碳纳米管及掺氮碳纳米管液相催化氧化苯甲醇和乙苯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有比表面积高、环境兼容、抗酸碱、易回收活性组分贵金属、在非氧条件下热稳定性高和易对其进行表面改性和功能化等优点,是一种优异的催化新材料,在催化领域日益受到重视,被广泛用作催化剂载体和非金属催化剂。目前,碳纳米管及掺氮碳纳米管作为非金属催化剂在气相氧化脱氢和氧还原等方面的研究较为系统和成熟,然而,在液相选择性催化氧化方面的研究不够深入。因此,拓宽碳纳米管及掺氮碳纳米管在液相选择性催化氧化方面的应用,特别是探索其在不同液相反应体系中的反应机理是一个非常有科学意义与重要应用价值的研究课题。本论文创新性的探索碳纳米管及掺氮碳纳米管在含有自由基或不含自由基的液相选择性氧化反应中的催化性能,发展在温和条件下利用碳纳米管及掺氮碳纳米管在分子氧(氧气)条件下,催化氧化苯甲醇(非自由基反应)和乙苯(自由基反应)制备高附加值化学产品苯甲醛和苯乙酮的绿色催化新方法;针对碳纳米管新材料在液相催化氧化过程中的应用,研究其表面基团、表面结构对液相催化氧化苯甲醇和乙苯的作用规律,提出合理的反应机理,为推动碳材料在液相选择性氧化反应中的应用提供重要理论依据。主要内容如下:
     (1)采用化学气相沉积法成功制备了碳纳米管和掺氮碳纳米管并对它们进行了系统表征。结果表明:采用液化气为碳源制备的碳纳米管平均外径和内径分别为20.8nm和6.6nm,而采用二甲苯为碳源制备的碳纳米管平均外径和内径分别为33.5nm和7.7nm。采用二甲苯为碳源、苯胺为氮源制备的掺氮碳纳米管外径和内径分别为29-40nm和10-14nm。掺氮碳纳米管的总掺氮含量随前驱物苯胺量的增加而增加,总掺氮含量在0.3at.%-3.11at.%之间,其中吡啶氮含量和季氮含量随前驱物苯胺量的增加而增加,而吡咯氮含量却随前驱物苯胺量的增加呈先增后减的趋势。向碳纳米管晶格中掺入氮原子并没有破坏其石墨化结构,但增加了其表面缺陷度,且缺陷度随总掺氮含量的增加而增大。掺氮碳纳米管与碳纳米管相比热稳定性稍有下降,但在500oC以下无明显失重,热稳定性好。
     (2)研究了碳纳米管催化分子氧液相氧化乙苯生成苯乙酮的反应条件、结构与性能关系以及可能的反应机理。结果表明:(a)在155oC、催化剂与乙苯物质的量的比为0.2和1.5MPa O2条件下反应4h后,碳纳米管能获得38.2%乙苯转化率和60.9%苯乙酮选择性。(b)碳纳米管催化分子氧氧化乙苯反应是一个自由基反应,苯乙基过氧化氢的分解在反应中自由基链的传递和产物苯乙酮的生成起着非常重要的作用,而碳纳米管中石墨片的大π电子转移能力在苯乙基过氧化氢的分解反应过程中可能起着关键的作用。(c)碳纳米管残留的金属Fe杂质不是乙苯氧化反应的活性中心。(d)碳纳米管表面缺陷和羧基对其催化分子氧氧化乙苯反应有不利的影响,且碳纳米管的催化活性随其表面羧基量的增加而迅速降低。这是因为向碳纳米管表面引入羧基后,由于氧原子电负性大于碳原子,表现出吸电子性质,造成局部的π电子不能很好的在石墨片层中离域,从而不利于含有羧基的碳纳米管的大π电子与苯乙基过氧化氢中间体发生π-π共轭作用,故催化活性降低。(e)碳纳米管作为催化剂在选择性催化分子氧氧化乙苯制备苯乙酮反应中表现出较高的稳定性,在连续重复5次后,能获得36.3%乙苯转化率和60.6%苯乙酮选择性,是一种很有应用前景的新型催化剂。(f)向碳纳米管掺杂非金属氮原子对其催化分子氧氧化乙苯反应有不利的影响,这是因为向碳纳米管晶格中掺入非金属的氮原子,增加了其表面缺陷,可能降低了掺氮碳纳米管的导电性和电子流动性,在一定程度上抑制了电子转移能力,不利于碳纳米管的石墨片层和自由基及过氧化物之间的π-π共轭作用,故催化活性降低。
     (3)研究了碳纳米管和掺氮碳纳米管在催化分子氧氧化苯甲醇反应中的催化性能与作用机制。结果表明:(a)不论碳纳米管,还是掺氮碳纳米管单独作为催化剂,在常压90oC反应5h后都只能获得低于10%的苯甲醇转化率,活性较低;添加硝酸助剂后,相同条件下碳纳米管能获得96.2%的苯甲醇转化率和88.3%的苯甲醛选择性。但是,在没有碳纳米管的存在下,硝酸本身作为化学计量氧化剂不能高效的催化氧化苯甲醇,只能获得31.4%的苯甲醇转化率和75.3%的苯甲醛选择性。(b)碳纳米管催化分子氧氧化苯甲醇反应是一个非自由基反应,亚硝酸苄酯是硝酸助碳纳米管催化分子氧氧化苯甲醇反应的重要中间体,分子氧是消耗的氧化剂,而硝酸只是引发催化循环的一个引发剂。(c)碳纳米管残留的金属杂质不是苯甲醇氧化反应的活性中心,而碳纳米管中石墨片的大π电子转移能力在反应中起着非常重要的作用。(d)碳纳米管表面缺陷和含氧基团对苯甲醇转化率的影响较小。(e)向碳纳米管晶格中掺入适量的氮原子,能提高其催化活性,但一旦掺入过量的氮原子,反而降低其催化活性。当向碳纳米管晶格中掺入1.02at.%氮原子时,能获得最高的催化活性,即在常压90oC反应3h后能获得78.5%的苯甲醛产率;而未掺氮的碳纳米管在同样条件下只能获得68.2%的苯甲醛产率,这是因为向碳纳米管晶格中掺入适量的带有孤对电子的氮原子在一定程度上能增强碳纳米管中石墨片的大π电子转移能力,进而增强其与反应中间体亚硝酸苄酯的π-π共轭作用,有利于中间体亚硝酸苄酯的分解,从而增强其催化活性。(f)碳纳米管及掺氮碳纳米管作为催化剂在选择性催化分子氧液相氧化苯甲醇制备苯甲醛反应中均表现出较高的稳定性,是一类很有应用前景的新型催化剂。
Carbon nanotubes (CNTs) as catalyst supports and metal-free catalysts have attractedmuch attentions, owing to their unique physicochemical properties such as high specifcsurface areas, environmental acceptability, corrosion resistance, easy recovery of preciousmetals by support burning, thermal stability under nonoxidative condition and readily surfacemodifcation. At present, most of the studies on CNTs and nitrogen-doped