长江三角洲地区菜地系统氮肥利用与土壤质量变异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国农业种植结构发生了很大的变化,蔬菜种植面积大幅度发展。在蔬菜栽培中,为追求生产效益菜农大量施用肥料尤其是氮肥,造成肥料利用率降低、土壤质量下降,生态环境恶化等问题。在我国经济快速发展地区,上述问题尤为严重。因而,研究该地区氮肥在蔬菜-土壤体系中的转化和去向以及对土壤质量的影响对于指导农业生产、减少农业环境污染以及促进社会经济的可持续发展具有重要意义。
     本论文通过对2个蔬菜保护地的大田试验、结合3个保护地的定位监测试验以及盆栽试验,采用常规方法和示踪技术(利用无机、有机肥交叉标记),研究常规施肥条件下有机肥氮、无机肥氮在蔬菜保护地中的转化和去向;并通过不同种植类型土壤以及不同种植年限的保护地进行土壤质量监测试验,对保护地土壤质量下降的原因进行了探索。主要结果如下:
     常规田间定位试验结果表明:氮肥用量225-600 kg N·hm~(-2),有机肥比例为0-100%的条件下,氮肥当季利用率小于10%。两季作物的利用率也仅有5-22%,作物未吸收的肥料氮主要以NO_3~--N和NH_4~+-N的形态存留在剖面0-40cm土体之内,残留率为34-90%。有机肥比例较高,土壤累积的矿质氮较低,氮肥利用率较高。大田的示踪试验的结果表明:蔬菜吸收的氮素2%~11%来自于肥料,约90%的氮素是从土壤中吸收。由于受降雨的影响,化肥淋洗损失严重,总损失率高达70%。而施用有机肥增加了氮肥在土壤中的回收率。有机肥与化肥配施条件下化肥氮的土壤回收较单施化肥高,即便如此,配施条件下损失的氮素97%来自化肥氮,仅有3%来自有机肥氮。
     通过对三种类型菜地,即菜稻轮作-低氮土壤、3年保护地-中氮土壤和10年保护地-高氮土壤的定点监测试验表明,随着土壤氮含量水平的提高,土壤生产力提高,蔬菜生物量和吸氮量均有明显的增加。而在三种土壤上施用相同量的氮肥后,土壤生产力随土壤肥力增加的幅度降低。在低、中氮土壤上,施肥均比对照处理增加蔬菜生物量和吸氮量,而在高氮土壤上,施肥较对照降低生物量:随着土壤肥力水平的提高,氮肥的利用率、残留率呈下降趋势,而损失率却呈上升趋势;差减法氮肥利用率为2%~14%、残留率为25%~61%、损失率为23%~72%。
     盆栽试验结果表明,在氮肥用量为75~300mg·kg~(-1)条件下,随着氮肥用量的增加,肥料利用率降低,损失率增加。化肥较有机肥氮的当季利用率高,而残留率却低于有机肥。示踪法和差减法有一定的差异,当土壤肥力较低时,由于激发效应,施肥处理较对照吸收了更多的土壤氮素,差减法大于示踪法利用率;当土壤含有足够的氮素供植物吸收时,示踪法利用率大于差减法。
     土壤质量监测试验表明,轮作类型对土壤理化性状和微生物区系有显著的影响。总体看来,保护地的微生物区系结构最不理想,盐分含量最高。相比之下,菜稻轮作对降低土壤盐分以及改善微生物区系有重要的作用。不同种植年限保护地土壤质量也有很大差异,随着蔬菜种植年限的增加,耕层土壤中EC、NO_3~--N和Olsen-P含量显著增加,土壤pH、容重显著降低。细菌和放线菌数量随种植年限呈先增加后降低的趋势,真菌却呈一直增加的趋势。初步结果表明高肥料用量导致土壤盐分增加、酸化趋势明显以及养分非均衡加剧,造成对土壤微生物和作物生长的胁迫,可能是导致土壤质量障碍的主要原因之一。
[n recent years, the planting structure of agriculture has changed a lot in China. Vegetable planting area developed rapidly in a large scale. In vegetable cropping system, a great deal of nitrogen fertilizer and manure were used for the high benefit of it, which lead to the decline of nitrogen use efficiency, the degradation of soil quality and environment pollution. In Yangtze delta area, the developed region of economy in China, the intensive agriculture production with high fertilization level leads to environment pollution much more seriously. So to study the fate and transformation of nitrogen fertilizer in vegetable-soil system and the soil quality variation in this region is very important, which may give the guidance to the vegetable growers to grasp the rational application of fertilizer and as well as reduce the environmental pollution.Two field trial of greenhouse, one field orientation monitoring trail and one pot experiment were conducted to study the fate of organic nitrogen and fertilizer nitrogen in vegetable-soil system. The difference method and ~(15)N isotope method were adopted together and the cross label technique was utilized in this study. In addition we investigated the soil quality of different type of rotation and different planting age of vegetable greenhouse cultivation. The main results as follows:The results of general field trials showed that nitrogen use efficiency less than 10% of the first vegetable crop under the follow condition nitrogen application dose 225-600 kg N·hm~(-2) and the proportion of organic fertilizer between 0-100 percent. The