Ti6Al7Nb和Ti6Al4V医用钛合金的热氧化对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对Ti6Al7Nb(TAN)和Ti6Al4V(TAV)两种钛合金的热氧化行为进行系统性的研究,通过不同的热氧化条件,对比两种钛合金在空气气氛下表面氧化层的生长规律和性质。采用金相显微镜、X射线衍射法以及维氏硬度计等测试和分析手段对合金的氧化层的厚度、致密度、相组成和表面硬化效果进行表征。利用XPS表面测试方法对合金氧化层最外层(1~5nm)的化学组分和合金元素的价态进行分析,探讨氧化层的形成机理及合金添加元素对氧化层的重要影响。
     研究表明,热氧化的温度和时间对氧化层的厚度和致密度有重要影响。通常随温度的升高和时间的延长,氧化层的厚度增加但致密度下降。从氧化增重曲线可知,相同条件Ti6Al7Nb表面形成的氧化层更薄,致密度更好,与基体的结合力更强。在800℃及以下温度氧化时,Ti6Al7Nb遵循抛物线氧化动力学规律,而Ti6Al4V在700℃氧化超过36h时其表面氧化速率由直线氧化动力学规律主导。
     表面硬度测试表明,表面硬度值随加载载荷增加而下降,氧化层对合金有明显的硬化效应,硬化效果随着氧化温度的升高和氧化时间的延长而明显增强。Ti6Al4V表面硬化效果略强于Ti6Al7Nb,但是900℃氧化时,Ti6Al4V合金的表面硬度反而有所下降,二者的表面硬度最大值都是在600℃氧化72h时获得。
     通过XRD对1h氧化的合金氧化层的相组成进行分析,发现两种合金的表面氧化层主要是由金红石型TiO_2组成,不同的是Ti6Al4V合金在600℃氧化时表面出现了锐钛矿型TiO_2,而在900℃氧化时则出现了Al_2O_3相。两种合金在800℃氧化24h时,Al_2O_3均出现在氧化层中,随着氧化温度的提高和氧化时间的延长,两种合金的氧化层都由金红石型TiO_2和Al_2O_3两相组成。
     XPS对外层氧化层(1~5nm)分析表明,Ti、Al、Nb均是以最高价态存在,V除了最高价态外还有4价V(稳态)出现。另外Al元素由于拥有最低的氧化还原电势,具有优先氧化性,并主要覆盖在氧化层的最外层。Nb元素有降低氧化层中金属离子扩散速率的作用,其本身并不能改变氧化机制,但可以使氧化层更具保护性;V元素在高温时氧化严重,并形成低熔点氧化物,在温度较高时会发生恶性氧化,极大地降低了Ti6Al4V合金在高于700℃时氧化层的抗氧化能力。
This paper studied comparatively the oxide films on Ti6Al7Nb and Ti6Al4V alloys by thermal oxidation.The surface characterization and oxidation kinetics of the alloys were evaluated at different oxidation temperature and time.The thickness, density,phases and surface hardening were characterized with the testing methods such as optical microscopy(OM),XRD and Vickers hardness tester.Using XPS, composition and chemical state of the surface oxide film were investigated.The mechanism of the formation of the surface oxide films and the effect of the adding elements were discussed.
     The results show that the thickness of oxide films on both alloys increases with temperature and time,while the density of the oxide films decrease.The weight gain curve and cross-sectional OM micrographs reveal that the oxide film on the surface of Ti6Al7Nb is thinner and denser than that on Ti6Al4V alloy and has stronger adhesion with substrate.Thermal oxidation behaviour of Ti6Al7Nb alloy obey parabolic and linear oxidation kinetics at 600~800℃and above 900℃,respectively.At 700℃parabolic oxidation is dominant up to 36h of oxidation,and prolonged oxidation yielded linear oxidation kinetics for themal oxidation behaviour of Ti6Al4V.
     Vickers hardness tester's results reveal that the surface hardness values of both alloys decrease with increasing indenter loads,which is the typical behaviour of surface hardneing.The surface hardness increases with oxidation temperature or time, while the surface hardness of Ti6Al4V alloy decrease at 900℃.At same oxidation temperature and time,the surface hardness value of Ti6Al4V alloy is slightly larger than that of Ti6Al7Nb alloy.The Maximum surface hardness values of both alloys are obtained at 600℃for 72h.