carbon nanotubes(NCNTs) as metal-free catalysts have focused on the oxygen reduction reaction and gas phaseoxidative dehydrogenation reaction. However, it is rarely reported on selective liquid phaseoxidation reaction. In order to enlarge their application, the research on reaction mechanismof different liquid phase oxidation reactions is of great scientific and practical significance. Inthis thesis, the free radical or not free radical oxidation reactions catalyzed by CNTs andNCNTs were investigated, that is, selective liquid phase oxidation of benzyl alcohol orethylbenzene (EB) catalyzed by CNTs and NCNTs to prepare highly valuable chemicalproducts benzaldehyde or acetophenone (AcPO), respectively, under the mild reactionconditions. This study can reduce traditional catalysis dependency on precious and transitionmetals and reduce environment impact from great quantities of waste. Moreover, the effectsof surface oxygen functional groups and surface structure of carbon materials on the catalyticactivity of selective liquid phase oxidation of benzyl alcohol or EB were investigated andplausible catalytic mechanisms of the benzyl alcohol or EB aerobic oxidation were proposed.These results can provide important theoretical basis for promoting carbon materials’application in selective liquid phase oxidation reactions. The main contents are described asfollows:
     (1) CNTs and NCNTs were successfully prepared by the chemical vapor deposition(CVD) method. The results are showed as follows:(a) The CNTs were prepared by CVD withliquefied petroleum gas as carbon source over a Fe-Mo/Al2O3catalyst in a horizontal tubularquartz furnace with4cm inner diameter (i.d.) and their average outer and inner diameter are20.8and6.6nm, respectively. The CNTs were prepared by the same CVD with xylene ascarbon source and their average outer and inner diameter are33.5and7.7nm, respectively.(b)NCNTs were synthesized by the same CVD with xylene as carbon source and aniline asnitrogen source and their outer and inner diameter are29-40and10-14nm, respectively. Thecontents of total nitrogen increase from0.3to3.11at.%with increasing aniline amount inprecursors. The contents of pyridinc nitrogen and quaternary nitrogen increase with increasinganiline amount in precursors, while the pyrrolic nitrogen content reaches its maximum at the aniline amount of50%in precursors and decreases with further increasing aniline amount.The graphitized structure of CNTs is unchanged obviously, while ID/IGratio of CNTsincreases with increasing aniline amount in precursors after the introduction of nitrogen atomsinto the carbon lattice. Moreover, the thermal stability of NCNTs are slightly lower than thatof the CNTs, but they no remarkable weight loss occurs before500oC.