sum of N use efficiency of two crop rotation was only 5-22%. The N remained in soil was mainly as the forms of NO_3~--N and NH_4~+-N in 0~40cm depth. The apparent N recovery of soil was 34-90%. In addition, N use efficiency was improved with the manure rate of organic N/fertilizer N. The results of ~(15)N isotope trial showed that only 2-11% of the nitrogen absorbed by vegetable was derived from fertilizer, and about 90% vegetable nitrogen came from soil. Because of the rainstorm, fertilizer nitrogen leakage was serious and about 70% fertilizer nitrogen lost. However, manure fertilization increased nitrogen recovery of soil. And fertilizer nitrogen recovery of soil was much more when fertilizer and manure employed together than that fertilizer employed only. However still about 97% of the nitrogen loss was from fertilizer and only 3% was from manure when at the mixed fertilization.Survey study was conducted on three types of vegetable field including vegetable-paddy rotation, three-year vegetable greenhouse cultivation and 10-year vegetable greenhouse cultivation, which represent low, medium and high soil nitrogen level separately. The results showed that soil productivity improved so that vegetable yield and nitrogen uptake increased with the soil nitrogen level. When the same dose of nitrogen fertilizer was used, the degree of enhancing effect in productivity declined with soil nitrogen level. In the field of the low and medium nitrogen level, vegetable yield and nitrogen uptake of fertilization treatment were all more than that of control treatment. On the contrary, in the field of high soil nitrogen level, the yield of fertilization treatment was lower than that of control treatment. The nitrogen use efficiency, N recovery rate of soil and vegetable were all decreased but nitrogen loss rate increased with soil nitrogen level. The nitrogen use
引文
[1] 曹志宏.科学施肥与我国粮食安全保障.土壤,1998,(2):57~63
    [2] 陈华癸等.土壤微生物学.上海:上海科学技术出版社,1981
    [3] 陈明昌,张强,杨晋玲等.田间土壤氮素形态转化模拟模型的研究.植物营养与肥料学报,1996,2(3):261~269
    [4] 程美廷.温室土壤盐分累积、盐害及其防治.土壤肥料,1990,(1):1~7
    [5] 邓仕槐,吴晓斌,卢益武.施肥对环境质量的影响.西南农业学报,1998,11(3):106~111
    [6] 丁洪,王跃思,项虹艳等.菜田氮素反硝化损失与N_2O排放的定量评价.园艺学报,2004,31(6):762~766
    [7] 董悦安,沈照理,钟佐.菜田施肥(化肥)对地下水氮污染影响的实验研究.地球科学,1999,24(1):101~104.
    [8] 范君华,刘明,洪远新.不同利用方式对土壤微生物区系和活性的影响.塔里木农垦大学学报,2002,14(1):15~17
    [9] 范晓晖,朱兆良.农田土壤剖面反硝化活性及其影响因素的研究.植物营养与肥料学报,1997,3(2):97~103
    [10] 丰锋.加入WTO对我国蔬菜产业发展的机遇与挑战.北方园艺,2002(2):4-5.
    [11] 封海胜,张思苏,万书波等.土壤微生物与连、轮作花生的相互效应研究.莱阳农学院学报,1995,12(2)97~101
    [12] 高强,刘淑霞,王宇等.施肥对农业生态环境的影响.吉林农业大学学报,2002,22:106~112
    [13] 高子勤,张淑香.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应.应用生态学报,1998,9(5):549~554
    [14] 葛菁萍.大棚土壤的理化性状.土壤通报,1998,29(1):88~90
    [15] 葛晓光,王晓雪,付亚文等.长期定位施氮条件下菜田氮素循环的研究.中国蔬菜,1999,(1):13~17
    [16] 葛晓光,王晓雪,付亚文,刘秀茹.长期定位施用氮肥对菜田土壤肥力变化的影响.中国蔬菜,1997(5):1~6
    [17] 关佩聪.蔬菜学概论.北京:中国农业出版社,1998,48~50
    [18] 郭胜利,吴金水,郝明德等.长期施肥对NO3-深层累积和土壤剖面中水分分布的影响.应用生态学报,2003,14(1):75~78
    [19] 郭文忠,刘声锋,李丁仁.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36(1):25~29
    [20] 何绪生,李素霞,李旭辉等.控效肥料的研究进展.植物营养与肥料学报,1998,4(2):97-106
