].植物学报,1996,38(1):45-52.
    [48]杨学明,张晓平,方华军,等.用RothC-26.3模型模拟玉米连作下长期施肥对黑土有机碳的影响[J].中国农业科学, 2003, 36(11): 1318-1324.
    [49]王立刚,邱建军.华北平原高产粮区土壤碳储量与平衡的模拟研究[J].中国农业科技导报,2004,6(5):27~32.
    [50] Burke I C, Yonkr C M, Parton W J, et al. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils [J]. Soil Science society of America Journal, 1989, 53:800~805.
    [51] Franzmeier D P, Lemme G D, Miles R J. Organic carbon in soils of North Central United States [J]. Soil science society of America Journal, 1985, 49:702~708.
    [52] Sims Z R, Nielsen G A .Organic carbon in Montana soil as related to clay content and climate[J]. Soil Science Society of America Journal, 1986, 50: 1269~1271.
    [53] Chen F, Kissel D E, West L T, Adkins W. Field-Scale Mapping of Surface Soil Organic Carbon Using Remotely Sensed Imagery. Soil Sci. Soc. Am. J, 2000, 64: 746~753.
    [54] Houghton R.A., Effects of land use change, surface temperature, and CO_2 concentration terrestrial stores of carbon. In:GM Woodwell, Mack enzie FT, eds. Biotic Feedbacks in the Global Climatic System: Will the warming Feed the Warming New York: Oxford Univ Press, 1995, 333~350.
    [55] Dai A., Fung I. Y., Can climate variability contributes to the“missing”CO_2 sinks. Global Bio-geochemical Cycles, 1993, 7:599~609.
    [56] Tian H., Mellilo J.M., Kichlight D.W., et al., Effects of interannual climatevariability on carbon storage in Amazonianecosystems. Nature, 1998, 396: 664~667.
    [57] Goulden M.L.,WilliamM. J, Fan S. M, et. al., Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science, 1996, 271: 1576~1578.
    [58] Stewart R & Hirst C T. Nitrogen and organic matter in dry farm soils.J.Am.Soc.Agron, 1914.6(2):49~56.
    [59] Salter R M& Green T C.J .Amer.Soc.Agron,25:622.
    [60] Plass G N. The carbon dioxide theory of climate change. 1955 Tellus, 8:140~154.
    [61] Revelle R & Sues H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmosphere COZ during past decades.Tellus,9: l18~127.
    [62]高志强,刘纪远,曹明奎等.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响[J],中国科学D辑地球科学,2004, 34(10):946~957.
    [63]何勇,秦大河,任贾文,孙维贞.兰州不同时期黄土有机质碳同位素与气候的关系[J].气候与环境研究,2004,9(2):369~377.
    [64]许中旗,王立军,刘文忠,许晴,吴雪宾.森林植被影响气候变化的机制[J].河北林果研究,2005,20(1):7~13.
    [65]周剑芬,管东生.森林土地利用变化及其对碳循环的影响[J].生态环境,2004,13(4):674~676.
    [66]史军,刘纪远,高志强,崔林丽.造林对土壤碳储量影响的研究[J].生态学杂志,2005,24(4):410~416.
    [67]张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报,2006,17(11):2029~2033.
    [68]侯鹏程,徐向东,潘根兴.不同土地利用方式对农田表土有机碳库的影响——以太湖地区吴江市为例[J].南京农业大学学报,2007, 30 (2): 68~72.
    [69]杨景成,韩兴国,黄建辉,潘庆民.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385~1390.
    [70]吴建国,张小全,徐德应.土地利用变化对生态系统碳汇功能影响的综合评价[J].中国工程科学,2003,5(9):65~71.
    [71]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(9):593~599.
    [72]周涛,史培军.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展,2006,21(2):138~143.
    [73] Martens DA,ReedyTR,Lewi DT.Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements[J].Global Change Biology,2004,(10):65-78.
    [74] Six J,Conant R T,Paul E A,et al.Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J].Plant and Soil,2002,241:155-176.
    [75] Tilman D,Cassman KG,Matson P A,et al. Agricultural sustainability and intensive production practices[J].Nature,2000,418:671-677.
    [76]刘定辉,蒲波,陈尚洪,朱钟麟,舒丽.秸秆还田循环利用对土壤碳库的影响研究[J].西南农业学报.2008,21(5):1316~1319.
    [77] FAO.Soil carbon sequestration for improved land management[R].Rome, Italy: World Soil Resources Reports, Food& Agriculture Organization, 2001.