     (2) Selective oxidation of EB to AcPO in liquid-phase using oxygen as oxidant wasstudied on the carbon nanotube catalysts, and the effects of reaction conditions on the catalyticactivity of CNTs, the correlation between the performance and structures and probablereaction mechanism were investigated. The results are showed as follows:(a) At155oC,nCNTs/nEB=0.2and1.5MPa O2, EB conversion is38.2%with60.9%selectivity for AcPOafter4h of reaction.(b) In our catalytic system, the oxidation of EB proceeds by a free-radical mechanism, and the1-phenylethyl hydroperoxide (PEHP) is the most importantintermediate and the main chain propagator in the oxidation of EB, and the CNTs play animportant role in the decomposition of PEHP, owing to π-π interactions between the peroxideand the graphene sheets of the CNTs.(c) The contain residual Fe species of CNTs may notplay an active role in the oxidation of EB under our reaction conditions.(d) Surfacecarboxylic groups and defects of the CNTs are unfavorable to EB oxidation, it is probablycaused by the localization of electrons as a result of the introduction of carboxylic groups anddefects, which may be adverse to the π-π interaction between the PEHP or radical andgraphene sheets.(e) The CNTs catalyst shows outstanding recyclability, EB conversion is36.3%with60.6%selectivity for AcPO after six consecutive usages.(f) Doping nitrogenatoms into the carbon lattice are unfavorable to EB oxidation, it is probably attributed to theincreased defects in CNTs, resulting in a decrease of conductivity and electron mobility, thecharge transfer is suppressed, thus decrease π-π interaction between the radical or PEHP andthe graphene sheets of the CNTs.
     (3) The catalytic performance and probable mechanism of CNTs and NCNTs in theselective liquid phase oxidation of benzyl alcohol were investigated. The results are showedas follows:(a) Neither CNTs nor NCNTs as a alone catalyst has lower catalytic activity forbenzyl alcohol oxidation with conversion of less than10%. HNO3is the most effectivepromoter achieving a benzyl alcohol conversion of96.2%and a benzaldehyde selectivity of88.3%after5h of reaction. However, HNO3alone cannot effectively improve the oxidationof benzyl alcohol in the absence of CNTs, and only obtained a benzyl alcohol conversion of31.4%and a benzaldehyde selectivity of75.3%after5h of reaction.(b) It is not free-radicaloxidation reaction. In our catalytic system, it is clarified that benzyl nitrite is an important intermediate, O2is the really terminal oxidant, while HNO3only initiates the oxidation cycle.(c) The contain residual Fe species of CNTs do not play an active role in the oxidation ofbenzyl alcohol under our reaction conditions, while electron transfer in graphene sheets playsan important role in the decomposition of benzyl nitrite.(d) The surface carboxylic groupsand defects of the CNTs have hardly influence on the benzyl alcohol conversion.(e) Propernitrogen doping indeed enhances the catalytic activity of CNTs in benzyl alcohol oxidation,probably arising from the enhanced electron transfer due to nitrogen dopant, thus enhances π-π interaction between the the intermediate and the graphene sheets of the CNTs. When thecontents of total nitrogen is1.02at.%, the NCNTs can obtain a benzaldehyde yield of78.5%after3h of reaction, while that is68.2%on CNTs catalyst under the same conditions.(f) TheCNTs and NCNTs catalysts have outstanding recyclability showing an excellent potential forindustrial application of benzyl alcohol oxidation to benzaldehyde.