    [21] 和凯.加强发展蔬菜生产力度,确保时常持续稳定供应.上海农业科技,1996,(1):2~4
    [22] 侯云霞,钱光熹,王建民等.上海蔬菜保护地的土壤盐分状况.上海农业学报,1987,3 (4):31~38
    [23] 黄锦法,曹志洪,李艾芬等.稻麦轮作田改为保护地菜田土壤肥力质量的演变.植物营养与肥料学报,2003,9(1):19~25
    [24] 黄锦法,李艾芬,马树国等.蔬菜保护地土壤障碍的凋查及矫治措施.土壤肥料,2002(2):42~44
    [25] 黄元仿,曹兵,胡克林等.不同施肥条件下菜地土壤无机氮动态及其淋洗污染潜力.土壤通报,1997,28(4):175-177
    [26] 冀宏杰.过量施用氮肥对北京市蔬菜硝酸盐含量影响的综合评估.北京市自然科学基金会会长基金课题总结报告,1999
    [27] 简恒,杨怀文,张乃鑫.对悬浮离心法回收昆虫病原线虫方法的改进.中国生物防治,1995,11(1):13~16。
    [28] 介晓磊,韩燕来,谭金芳等.不同肥力和土壤质地条件下麦田氮肥利用率的研究.作物学报,1998,24(6):884~888
    [29] 金雪霞,范晓晖,蔡贵信等.菜地上壤氮素矿化和硝化作用的特征.土壤,2004,36(4):382~386
    [30] 金雪霞,范晓晖,蔡贵信等.菜地土壤N_2O排放及其氮素反硝化损失.农业环境科学学报,2004,23(5):861~865
    [31] 巨晓棠.冬小麦/夏玉米轮作体系中土壤-肥料氮的转化及去向:中国农业大学博士论文.北京:中国农业大学,2000,
    [32] 寇长杯,巨晓棠.高强等.两种农作物体系施肥对土壤质量的影响.生态学报,2004,24(11):2549~2557
    [33] 李辉信,胡锋,蔡贵信等.水田、旱坡地改种蔬菜后土壤养分含量的变化.土壤,2004,36(6):678~681
    [34] 李俊良,崔德杰,孟祥霞.山东寿光保护地蔬菜施肥现状及问题的研究.土壤通报,2002,33(2):126~128
    [35] 李俊良,朱建华,张晓晟等.保护地番茄养分利用及土壤氮素淋失.应用与环境生物学报 2001,7(2)126~129
    [36] 李庆诚.全国重点环境考核城市地下水污染概况与防治对策.地下水,1992,14(1):2~5
    [37] 李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1997,38~51
    [38] 李世清,高亚军,杜建军等.连续施用氮肥对旱地土壤氮素状况的影响.干旱地区农业研究,1999,17(3):28~34
    [39] 李世清,李生秀,李凤民.石灰性上壤剖面氮素的矿化和硝化作用.兰州大学学报,2000,36(1):104
    [40] 中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.,79~94
    [41] 李伟波,李运东,王辉.用~(15)N研究吉林黑土春玉米对氮肥的吸收利用.土壤学报,2001,38(4):476~481
    [42] 李文庆,杜秉海,骆洪义等.大棚栽培对土壤微生物区系的影响.土壤肥料,1996,(2): 31~33
    [43] 李文庆,李光德,骆洪义.大棚栽培对土壤盐分状况影响的研究.山东农业大学学报,1995,26(2):165~169
    [44] 李文庆,骆洪义,刘加芬.大棚生态系统物流能流分析及效益评价.生态农业研究,1996,(3):53~55
    [45] 李文庆,张民,李海峰等.大棚土壤硝酸盐状况研究.土壤学报,2002,39(2):283~287
    [46] 李勇,靳伟,安琼等.我国东南匠陵区化肥和农蓟污染状况分析.农村生态环境,1998,14(1):24~30
    [47] 李玉中,祝廷成,李建东.~(15)N标记肥去向及平衡状况.中国草地,2002,24(5):15~17
    [48] 李志博,王起超,陈静.农业生态系统的氮素循环研究进展.土壤与环境,2002,11(4):417~421
    [49] 李志洪,王淑华.土壤容重对土壤物理性状和小麦生长的影响.土壤通报,2000,31(2):55~58
    [50] 林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化(全国化肥实验网论文汇编),中国农业科技出版社,1996
    [51] 刘更另.中国粮食生产和平衡施肥.国际平衡施肥学术讨论会论文集.北京:农业出版社,1989,16~21
    [52] 刘宏斌,李志宏,张维理.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究.植物营养与肥料学报,2004,10(3):286-291
    [53] 刘建玲,廖文华,高志岭等.河北省蔬菜保护地土壤养分的积累状况及影响因素.河北农业大学学报,2004,27(1):19~24
    [54] 刘景潘.济南市东郊地区地下水污染现状及污染途径研究,环境科学丛刊,1989,10(6):1~48
    [55] 刘淑英,李小刚,王平.兰州市安宁区保护地蔬菜施肥状况的调查.甘肃农业大学学报,1998,33(2):190~193
    [56] 刘晓宏,田梅霞,郝明德.黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与累积.土壤肥料,2001,(1):9~12
    [57] 刘永菊,曹一平,张福锁.北京郊区蔬菜地长期施用粪肥对土壤环境质量的影响.见:李晓林,编.平衡施肥与可持续优质蔬菜生产.北京:中国农业大学出版社,2000,32~40.
    [58] 龙明杰,曾繁森.高聚物土壤改良剂的研究进展.土壤通报,2000,31(5):199~2002
    [59] 鲁如坤,刘鸿翔,闻大中等.我国典型地区农业生态系统养分循环和平衡研究Ⅰ.农田养分支出参数.土壤通报,1996,27(4):145~151
    [60] 鲁如坤,刘鸿翔,闻大中等.我国典型地区农业生态系统养分循环和平衡研究Ⅲ.全国和典型地区养分循环和平衡现状.土壤通报,1996,27(5):193~196。
    [61] 鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究.中国农业科学,2000,33(2):63~67
    [62] 鲁如昆.士壤农业化学分析方法.北京:中国农业科技出版社,2000
    [63] 吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998, 4(1):8~15
    [64] 罗明,文启凯,陈全家.不同用量的氮磷化肥对棉田土壤微生物区系及活性的影响.土壤通报,2000,31(2):66~71
    [65] 罗时石,张浩.不同温度及灌水量对土壤硝态氮淋失动态研究.核农学报,1995,9:7-10.