    [78] Land and Water Development Division, FAO. Soil C sequestration [EB/OL]. http://www.fao.org/ag/agl/agll/carbonsequestration/background.stm, 2003.06.12.
    [79] LalR. Soil carbon sequestration to mitigate climate change [J].Geoderma, 2004, 123: 1-22.
    [80] Pete Smith. Carbon sequestration in croplands: The potential in Europe and the global context [J].Europe Agronomy, 2004, 20:229-236.
    [81] Lal R, Kimble J M, Follett R F, et al. The Potential of U. S. Croplands to Sequester Carbon and Mitigate the Greenhouse Effect[M]. Chelsea, Michigan, USA: Ann Arbor Press, 1998.
    [82] Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J].The Botanical Review,1977,43:449-528.
    [83] Raieh J W,Potter C S. Global Pattern of carbon dioxide emission from soil [J].Global Biogeochemical Cyeles, 1995, 9:23-36.
    [84] Fang C, Monerieff J B. The dependence of soil CO_2 efflux on temperature.Soil Biology and Bioehemistry [J]. 2001, 33:155-165.
    [85] Andrew J A, Matamala R, Westover K M, et al. Temperature effects on the diversity of soil heterotrophs and the delta C-13 of soil-respired CO_2 [J]. SoilBiology and Biochemistry.2000, 32:699-706.
    [86] Davidson E A, Belk E, Boone RD.Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biology.1998, 4:217-227.
    [87] Conant R I, Klopatek J M, Malin R C et al. Carbon pools and fluxes along an environment gradient in northern Arizona [J]. Biogeochemisty, 1998, 43(1):43-61.
    [88] Grahammer K. Jawson M D, Skopp J. Day and night soil respiration from a grassland.Soil Biology and Bioehemistry, 1981,23(1):77-81.
    [89] Gupta S R, Singh J S. Soil respiration in a tropical grassland. Soil Biology and Bioehemistry [J]. 1981, 13:261-268.
    [90] Takai Y. The mechanism of methane fermentation in flooded paddy soil [J]. Soil Sci. and Plant Nutr.,1970,16:238-244.
    [91]江长胜,王跃思,郑循华等.稻田甲烷排放影响因素及其研究进展[J].土壤通报.2004, 35(5):664-668.
    [92] Sass R L, Fisher F M and Turner F T et al. Methane Emission from rice fields as influenced by solar radiation, temperature, and straw incorporation [J]. Global Biogeochemical Cycle, 1991, 5(4):335-350.
    [93] Schütz H, Holzapfel P A and Conrad R, et al. A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rate from an Italian rice paddy [J]. J.Geophys Res., 1989, 94:16406-16416.
    [94]上官行建,王明星.稻田土壤中甲烷的产生[J].地球科学进展,1993,8(5):1-12.
    [95]王明星.大气化学(第二版)[M].北京:气象出版社,1999.106-120.
    [96] Sass R L and Fisher F T. CH_4 emission from paddy fields in the United States Gulf Coast area. In: CH_4 and N_2O: Global emission and controls from rice fields and other agricultural and industrial sources[M]. Edited by Minami K et al. NIAES, Tsukuba, Japan, 1994,5:65-77.
    [97]王胜春,刘可星,游植麟,等.不同母质发育的水稻土中Fe、Mn对CH4排放的影响[J].农村生态环境,1998,14(1):52-54.
    [98]林匡飞,项雅玲,姜达炳等.湖北地区稻田甲烷排放量及控制措施的研究[J].农业环境保护,2000,19(5):267-270.
    [99] Wang Z P, Delaune R D, Masscheleyn P H, et al. Soil redox and pH effects onmethane reduction in a flooded rice soil[J]. Soil Sci. Soc. Am. J., 1993, 57:382-385.
    [100] Jenkins D. Sewage treatment. In: Rainbow C and Rose AH(ed.), Biochemistry of industrial microorganisms[M]. Academic Press, New York, 1963.508-536.
    [101] Darashar D C, Gupta P K, Rai J, et al. Effect of soil temperature on methane emission from paddy fields[J]. Chemosphere, 1993, 26:247-250.
    [102]李晶,王明星,陈德章.水稻田甲烷的减排方法研究及评价[J].大气科学, 1998,22(3): 354-362.
    [103]熊效振,沈壬兴,王明星等.太湖流域单季稻的甲烷排放研究[J].大气科学,1999,23(1):9-18.