     XRD results reveal that,after oxidation of 1h at temperature ranging from 600℃to 900℃,surfaces of both Ti6Al7Nb and Ti6Al4V are mainly covered by rutile TiO_2 (R-TiO_2).The difference is that peaks of anatase TiO_2(A-TiO_2) and Al_2O_3 are detected in the oxide film of the Ti6Al4V at 600℃and 900℃,respectively.When the oxidation temperature is above 800℃and oxidation time is longer than 24h, surfaces of all specimens are covered by R-TiO_2 and Al_2O_3 together.
     XPS analysis confirmed that the surface oxide film only contain cations with the highest or most stable valences.The preferential oxidation of Al is due to its the minimum standard redox potential in all adding element.In the process of thermal oxidation,the outer most sections of the surface oxide film of both Ti6Al7Nb and Ti6Al4V are allways Al_2O_3.Nb dose not change fundamentally the corrosion mechanism itself,however,it plays,at least,a role on a mechanism active during the initial stages of corrosion,rendering the oxide film more protective.Above 700℃,severe oxidation of V causes a loss of corrosion resisitance of Ti6Al4V alloy.
引文
[1]李世普著.生物医用材料导论[M].武汉工业大学出版社.2000.
    [2]俞耀庭,张兴栋主编.生物医用材料[M].天津大学出版社2002.
    [3]Graves E.Vital and health statistics,detailed diagnoses and procedures,national hospital discharge survey,1993.Hyattsville,M D:National Center for Health Statistics,1995.
    [4]奚廷斐.生物材料进展(一)[J].生物医学工程与临床.2004,8(3):184-189.
    [5]郑玉峰,李莉著.生物医用材料学[M].哈尔滨工业大学出版社2006.
    [6]阮建明,邹俭鹏,黄伯云.生物材料学[M].科学出版社,2004.
    [7]刘江.医用金属材料的研制与应用.金属功能材料[J].2007,14(6):38-42.
    [8]贡长生,张克立主编.新型功能材料.北京化学工业出版社[M].2001.
    [9]刘兰云.生物医用金属材料的研究进展[J].浙江工贸职业技术学院学报.2008,8(1):47-50.
    [10]顾其胜,侯春林,徐政著.实用生物医用材料学[M].上海科学技术出版社.2005.
    [11]宁聪琴,周玉.医用钛合金的发展及研究现状[J].材料科学与工艺.2002,10(1):100-105.
    [12]尹振兴,罗兵辉.提高Ti6Al4V耐磨性的热氧化工艺[J].中南大学学报(自然科学版)2004;35(2):186-190.
    [13]刘勇,杨德庄,何世禹等.Ti6Al4V合金表面的热氧化/真空扩散处理[J].中国有色金属学报2003;13(1):177-180.
    [14]张春艳,伍光凤,田中青.TC4合金热氧化行为的研究[J].材料热处理2007;36(16):36-38.
    [15]张春艳,李春天,张津.热氧化处理对钛合金表面耐磨性能影响的研究[J].表面技术2008;37(6):18-23.
    [16]Hasan G(u|¨)lery(u|¨)z,H(u|¨)seyin Cimenoglu.Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy[J].Biomaterials 2004;25:3325-3333.
    [17]莱茵斯.C,皮特尔斯,M著.钛与钛合金[M].化学工业出版社.2005.
    [18]王桂生主编.钛的应用技术[M].中南大学出版社.2007.
    [19]H L DU,P K DATTA,J S BURNELL-GRAY.Effect of Nb coating on the sulphidation/oxidation behaviour of Ti and Ti-6Al-4V alloy[J].JOURNAL OF MATERIALS SCIENCE 1995;30:2640-2647.
    [20]Amit Biswas,Jyotsna Dutta Majumdar.Surface characterization and mechanical property evaluation of thermally oxidized Ti-6Al-4V[J].Mater Charact 2009.