    [66] 马汇泉,勒学慧,孙伟萍等.大豆连作障碍及其产生机理初探.见:中国农学会,编.全国第二届青年农学学术年会论文集.北京:农业出版社,1995,528~530
    [67] 马立珊,钱敏仁.太湖流域水环境硝态氮和亚硝态氮污染的研究.环境科学,1987,8(2):60~65
    [68] 马正华,宋维秀,魏国良.菜地土壤有机肥转化实验,青海大学学报(自然科学版),2002,20(3):10~12
    [69] 宁春燕,赵建夫.农药污染土壤的生物修复技术介绍.农业环境保护,2001,20(6):473~474
    [70] 庞新,李春俭,张福锁.部分根系供磷对小麦幼苗生长及同化物分配的影响,作物学报,2000,26(6):719~725
    [71] 彭少兵,黄见良,钟旭华.提高中国稻田氮肥利用率的研究策略.中国农业科学 2002,35(9):1095-1103
    [72] 任祖淦,邱孝煊,蔡元呈等.化学氮肥对蔬菜累积硝酸盐的影响.植物营养与肥料学报,1997,3(1):81~84
    [73] 任祖淦,邱孝煊,蔡元呈等.氮肥施用与蔬菜硝酸盐积累的相关研究.生态学报,1998,18(5):523~528
    [74] 任祖淦,邱孝煊,蔡元呈等.施用化学氮肥对蔬菜硝酸盐的累积及其治理研究.土壤通报,1999,30(6):265~267
    [75] 沈景文.化肥农药和污灌对地下水的污染.农业环境保护,1992,11(3):137~139
    [76] 沈明珠,翟宝杰,东惠如等.蔬菜硝酸盐累积的研究Ⅰ.不同蔬菜硝酸盐、亚硝酸盐含量评价.园艺学报,1982,9(4):41~48
    [77] 沈新磊,黄思光,王俊等.半干旱农田生态系统地膜覆盖模式和施氮对小麦产量和氮效率的效应.西北农林科技大学学报(自然科学版),2003,31(1):1~14
    [78] 松本满夫等.不同地区连作水稻根面丝状真菌的研究.日本土壤肥料学杂志,1978,49:443~447.
    [79] 宋家祥,庄恒扬,陈后庆等.不同土壤紧实度对棉花根系生长的影响.作物学报,1997,23(6):719~726
    [80] 宋圃菊.饮食与胃癌的病因.北京医学院学报,1978,(1):52~55
    [81] 汤丽玲.日光温室番茄氮素追施调控技术及其效益评估:中国农业大学博士学位论文.北京 2003
    [82] 汤丽玲,陈清,张宏彦等.不同灌溉与施氮措施对露地菜田土壤无机氮残留的影响.植物营养与肥料学报,2002,8(3):282~287
    [83] 王斌,李伟.不同N、P浓度条件下竹叶眼子菜的生理反应.生态学报,2002,22(10):1616~1621
    [84] 王朝辉,李生秀,田霄鸿.不同氮肥用量对蔬菜硝态氮累积的影响.植物营养与肥料学报, 1998,4(1):22~28
    [85] 王朝辉,宗志强,李生秀等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留.环境科学,2002,23(3):79~83
    [86] 王桂芬.地膜覆盖条件下土壤水及溶质云翳规律的室内实验研究.水利水电技术,1996,(3):43~47
    [87] 王国峰,黄锦法.浙北嘉兴平原土壤养分的平衡状况及改善对策的探讨.土壤通报,1999,30(3):104~107
    [88] 王家玉,王胜佳,陈义等.稻田土壤中N的渗漏损失研究.应用生态学报,1995,6(增刊),:62~66
    [89] 王平,刘淑英.兰州市安宁区蔬菜保护地土壤盐分的含量及其剖面分布规律.甘肃农业大学学报,1998,(2):186~189
    [90] 王平,田长彦,赵振勇.新疆新和县郊区菜地硝态氮的淋洗调查.干旱区研究,2004,21(1):64~66
    [91] 王晓佳,宋明.蔬菜的污染与无污染生产(一).中国蔬菜,1996,(3):53~55
    [92] 王效科,庄亚辉,李长生.中国农田土壤N2O排放通量分布格局研究.生态学报,2001,21(8):1225~1232
    [93] 魏林,梁志怀,刘建华.长沙地区蔬菜主要土传病害及其综合治理.湖南农业科学,2002,(3):39~40
    [94] 温贤芳,陈一珠.在植物营养研究中~(15)N同位素应用指南,1988
    [95] 吴凤芝,刘德,王东凯等.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜,1998,(4):5~8
    [96] 吴凤芝,刘德,栾非时.大棚土壤连作年限对黄瓜产量及品质的影响.东北农业大学学报,1999,30(3):245~248
    [97] 吴凤芝,王伟.大棚番茄上壤微生物区系研究.北方园艺,1993,3:1~2。
    [98] 吴建富,张美良,刘经荣等.不同肥了结构对红壤稻田氮素迁移的影响.植物营养与肥料学报,2001,7(4):368~373
    [99] 武天龙,杨庆凯,张玉梅.土壤不同因子对大豆孢囊线虫繁殖影响的初步研究.东北农业大学学报,1996,27(2):132~136
    [100] 奚振邦.化学肥料学.北京:科学出版社,1994,364~365
    [101] 小仓宽典,马俊荣,周艺敏等.天津市行政区蔬菜园艺地带土壤微生物生态[J].高知大学学术研究报告(农学),1991,40:1~10.