    [104] Wassmann R and Schuetz H. Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertilizer treatment [J]. Biogeochemistry, 1992, 20:83-101.
    [105] Jakobsen P, Patrick W H and Williams B G. Sulfide and methane formation in soil and sediments [J]. Soil Sci., 1981, 132:279-287.
    [106]李玉娥,林而达.减缓稻田甲烷的减排的技术研究[J].农村环境与发展, 1995, 2: 38-40.
    [107]卢维盛,廖宗文,张建国,等.不同水旱轮作方式对稻田甲烷排放影响的研究[J].农业环境保护, 1999, 18(5): 200-202.
    [108]蔡祖聪, Mosier A R.土壤水分状况对CH_4氧化,N_2O和CO_2排放的影响[J].土壤,1999,289-298.
    [109] Li C. Modeling trace gas emissions from agricultural ecosystems [J].Nutrient Cycling inAgroecosystems. 2000, 58:259~276.
    [110] Yu K W, Wang Z P, Chen G X. Nitrous oxide and methane transport through riee plants [J].Biology and Fertility of Soil.1997, 24:341~343.
    [111] Yan X, Shi S, Du L et al. Pathways of N2O emission from riee paddy soil [J].SoilBiology& Bioehemistry, 2000, 32:437~440.
    [112] Daum D, Schenk M K. Influence of nutrient solution pH on N_2O and N_2 emissions from a soilless culture system[J].Plant and Soil,1998,203:279-287.
    [113] Monika G, Ralf C. Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture[J]. Biol Fert Soils, 2000.32:120-128.
    [114] Van Bochove E, Jones H G, Pelletier E et al. Emission of N_2O from agriculturalsoils under snow cover: a significant part of N budgets[J]. Hydrological Processes, 1996, 10:1545-1550.
    [115] Teepe R, Brumme R, Beese F. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land[J].Soil Biology and Biochemistry, 2000, 32:1897-1910.
    [116] Maggiotto S R, Webb, J A, Waggner-Riddle, C. Nitrous and nitrogen oxide emissions from turfgrass receiving different forms of nitrogen fertilizer[J]. Journal of Environmental Quality, 2000, 29:621-630.
    [117] Shelp, M.L., Beauchamp, E.G., Thurell, G.W. Nitrous oxide emissions from soil amended with glucose, alfalfa, or corn residues [J]. Communication Soil Science Plant Annals. 2000, 31:877-892.
    [118]梁东丽,同延安,Ove Emteryd等.干湿交替对旱地土壤N2O气态损失的影响[J].干旱地区农业研究.2002, 20(2): 28-31.
    [119]徐文彬,刘广深,刘维屏.降雨和土壤湿度对贵州旱田土壤N2O释放的影响[J].应用生态学报.2002, 13(1):67-70.
    [120]王微,林剑艺,崔胜辉,吝涛.碳足迹分析方法研究综述[J].环境科学与技术.2010, 33(7):71-77.
    [121] United Nations Conference on Trade and Development. A Manual for the Preparers and Users of Eco-efficiency Indicators [M].United Nations New York and Geneva, 2004: 33-85.
    [122]胡敏,卫振林,徐一飞,一种新型的环境影响评价方法[J].环境导报,1997,4:23-25.
    [123] International Standards Organization (ISO). ISO 14040:2006. Environmental management -Life cycle assessment- principles and framework, ISO 14044:2006.
    [124]山本良一.环境材料[M].北京:化学工业出版社,1997.
    [125]王惠清等.吉林省气候[M].北京:气象出版社,1997.
    [126]肖荣寰等.吉林省志(卷4:自然地理)[M].长春:吉林人民出版社.1992.
    [127]吉林省博物馆自然部.吉林省自然地理[M].长春:吉林人民出版社.1960.
    [128]吉林省土壤肥料总站.吉林土壤[M].北京:中国农业出版社. 1998.
    [129]李建东,吴榜华.吉林植被[M].长春:吉林科学技术出版社. 2001.
    [130]吉林统计年鉴编辑部. 2010吉林统计年鉴[M].北京:中国统计出版社.2010.
    [131]吉林农网.农经数据[DB].http://www.jlagri.gov.cn/datainfo.asp.2010.10.12.
    [132]吉林统计年鉴编辑部. 1998吉林统计年鉴[M].北京:中国统计出版社.1999.