    [21]M.M.Yazdanian,A.Edrisy,A.T.Alpas.Vacuum sliding behaviour of thermally oxidized Ti6Al4V alloy[J].Surface & Coatings Technology.2007,202:1182-1188.
    [22]Liling Yan,Yang Leng,Jiyong Chen.Torsional fatigue resisitance og plasma sprayed HA coating on Ti6Al4V[J].Journal of materials science:materials in medicine.2003,14:291-295.
    [23]马欣新,王晓荣.离子渗氮时Ti6Al4V表面粗糙度的影响[J].材料科学与工艺.1997,5(4):82-84.
    [24]王天民,张绪寿,史迹等.离子注入对Ti6Al4V合金微动磨损行为的影响[J].核技术.1992,15(8):449-456.
    [25]D.A.P.Reis,C.Moura Neto,C.R.M.Silva,M.J.R.Barboza,F.Piorino Neto.ffect of coating on the creep behavior of the Ti—6Al—4V alloy[J].Materials Science and Engineering A.2008,486:421-426.
    [26]N.Tsuji,S.Tanaka,T.Takasugi.Evaluation of surface-modified Ti—6Al—4V alloy by combination of plasma-carburizing and deep-rolling[J].Materials Science and Engineering A.2008,488:139-145.
    [27]S.Zherebtsov,A.Mazurb,G.Salishchev,W.Lojkowski.Effect of hydrostatic extrusion at 600-700℃ on the structure and properties of Ti—6Al—4V alloy[J].Materials Science and Engineering A.2008,485:39-45.
    [28]张喜燕.钛合金及应用[]M].化学工业出版社.2005.
    [29]于振涛,周廉.生物医用型β型钛合金的设计与开发[J].稀有金属快报,2004,(1):5-10.
    [30]左景辉,王中光,韩恩厚.Ti6AI4V合金的超高周疲劳行为[J].金属学报.2007,43(7):705-709.
    [31]柏振海,罗兵辉,谭敦强,赵国超.Ti.6AI.4V合金的时效组织与硬度研究[J].有色金属加工.2003,32(1):17-20.
    [32]何利舰,张小农,童承达.固态渗碳化硼对Ti6Al4V显微组织和性能的影响[J].机械工程材料.2006,30(1):36-39.
    [33]冯芝华,王红红,谢成木,闫渊林.热工艺对ZT4(Ti26Al24V)钛合金铸件残余应力的影响[J].航空材料学报.2005,25(3):25-27.
    [34]刘勇,朱号川,尹钟大.魏氏组织Ti6Al4V合金应力松弛行为及机理[J].稀有金属材料与工程.2005,34(11):1766-1769.
    [35]L.Thair,U.Kamachi Mudali,S.Rajagopalan,R.Asokamani,Baldev Raj.Surface characterization of passive film formed on nitrogen ion implanted Ti6Al4V and Ti6Al7Nb alloys using SIMS[J].Corrosion Science.2003,45: 1951-1967.
    [36]S.RHAIPU.The Effect of Rapid Heat Treatment on the High-Temperature Tensile Behavior of Superplastic Ti-6A1-4V[J].METALLURGICAL AND MATERIALS TRANSACTIONS A.2002,33:83-92.
    [37]M.A.Khan,R.L.Williams,D.F.Williams.The corrosion behaviour of Ti6A14V,Ti6A17Nb and Ti13Nb 13Zr in protein solutions[J].Biomaterials.1999,20:631-637.
    [38]A.L'opez-Su'arez,J.Rickards,R.Trejo-Luna.Mechanical and microstructural changes of Ti and Ti-6A1-4Valloy induced by the absorption and desorption of hydrogen[J].Journal of Alloys and Compounds.2008,457:216-220.
    [39]李凯,刘彦普,杨涛,闫志伟,李璇.评价Ti6A17Nb合金的细胞相容性及其组织相容性[J].中国组织工程研究与临床康复.2007,11(13):2406-2410.
    [40]李凯,周伟群,李军,刘丹,李璇.牙科用Ti26A127Nb合金的体外细胞毒性研究[J].第四军医大学学报.2007,28(10):913-915.