    [102] 徐光辉,郑洪石.土壤微生物分析方法手册.北京:农业出版社,1986
    [103] 徐兴良,欧阳华,裴志永等.短期内~(15)N标记的铵盐和硝酸盐在青藏高原寒車甸中的运移规律.植物学报,2003,45(3):276~281
    [104] 徐阳春,沈其荣等.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响,土壤学报,2002,39(1):89~95
    [105] 续勇波,郑毅,刘宏斌等.设施栽培中生菜养分吸收和氮磷肥料利用率研究.云南农业大学学报,2003,18(3):221~225;
    [106] 薛继澄,毕德义,李家金等.保护地栽培蔬菜生理障碍因子与对策.土壤肥料,1994,(1):4~9
    [107] 殷永娴,曹利中.设施土壤的微生物区系.上壤,1994(3):143~145
    [108] 尹睿,张华勇,黄锦法等.保护地菜田与稻麦轮作田土壤微生物学特征的比较.植物营养与肥料学报,2004,10(1):57~62
    [109] 余德辉.中国湖泊富营养化防治状况及存在问题.见:国家环境保护总局科技标准司,编.中国湖泊富营养化及其防治研究.北京:中国环境科学出版,2001,1~7
    [110] 袁新民,,同延安,,杨学云等.不同施氮量对土壤NO_3~--N累积的影响.干旱地区农业研究,2000,,19(1)8~13
    [111] 袁新民,李晓林,同延安等.陕西关中地区蔬菜地土壤的NO_3~--N累积.上壤侵蚀与水土保持学报,1999,5(5):103~105
    [112] 袁新民,同廷安,扬学云等.施用磷肥对土壤NO_3~-累积的影响.植物营养与肥料学报,2000,6(4):397~403
    [113] 张福珠,能先哲.应用~(15)N研究土壤-植物系统中氮素淋失动态.环境科学,1984(1):21-24
    [114] 张国印,王丽英,孙世友等.土地利用方式对土壤质量性状的影响.河北农业科学,2004,8(1):1~5
    [115] 张美良,吴建富,刘经荣等.稻田农牧沼生态系统氮的转化与循环研究.植物营养与肥料学报,2000,6(2):133~139
    [116] 张树兰,杨学云,吕殿青等.温度、水分及不同氮源对土壤硝化作用的影响.生态学报,2002,22(12):2147~2153
    [117] 张维理,田哲旭,张宁等.我国北方农用氮肥造成地下水硝酸盐污染调查.植物营养与肥料学报,1995,1(2):80~87
    [118] 张维理,武淑霞,冀宏杰等.中国农业面元污染形势估计及控制对策1.21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008~1017
    [119] 张新明,李华兴,吴文良.氮素肥料对环境与蔬菜的污染及其合理调空途径.土壤通报,2002,33(6):471~475
    [120] 章永松,林咸永,罗安程.有机肥对土壤中磷的活化作用即机理研究Ⅱ有机肥(物)分解产生的有机酸及其对不同形态磷的活化作用.植物营养与肥料学报,1998,4(2):151-155
    [121] 章永松,林咸永.有机肥对上壤中磷活化作用及机理研究Ⅰ有机肥(物)对不同形态无机磷的活化作用.植物营养与肥料学报,1998,4(2):145-150.
    [122] 赵其国.为跨世纪土壤学的发展作出新贡献-第15届国际土壤学会会议综述.土壤学报,1995,32(1):1~12
    [123] 中国烟草培训网.烟草科普,科普园地,烟草根结线虫病的发病规律.2004-3-24 http://www.ctt.cn/Culture/CultureDetail.jsp?CultureID=228
    [124] 中山农业信息网.蔬菜根结线虫病的发生与防治,http://www.zsagri.gov.cn/ResArticles/2002/04/WEB7836.htm
    [125] 朱建华,李俊良,李晓林等.几种复合肥施用对蔬菜保护地土壤环境质量的影响.农业环 境保护,2002,21(1):5~8
    [126] 朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述.生态环境,2003,12(1):102-105
    [127] 朱兆良.中国土壤氮素.南京:江苏科学技术出版社,1992,37~59。
    [128] 朱兆良.我国氮肥的施用现状、存在问题和对策.见:李庆逵,朱兆良,于天仁,编.中国农业持续发展中的肥料问题.南京:江苏科学技术出版社,1998
    [129] 庄尧舜,孙秀庭.肥料氮在蔬菜地中的去向及平衡.土壤,1997,80~83
    [130] Boink, G. Speijers, Proc. IC on Environm. Problems N-Fert, Acta Hort. 2001, 563
    [131] A.H.Samater, O.Van Cleemput and T.Ertebo. Influence of the presence of nitrite and nitrate in soil on maize biomass production, nitrogen immobilization and nitrogen recovery. Biol. Fertil. Soils, 1998, 27: 211~218
    [132] Acea M.J., Carballas T. The influence of cattle slurry on soil microbial population and nitrogen cycle microorganisms. Biological Wastes, 1988, 23: 229~241
    [133] Arheimer B,Brandt M.瑞典南部集水区氮素迁移和持留的建模.AMBIO,1998,27(6):471-480.
    [134] B.J.van Alphen. A case study on precision nitrogen management in Dutch arable farming. Nutrient Cycling in Agroecosystems, 2002, 62: 151~161
    [135] Baunwan A F. In John and sons. soil and green house effect. Chichester. 1990, 1~128
    [136] Borlaug, N.E. and Dowswell, c.r. Feeding a human population that increasingly crowds a fragile planet. 15th World Congress of Soil Science, 1994, Acapulco, Mexico. Supplement to Transaction. 10p. International Society of Soil Science and Mexican Society of Soil Science
    [137] Bouwman A F, Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In Bouwman A F, ed. Soil and the Greenhouse Effect. New York: Wiley, 1990, 61~127
    [138] Breimer, T. Environmental factors and cultural measures affecting the nitrate in spinach. Fertilizer research, 1982, 3: 191~192
    [139] C.Chang and T.Entz. Nitrate Leaching Losses Under Repeated Cattle Feedlot Manure Applications in Southern Alberta. J.Environ.Qual, 1996, 25: 145~153
    [140] Candela L. Diffused pollution of groundwater by agriculture: a study in the Maresme area of Barcelona. Spain. Proc. Int. Conf. Environ. Pollut., 1991, 161~169。
    [141] Cardoso S.M. The nitrate content ofdriking water in Portugal. NATO ASI Ser. 1991, 30(Nitrate Contain.) 49~54
    [142] Choi B C K. N-nitroso compounds and human cancer: a molecular epidemiological approach. Am.J.Epidem., 1985, 121: 737~743
    [143] Chris Frazar. The Bioremediation and Phytoremediation of Pesticide-contaminated Sites, 2000, U.S.EPA Office, Washington D.C. http://www.clu in.org.