    [133]吉林统计年鉴编辑部. 1999吉林统计年鉴[M].北京:中国统计出版社.2000.
    [134]吉林统计年鉴编辑部. 2000吉林统计年鉴[M].北京:中国统计出版社.2001.
    [135]吉林统计年鉴编辑部. 2001吉林统计年鉴[M].北京:中国统计出版社.2002.
    [136]吉林统计年鉴编辑部. 2002吉林统计年鉴[M].北京:中国统计出版社.2003.
    [137]吉林统计年鉴编辑部. 2003吉林统计年鉴[M].北京:中国统计出版社.2004.
    [138]吉林统计年鉴编辑部. 2004吉林统计年鉴[M].北京:中国统计出版社.2005.
    [139]吉林统计年鉴编辑部. 2005吉林统计年鉴[M].北京:中国统计出版社.2006.
    [140]吉林统计年鉴编辑部. 2006吉林统计年鉴[M].北京:中国统计出版社.2007.
    [141]吉林统计年鉴编辑部. 2007吉林统计年鉴[M].北京:中国统计出版社.2008.
    [142]吉林统计年鉴编辑部. 2008吉林统计年鉴[M].北京:中国统计出版社.2009.
    [143]前郭尔罗斯大事记.前郭尔罗斯县人民政府网.http://www.qianguo.gov.cn /zjqg/ls/dsj/200504/20050422092637.html.2010.11.8.
    [144]刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社.1996.
    [145]刘纪远,庄大方等.中国土地利用时空数据平台建设及其支持下的相关研究[J].地球信息科学.2002,3:1~8.
    [146]吉林省测绘局.吉林省国土资源地图集[M].北京:科学出版社, 1990.
    [147]吉林省测绘局.吉林省普通地图集[M].长春:吉林省测绘制印大队, 1993.
    [148]刘炜,张江潭等.吉林土种志[M].长春:吉林科学技术出版社,1997.
    [149]白城地区土壤肥料工作站.吉林省白城地区土壤普查资料(一)[M]. 1985.
    [150]白城地区土壤肥料工作站.吉林省白城地区土壤普查资料(二)[M]. 1987.
    [151]白城地区土壤普查办公室.白城土壤[M].内部资料, 1988.
    [152] Fang J. Carbon cycle of Chinese terrestrial ecosystem and its global significance. In: Wang G, Monitoring of Greenhouse Gas Concentration and Emission and Relevant Processes [M]. China Environmental Science Press, 1996:129~139.
    [153]奚小环,杨忠芳,夏学齐等.基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J].地学前缘. 2009, 16(1): 194-205.
    [154]徐小明.通榆县土壤有机碳储量估算及时空分布研究[D].长春:吉林大学.2008.
    [155]毛子龙. 1890~2029年白城市土地利用/覆被变化与土壤碳库研究[D].长春:吉林大学.2010.
    [156]周博.不同管理模式下苏南稻田作物生产力及土壤固碳效应分析—以吴江市为例[D].南京:南京农业大学.2007.
    [157]李忠佩,吴大付.水稻土壤有机碳库的平衡值确定及固碳潜力分析[J].土壤学报.2006,43(1):46-52.
    [158]许信旺,潘根兴,汪艳林,曹志宏.中国农田耕层土壤有机碳变化特征及控制因素[J].地理研究.2009, 28(3):601-612.
    [159]罗怀良,王慧萍,陈浩.川中丘陵地区近25年来农田土壤有机碳密度变化——以四川省盐亭县为例.山地学报.2010, 28(2):212-217.
    [160] Li C, Frolking S,Folking T A. A model of nitrous oxide evo1ution from soil driven by rainfall events: 1.Model structure and sensitivity. Journal of Geophysical Research,1992,97:9759~9776.
    [161]李长生.生物地球化学的概念与方法——DNDC模型的发展[J].第四纪研究.2001,21(2): 89-99.
    [162]李玉中,祝廷成,姜世成.羊草草地生态系统干湿沉降氮输入量的动态变化[J].中国草地. 2000, 2:24~27.
    [163]罗怀良,王慧萍,陈浩.川中丘陵地区近25年来农田土壤有机碳密度变化——以四川省盐亭县为例.山地学报.2010, 28(2):212-217.
    [164]奚小环,杨忠芳,廖启林等.中国典型地区土壤碳储量研究.第四纪研究.2010, 5(3):573-583.
    [165]奚小环,张建新,廖启林等.多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例[J].第四纪研究.2008, 28(1):58-67.