    [41]牛中杰,曹继敏,杨冠军,王廷询.Ti6A17Nb钛合金热加工与热处理工艺研究[J].钛工业进展.2006,23(1):24-27.
    [42]I.Milosev,T.Kosec,H.-H.Strehblow.XPS and EIS study of the passive film formed on orthopaedicTi-6A1-7Nb alloy in Hank's physiological solution[J].Electrochimica Acta.2008,53:3547-3558.
    [43]S SPRIANO,M BRONZONI,E VERNE,G MAINA,V BERGO,M WINDLER.Characterization of surface modified Ti-6A1-7Nb alloy[J].JOURNAL OF MATERIALS SCIENCE:MATERIALS IN MEDICINE.2005,16:301-312.
    [44].S Tamilselvi,V Raman,N Rajendran.Corrosion behaviour of Ti-6A1-7Nb and Ti-6AI-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy[J].Electrochimica Acta.2006,52:839-846.
    [45]王桂生,许国栋,魏寿庸等.外科植入物用TC20(Ti6A17Nb)钛合金研究与应用[J].金属学报.2002,38:581-583.
    [46]蔡继峰,贺志荣,刘艳,李春月.TiNi基形状记忆合金及其应用研究进展[J].金属热处理.2006,34(5):64-69.
    [47]郝维昌,董平,苏向东,王天民.NiTi合金生物医用材料表面改性的研究进展[J].材料导报.2009,23(4):90-105.
    [48]张松,张春华,张卓,韩忠,王强,张扬.NiTi形状记忆合金在蒸馏水介质中的微动磨损特性[J].稀有金属材料与工程.2008,37(10).
    [49]蔡继峰,贺志荣,付蕾,刘艳.Ti-49.8Ni形状记忆合金的氧化、相交和形变特性[J].金属热处理.2009,34(6):63-66.
    [50]韩明臣摘译.TiNi形状记忆合金的生物相容性评价[J].稀有金属快报.27(6):45.
    [51]宋晓飞.林月秋.镍钛形状记忆合金在骨科的研究与应用[J].西南国防医药.2009,19(3):353-354.
    [52]崔忠波,陈民芳.医用NiTi合金表面改性的研究进展[J].材料导报.2007,21(5):79-81.
    [53]W Cai,XL Meng,LC Zhao.Recent development of TiNi-based shape memory alloys[J].Current Opinion in Solid State and Materials Science.2005,9:296-302.
    [54]程晓敏,梅丽君,吴兴文,周小芳.热处理工艺对FeMnSiCrNi合金形状记忆效应的影响[J].金属热处理.2009,34(2):56-58.
    [55]董允,林晓娉,丁坤英,李海鹏,梁春勇.FeMnSi形状记忆合金马氏体相变宏观形状应变特征[J].材料热处理学报.2007,28(6):27-32.
    [56]马丽,朱志永,李敏,于世丹,崔启良,周强,陈京兰,吴光恒.铁磁形状记忆合金Mn2NiGa中应力诱发马氏体相的结构和磁性[J].物理学报.2009,58(5):3479-3484.
    [57]S K Wu,H C Lin,SH Chen.Phenomenological analysis of martensitic transformation in cold-rolled TiNi-base shape memory alloys[J].Materials Chemistry and Physics.2001,68:149-156.
    [58]HC Lin,KM Lin,YC Chen.A study on the machining characteristics of TiNi shape memory alloys[J].Journal of Materials Processing Technology.2000,105:327-332.
    [59]Fushun Liu,Yang Li,Yan Li,Huibin Xu.A study on TiNi(Fe,Mo) shape memory alloy[J].Materials Science and Engineering A.2006,438-440:896-899.
    [60]ZG Wang,XT Zua,YQ Fu,LM Wang.Temperature memory effect in TiNi-based shape memory alloys[J].Thermochimica Acta.2005,428:199-205.
    [61]HC Lin,SK Wu,CH Yeh.A comparison of slurry erosion characteristics of TiNi shape memory alloys and SUS304 stainless steel[J].Wear.2001,249:557-565.