    [144] Conrad R et al, Factors influencing the loses of fertilizer nitrogen into the atmosphere as N2O, J Geophs Res, 1983, 88(11): 6709~6718
    [145] Cordovil, C. F. Cabral and M. Dachler. Fertilising value and mineralisation of nitrogen from organic fertilizers (pot and incubation experiments). Acta Horticultrae, 2001. 563: 139~145
    [146] Crutzen P J, Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In denitrification, nitrification and atmospheric nitrous oxide. Ed. C C Delwiche. Wiley, New York. 1981, 17~24
    [147] Crutzen P J. The influence of nitrogen oxides on the atmospheric ozone content. Q. J. Meteorol. Soc., 1970, 96: 320~325
    [148] D.J.Hatch, S.C.Jarvis and R.J.Parkinson. Concurrent measurements of net mineralization, nitrification, denitrification and leaching from field incubated soil cores. Biol. Fertil. Soils, 1998, 26: 323~330
    [149] de PJ, Ramos C. Linkage of a geographical information system with the gleams model to assess nitrate leaching in agricultural areas. Environ Pollut 2002, 118(2): 249-258
    [150] DeDatta S K. Improving nitrogen fertilizer effiency in low rice in topical Asia. Fertilizer Res. 1986, 96: 171~186
    [151] Dich J, Jrvinen R, Knekt P et al. Dietary intakes of nitrate, nitrite and NDMA in the Finish Mobile Clinic Health Examination Survey. Food Add. Contain, 1996, 13: 541~552
    [152] Doran J.W. Soil microbial and biochemical changes associated with reduced tillage. Soil Science of America Journal, 1980, 44: 764~771
    [153] Doran J.W., Sarrantonio, M., Liebig, M.A. Soil health and sustainability. Advances in Agronomy 1996, 56: 1~54
    [154] Duncan J. Greenwood. Modeling N-response of field vegetable crops grown under diverse conditions with N-able: a review. Journal of Plant Nutrition, 2001, 24(11): 1799~1815。
    [155] EC-Council Directive. Concerning the protection of waters against pollution caused by nitrates from agricultural sources. Council Directive91/676/EEC, 1991
    [156] Erisman J. Summary statement. Environmental Pollution, 1998, 102: 3~12
    [157] FAO, 1992, Production Yearbook 1991, Vol.45, Rome
    [158] Fink, M. and C. Scharpf. Apparent nitrogen mineralization and recovery of nitrogen supply in field with vegetable crops. Journal of Horticultural Science and Biotechnology, 2000, 75(6): 723~726
    [159] Firestone MK. Biological denitrification. Agron Monogr, 1982, 22: 289~326
    [160] Flipse WJ, Katr BG. Source of nitrate ground water in a sewered housing development. Central long Island, New york Groundwater, 1984, 22: 57~65
    [161] Focht DD, Verstraete W. Biochemical ecology of nitrification and denitrication. Adv Microb Ecol, 1977, 1: 135~214
    [162] Follett, T.F., Keeney, D.R. and Cruse, R.M. Managing nitrogen for groundwater quality and farm profitability. Soil Sci. Am. J, 1991, 343~348
    [163] Francois Limarx, Sylvie Recous and Jean-Marc Meynard et al. Relationship between rate of crop growth at date of fertilizer N application and fate of fertilizer N applied to winter wheat. Plant and Soil, 1999, 214: 49~59
    [164] Fujiyoshi Shibahara, Shigekazu Yamamuro and Kazuyuki Inubushi. Dynamics of microbial biomass nitrogen as influenced by organic matter application in paddy fields. Soil Sci. Plant Nutr. 1998, 44(2): 167~178
    [165] Gayle B.P. et al. Biological denitrification of water. Journal of Environmental Engineering, 1989, 115 (5): 930~943
    [166] Greenwood D.J. Ckeaver, T.J., and Turner, M.K. Fertilizer requirements of vegetable crops. Proc. Fert. Soc. 1974, 146: 5~31.
    [167] Grundmann GL, Renault P, Rosso L et al. Differential effects of soil water content and temperature on nitrification and aeration. Soil Sci Soc Am J, 1995, 59: 1342~1349
    [168] Hallberg, G.R. Nitrate in ground water in the United States. In R.F. Follett(ed) Nitrogen management and ground water protection. Vol.21. Developing in agricultural and managed-forest ecology. Elsevier, New York. 1989, 35~74.
    [169] Heathwaite AL. Nitrogen cycling in surface waters and lakes. In: Burt TB, Heathwaite AL, Trudgill ST(eds)Nitrate: processes, patterns and management. Wiley, Chichester, 1993, 99~140.
    [170] Hoffmann M, Johnsson H. Nitrogen leaching from Agricultural land in Sweden model calculated effects of measures to reduce leaching loads, AMBIO, 2000, 29(2): 67-73.
    [171] Hoffmann M,Johnsson H.瑞典农业用地中的氮淋溶:1985和1994年的标准速率和总传输.AMBIO,1998,27(6):481-488
    [172] Hoyas T R, Vagstad N, Bechmann M, et al. Auli河流域-挪威东南部一个以农业为主的流域氮的收支预算.AMBIO,1997,28(5):283-289.