    [166]王丽丽,宋长春,葛瑞娟.三江平原湿地不同土地利用方式下土壤有机碳储量研究.中国环境科学.2009, 29(6):656~660.
    [167]闫敏华,华润葵,王德宣等.长春地区稻田甲烷排放量的估算研究[J].地理科学.2000, 20(4):386-390.
    [168]陈卫卫.三江平原稻田生态系统N_2O排放研究[D].长春:吉林农业大学.2007.
    [169]魏朝富,高明,黄勤,等.耕种制度对西南地区甲烷排放规律的研究[J].土壤学报,2000,37(2):157-165.
    [170]张广斌,马静,徐华等.中国稻田CH4排放量估算研究综述[J].土壤学报.2009, 46(5):907-916.
    [171] Khalil M A K, Rasmussen R A, Wang M X. Methane emission from rice fields in China[J]. Environmental Science and Technology, 1991, 25: 979-981.
    [172] Wang M X, Dai A G, Shen R X, et al. CH_4 emission from a Chinese rice paddy field [J]. Acta Meteorologica Sinica, 1990, 401:265~275.
    [173]沈壬兴,上官行健,王明星,等.广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化.地球科学进展[J], 1995, 10(4):387~392.
    [174]陶战等.我国不同地区稻田甲烷排放量及控制措施研究[J].农业环境保护1998, 17(1): 1-7.
    [175]杨光明.西双版纳地区水稻田CH_4、CO_2和N_2O通量及其影响因素研究[D].云南:中国科学院西双版纳热带植物园.2007.
    [176]江长胜.川中丘陵区农田生态系统主要温室气体排放研究[D].北京:中国科学院大气物理研究所.2005.
    [177]曹金留,徐华,张宏康等.苏南丘陵区稻田氧化亚氮的排放特点[J].生态学杂志. 1999, 18(3):6-9.
    [178]杨军,陈玉芬,胡飞等.广州地区早稻田施肥对N_2O排放影响的初步研究[J].华南农业大学学报,17(4):1996:52-57.
    [179]蒋静艳.农田土壤甲烷和氧化亚氮排放的研究[D].南京:南京农业大学.2001.
    [180]王明新,夏训峰,刘建国等.太湖地区高产水稻生命周期评价[J].农业环境科学学报.2009, 28(2): 420-424.
    [181]李贞宇.我国不同生态区小麦、玉米和水稻施肥的生命周期评价[D].河北:河北农业大学,2010.
    [182]刘洪涛,陈同斌,郑国砥,高定,雷梅.有机肥与化肥的生产能耗、投入成本和环境效益比较分析——以污泥堆肥生产有机肥为例[J].生态环境学报.2010, 19(4):1000-1003.
    [183]陈正刚.国内外氢氧化钾生产概况[J]. 2003, (7):5-8.
    [184]龚镇文.钙镁磷肥能耗分析[J].化肥工业.1985. (2):48-54.
    [185]王明新,包永红,吴文良,刘文娜.华北平原冬小麦生命周期环境影响评价[J].农业环境科学学报.2006, 25(5):1127-1132.
    [186]殷志强,秦小光,李长生.东北三省主要农作物耗水量与缺水量研究[J].科技导报2009,27(13).
    [187] F. Brentrup, J. Küsters, H. Kuhlmann & J. Lammel. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology I. Theoretical concept of a LCA method tailored to crop production. Europ. J. Agronomy. 2004, (20): 247–264.
    [188] F. Brentrup, J. Küsters, H. Kuhlmann & J. Lammel. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Europ. J. Agronomy. 2004, (20): 265–279.
    [189]王明新,包永红,吴文良,刘文娜.华北平原冬小麦生命周期环境影响评价[J].农业环境科学学报.2006, 25(5):1127-1132.
    [190]梁龙,陈源泉,高旺盛.两种水稻生产方式的生命周期环境影响评价[J].农业环境科学学报. 2009, 28(9):1992-1996.
    [191] Gian Andrea Blengini, Mirko Busto. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy) [J]. Journal of Environmental Management.2009: 90, 1512–1522.
    [192] H. Pathak, N. Jain, A. Bhatia, J. Patel, P.K. Aggarwal. Carbon footprints of Indian food items [J]. Agriculture, Ecosystems and Environment .2010, 139:66-73.
    [193]郭乃文,物质流分析在农业生产之应用与展望[Z].97年度春季环境与能源研讨会,台北,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700