    [62]CH Xu,XQ Ma,SQ Shi,C H Woo.Oxidation behavior of TiNi shape memory alloy at 450-750℃[J].Materials Science and Engineering A.2004,371:45-50.
    [63]P Filip,J Lausmaa,J Musialek,K Mazanec.Structure and surface of TiNi human implants[J].Biomaterials.2001,22:2131-2138.
    [64]C Zhang,ZN Farhat.Sliding wear of superelastic TiNi alloy[J].Wear.2009,267:394-400.
    [65]YB Wang,YF Zheng.Corrosion behaviour and biocompatibility evaluation of low modulus Ti-16Nb shape memory alloy as potential biomaterial[J].Materials letters.2009,63:1293-1295.
    [66]刘福,徐吉林,王福平,赵连城,孙德智.医用NiTi合金的表面改性研究进展[J].稀有金属材料与工程.2008,37(4):748-752.
    [67]席艳君,王志新,卢金斌.TiAl基合金的高温氧化及其保护[J].材料导报.2006,50(5):82-84.
    [68]王兴军,常海威,雷鸣凯.Nb合金化7-TiAI的氧化热力学理论分析[J].金属学报.2001,37(8):810-814.
    [69]李美拴,周延春.Al_2O_3形成合金过渡态氧化行为[J].腐蚀科学与防护技术.2005,17(6):409-412.
    [70]Wei Lu,Chunlin Chen,Yanjun Xi,Fuhui Wang,Lianlong He.The oxidation behavior of Ti-46.5A1-5Nb at 900℃[J].Intermetallics.2007,15:989-998.
    [71]Guleryuz H,Cimenoglu H.Oxidation of Ti-6AI-4V alloy[J].J.Alloys compd,2009,47(2):241-246.
    [72]Du H L,Datta K,Lewis D Bet al.High-Temperature Corrosion of Ti and Ti-6AI-4V[J].Oxidation of Metals,1996,45:507-527.
    [73]李铁藩编著.金属高温氧化和热腐蚀[M].化学工业出版社.2003.
    [74]W Yan,XX Wang.Surface harding of titanium by thermal oxidation[J].Journal of materials science.2004.39:5583-5585.
    [75]Tanaka Y,Nakai M,Akahori T et al.Corrosion Science[J],2008,50:2111-2116
    [76]Grabke HJ.Oxidation of NiAl and FeAI[J].Intermetallics,1999,7:1153.
    [77]Tanaka Y,Nakai M,Akahori T et al.Corrosion Science[J],2008,50:2111-2116
    [78]Milo(s|¨)ev I,Kosec T,Strehblow H-H.XPS and EIS study of the passive film formed on orthopaedic Ti-6A1-7Nb alloy in Hank's physiological solution[J].Electrochimiea Acta,2008,53:3547-3558.
    [79]Xiao-Xiang Wang,Wei Yan,Satoshi Hayakawa,et al.Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid[J].Biomaterials,2003,24:4631-4637.
    [80]C-O A Olsson,D Landolt.Atmospheric oxidation of a Nb-Zr alloy studied with XPS[J].Corrosion Science 2004,46:213-224.
    [81]Atashbar M Z,Sun H T,Gong B et al.Thin Solid Films[J],1998,326:238-244.
    [82]Alov N,Kutsko D,Spirovova I Iet al.Surface Science[J],2006,600:1628-1631.
    [83]Mendialdua J,Casanova R,Barbaux Y.Journal of Electron Spectroscopy and Related Phenomena[J],1995,71:249-261.
    [84]Demeter M,Neumann M,Reichelt W,Surface Science[J],2000,454-456:41-44.
    [85]Moulder JF,Stickle WF,Sobol PE et al.Handbook of X-Ray Photoelectron Spectroscopy.
    [86]Stroosnijder MF,Zheng N,Quadakkers et al.Oxidation of Metals[J],1996,46:19-35].
    [87]Lide D R(Ed),CRC Handbook of Chemistry and Physics[M].Booca Raton Florida:CRC Press,1999:8-30.
    [88]Dean JA.(Ed).Lange's handbook of chemistry[M].Beijing:World Pub.Corp,1999:6-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700