    [173] J.G. Koops, M.L. van Beusichem and O.Oenema. Nitrogen loss from grassland on peat soil through nitrous oxide production. Plant and Soil, 1997, 188: 119~130
    [174] J.Petersen. Recovery of ~(15)N-ammonium-~(15)N-nitrate in spring wheat as affected by placement geometry of the fertilizer band. Nutrient Cycling in Agroecosystems, 2001, 61: 215~221
    [175] Jenkinson D.S. and Ladd J.N. Microbial biomass in soil. Measurement and turnover[A]. In: Ed. E.A. Paul and J.N. Ladd. Soil Biochemistry[C]. Marcel Dekker, New York, 1981, 415~471
    [176] Jorge A. Delgado, Ronald R. Riggenbach, Richard T. Spards et al. Evaluation of nitrate-nitrogen transport in a potato-barley rotation. Soil Sci. Soc. Am. J. 2001. 65: 878~883
    [177] Kirchner M.J., Wollum A.G., King L.D.Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Science Society of America Journal, 1993, 57: 1289~1295.
    [178] L.E.Jackson, Fates and losses of nitrogen from a nitrogen-15-labeled cover crop in an intensively managed vegetable system. Soil Sci. Soc. Am. J, 2000, 64: 1404~1412
    [179] Larry C. Brown, Jay W. Johnson, Nitrogen and the Hydrologic Cycle. AEX-463-96, http//ohioline.osu.edu/aex-fact/o463.html
    [180] Larry C. Brown; Jay W. Johnson, http://ohioline.osu.edu/aex-fact/0463.html
    [181] Likens G E, Bormann R H, Piece R S et al, 1977, Biogeochemistry of a forested ecosystem, Berlin and New York: Spinger-verlay.
    [182] Lillie A, Niels E N. A new cultivation method for the production of vegetables with low content of nitrate. Scientia Horticulturae, 1992, 49: 167~17 l
    [183] Line D E, Richard A. Mclacghlin Nonpoint Source. Water Environment research, 1997, 69(4); 1998, 70(4).
    [184] M.G. Wagger, M.L. Cabrera and N.N.Ranells. Nitrogen and carbon cycling in relation to cover crop residue quality, Journal of Soil and Water Conservation, 1998, 53(3): 214~218
    [185] M.M.Panda, P.Mahapatra and S.K.Mohanty, Effect of depth of application of ~(15)N tagged rrea on its utilization efficiency by irrigated rice. Journal of the Indian Society of Soil Science, 1996
    [186] M.M.Panda, P.Mahapatra and S.K.Mohanty. Effect of depth of application of 15N tagged rrea on its utilization efficiency by irrigated rice. Journal of the Indian Society of Soil Science, 1996, 44 (2): 333~335
    [187] M.Malik, C.Amrhein, J.Letey. Polyacrylamide to improve water flow and salt removal in a high shrink-swell soil;
    [188] M.Nyborg, S.S.Malhi, G.Mumey et al. Economics of nitrogen fertilization of Barly and Rapeseed as influenced by nitrate-nitrogen level in soil. Commun. Soil Sci. Plant Anal., 1999, 30(5&6): 589~598.
    [189] Maag M, Vinther FP. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperature. Appl Soil Ecol, 1996, 4: 5~14
    [190] Malhi SS, Mcgill WB. Nitrification in three Alberta soils: effect of temperature, moisture and substrate concentration. Soil Biol Biochem, 1982, 14: 393~399
    [191] Mark Shepherd and Anne Bhogal. Regular application of poultry litter to a sandy arable soil: effects on nitrate leaching and nitrogen balance. J Sci Food Agric, 1998, 78, 19~29.
    [192] McCraclem, D.V., M.S.Smith, J.H.Grove et al. Nitrate leaching as influenced by cover cropping and nitrogen source. Soil Sci. Soc. Am. J., 1994, 58: 1476~1483
    [193] Mckenna P. Report on the Commission Report on the implementation of Council Directive91/676/EEC. Committee on the Environment, Public Health and Cosumer Protection(A40284/98), EC, Brussels, 1998
    [194] Miburn P., J.E. Richards, C.Gartley et al. Nitrate leaching from systematically tiled potato fields in New Brunswick. Can. J. Environ. Qual., 1990, 19: 448~454
    [195] Mompo C., Armentia J.A. La agricultrua y la contaminacion de las agues pot nitrato. Ministerio de Agricultura, Pescas y Alimentacion, Madrid. 1992
    [196] Mosier A R et al. Field denitrification estimation by nitrogen-15 and acetylene inhibition lechnigues. Soil Sci Soc Am J, 1986, 50: 831~833
    [197] Mozafar A. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method. Plant Foods Hum Nutr., 1996, 49(2): 155-62
    [198] Munnt, Whyte A, Timmeran P. 潜在环境问题:SCOPE对全球的展望.AMBIO,1999,28(6):128~135
    [199] Neeteson J.J. Greenwlld, D.J., and Draycott, A. A dynamic model to predict yield and optimum nitrogen fertilizer rate for potatoes. Prec. Fert. Soc. 1987, 262
    [200] Neisen G.H. et al. Agriculture and water quality in the Canadian Great Lakes Basin: Ⅳ. Nitrogen, J. Environ. Qual., 1982, 11, 3
    [201] Nuttal W.F., H.G. Zandstra and K.E. Bowren. Exchangeable ammonium and nitrate-nitrogen relate to yield of Conquest barly grown as second or third crop after fallow in northeastern Saskatchewan. Can. J. Soil Sci., 1971, 51: 371~377.
    [202] Oenema O. Nitrogen and phosphorus losses from agriculture into surface waters: the effects on policies and measures in the Netherlands. Water Sci. Tech., 1998, 37(2): 19~30
    [203] Olsen R.v. Disposal of feedlot-lagoon water by irrigating bromegrass: Ⅱ. Soil accumulation and leaching of nitrogen. J. Environ. Qual., 1982, 11, 400~405
    [204] Peacock A.D., Mullen M.D.and Ringellberg D.B. et al. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biochemistry, 2001, 33: 1011~1019
    [205] Phkllip M. Chalk. Estimation of N_2 fixation by ~(15)N isotope dilution-the A-value approach. Soil Biol. Biochem., 1996, 28(9): 1123~1130
    [206] Power J E, Schepers J S. Nitrate contamination of ground-water in north America. Agriculture. Ecosystems and Environment, 1989, 26: 165~187.
    [207] Powlson D S, Brooks P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Binchem, 1987, 19: 159~164
    [208] Rafiqa Ameziane, Celine Richard-Molard et al. Nitrate(~(15)NO_3~-) limitation affects nitrogen partitioning between metabolic and storage sinks and nitrogen reserve accumulation in chicory(Abatrabc. BKeywcL.). Planta, 1997, 202: 303~312.
    [209] Ritz K., Wheatley R.E., Griffiths B.S. Effects of annmal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biology and Fertility of Soils, 1997, 24: 372~377.
    [210] Russell, E.J. The nature and amount of the Fluctuation in nitrate contents of arable soils. J.Agr. Sci.(Camb.) 1914, 6: 18~57.
    [211] Ryden J C and Lund L J. nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units. Soil Sci. Soc. Am. J., 1980, 44: 505~511.
    [212] Santamaria P, Elia A, Parente A et al. Fertilizer strategies for lowering nitrate accumulation in leafy vegetables: Chicory and rocket salad cases. Journal of Plant Nutrition., 1998, 21 (9): 1791~1803
    [213] Schenk M, Heins B and Steingrobe B. The significance of root development of spinach and kohlrabi for N fertilizer. Plant and Soil, 1991, 135: 197~203
    [214] Shrestha R K, LADHA J K. Nitrate in groundwater andintegration of nitrogen-catch crop in rice-sweet pepper croppingsystem. Soil Science Society of America Journal, 1998, 62(6): 1610-1619.
    [215] Sims, J.T. and D. John. Nitrogen transformations in a poultry manure amended soil: Temperature and moisture effects. Journal of Environmental Quality, 1986, 15: 59~63
    [216] Smit, A.L. and Van der werf, A. Physiology of nitrogen uptake and use: characteristics of crops and rooting patterns(in Dutch). Stikstofstromen in agro-ecosystemen(H.G. Van der Meer and J.H.J.Spiertz., eds.). Agrobiologische Thema's 6, DKO-Centre for Agrobiological Research, Wageningen, 1992, 51~69
    [217] Soper R.J., G.J. Racz and P.I. Fehr. Nitrate nitrogen in the soil as a means of predicting the fertilizer nitrogen requirements of barley. Can. J. Soil Sci. 1971, 51: 45~49
    [218] Sparling G P. Soil microbial biomass, active and nutrient cycling as indicators of soil health(A). In: Poankhurst C E. Doube B M. Gupta V V S R et al. Biological indicators of Soil Health(C). cab international, 1997, 97~119
    [219] STAUFFER W, SPIESS E. Influence of different crop rotations on nitrate leaching. Agrarforschung, 2001, 8(2): 324~329
    [220] STITES W, KRAFT G J. Groundwater quality beneath irrigated vegetable fields in a north-central US sand plain. Journal of Environmental Quality, 2000, 29(5): 1509-1517.
    [221] T.J.Clough, S.F.Ledgard, M.S.Sprosen and M.J.Kear. Fate of ~(15)N labelled urine on four soil types. Plant and Soil, 1998, 199: 195~203
    [222] T. K. Iragavarapu, J. L. Posner, G. D. Bubenzer. 自然降雨条件下的不同作物对溴化物淋溶的影响,水上保持科技情报,1999,(2):11~15
    [223] T.Mahood, K.A.Malik, S.R.A.Shamsj et al. Denitrification and total N losses from an irrigated sandy-clay loam under maize-wheat cropping system. Plant and Soil, 1998, 199: 239~250.
    [224] Tong ST, Chen W. Modeling the relationship between land use and surface water quality. J Environ Manage, 2002, 66(4): 377-93
    [225] Turco R F, Kennedy A C, Jawson M D. Microbial indicators ofsokl quality(A). In: Doran J W, et al. Defining Soil Quality for a Sustainable Environment(C), Madison, wisonsin, USA. 1994: 73~90
    [226] van Bruggen, A.H.C., Semenov, A.M. In search of biological indicators for soil health and disease suppression. Soil Ecol, 2000, 15, 13~24
    [227] Van Cleemput and Samater, Nitrate in soils: accumulation and role in the formation of gaseous N compounds. Fert. Res., 1996, 45: 81~89
    [228] Van der Paauw, F. Voraussage des dungerbedarfs und des ertrags auf grund von witterung und bodenfruchtbarkeit. Landw. Forsch., 1966, 20: 97~105
    [229] VAN ES H M, CZYMMEK K J, KETTERINGS Q M. Management effects on nitrogen leaching and guidelines for a nitrogen leaching index in New York. Journal of soil and Water Conservation, 2002, 57(4): 499-54
    [230] Waddel J T, Guptas C, Moncrief J F, et al. Irrigation- and nitrogen-management impacts on nitrate leaching under potato. Journal of Environmental Quality, 2000, 29(1): 251-261
    [231] Walker D.R. Effects of nitrogen on the protein content of barley. Can. J. Plant Sci. 1975, 55: 873~879.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700