引文
[1] Smalley R., Kroto H., Heath J. C60: Buckminsterfullerene[J]. Nature,1985,318:162-163
    [2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58
    [3] Lewis R., Ming T., Wacker J., et al. Interstellar diamonds in meteorites[J]. Nature,1987,326(6109):160-162
    [4] Novoselov K., Geim A., Morozov S., et al. Electric field effect in atomically thincarbon films[J]. Science,2004,306(5696):666-669
    [5] Zhan G.D., Kuntz J.D., Wan J., et al. Single-wall carbon nanotubes as attractivetoughening agents in alumina-based nanocomposites[J]. Nature Materials,2003,2(1):38-42
    [6] Zhang X., Li Q., Tu Y., et al. Strong Carbon-Nanotube Fibers Spun from LongCarbon-Nanotube Arrays[J]. Small,2007,3(2):244-248
    [7] Yi W., Lu L., Dian-Lin Z., et al. Linear specific heat of carbon nanotubes[J]. PhysicalReview B,1999,59(14):9015-9018
    [8] Bachilo S.M., Strano M.S., Kittrell C., et al. Structure-assigned optical spectra ofsingle-walled carbon nanotubes[J]. Science,2002,298(5602):2361-2366
    [9] Tans S.J., Verschueren A.R., Dekker C. Room-temperature transistor based on asingle carbon nanotube[J]. Nature,1998,393(6680):49-52
    [10] Chen J., Hamon M.A., Hu H., et al. Solution properties of single-walled carbonnanotubes[J]. Science,1998,282(5386):95-98
    [11] Krupke R., Hennrich F., L hneysen H., et al. Separation of metallic fromsemiconducting single-walled carbon nanotubes[J]. Science,2003,301(5631):344-347
    [12] Bonard J.M., Kind H., St ckli T., et al. Field emission from carbon nanotubes: the firstfive years[J]. Solid-State Electronics,2001,45(6):893-914
    [13] Kong J., Franklin N.R., Zhou C., et al. Nanotube molecular wires as chemicalsensors[J]. Science,2000,287(5453):622-625
    [14] Balasubramanian K., Burghard M. Biosensors based on carbon nanotubes[J].Analytical and Bioanalytical Chemistry,2006,385(3):452-468
    [15] Jones A.D.K., Bekkedahl T., Kiang C. Storage of hydrogen in single-walled carbonnanotubes[J]. Nature,1997,386:377
    [16] Tan C.W., Tan K.H., Ong Y.T., et al. Energy and environmental applications ofcarbon nanotubes[J]. Environmental Chemistry Letters,2012,10(3):265-273
    [17] Cheng H.M., Yang Q.H., Liu C. Hydrogen storage in carbon nanotubes[J]. Carbon,2001,39(10):1447-1454
    [18] Chen J., Li W., Wang D., et al. Electrochemical characterization of carbon nanotubesas electrode in electrochemical double-layer capacitors[J]. Carbon,2002,40(8):1193-1197
    [19] Prato M., Kostarelos K., Bianco A. Functionalized carbon nanotubes in drug designand discovery[J]. Accounts of Chemical Research,2008,41(1):60-68
    [20] Peretz S., Regev O. Carbon nanotubes as nanocarriers in medicine[J]. Current Opinionin Colloid&Interface Science,2012,17(6):360-368
    [21] Jain K.K. Advances in use of functionalized carbon nanotubes for drug design anddiscovery[J]. Expert Opinion on Drug Discovery,2012,7(11):1029-1037
    [22] Deng J., Shao Y., Gao N., et al. Multiwalled carbon nanotubes as adsorbents forremoval of herbicide diuron from aqueous solution[J]. Chemical Engineering Journal,2012,193-194:339-347
    [23] Eitan A., Jiang K., Dukes D., et al. Surface modification of multiwalled carbonnanotubes: toward the tailoring of the interface in polymer composites[J]. Chemistryof Materials,2003,15(16):3198-3201
    [24] Shim Y.S., Park S.J. Effect of polystyrene-grafted multi-walled carbon nanotubes onthe viscoelastic behavior and electrical properties of polypropylene-basednanocomposites[J]. Research on Chemical Intermediates,2012,38(9):2123-2135
    [25] Baleiz o C., Gigante B., Garcia H., et al. Vanadyl salen complexes covalentlyanchored to single-wall carbon nanotubes as heterogeneous catalysts for thecyanosilylation of aldehydes[J]. Journal of Catalysis,2004,221(1):77-84
    [26] Serp P., Corrias M., Kalck P. Carbon nanotubes and nanofibers in catalysis[J].Applied Catalysis A: General,2003,253(2):337-358
    [27] Serp P., Castillejos E. Catalysis in Carbon Nanotubes[J]. ChemCatChem,2010,2(1):41-47
    [28] Machado B.F., Serp P. Graphene-based materials for catalysis[J]. Catalysis Science&Technology,2012,2(1):54-75
    [29]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社,2003:48-52
    [30]成会明.纳米碳管:制备,结构,物性及应用[M].北京:化学工业出版社,2002:27-28
    [31]韦进全,张先锋,王昆林.碳纳米管宏观体/清华大学学术专著[M].北京:清华大学出版社有限公司,2006:1-5
    [32]马如飞,李铁虎,赵廷凯,等.碳纳米管应用研究进展[J].炭素技术,2009,28(3):35-39
    [33] Iijima S. Growth of carbon nanotubes[J]. Materials Science and Engineering: B,1993,19(1):172-180
    [34] Ebbesen T., Lezec H., Hiura H., et al. Electrical conductivity of individual carbonnanotubes[J]. Nature,1996,382:54-56
    [35] De Heer W.A., Bacsa W., Chatelain A., et al. Aligned carbon nanotube films:production and optical and electronic properties[J]. Science,1995,268(5212):845-845
    [36] Frank S., Poncharal P., Wang Z., et al. Carbon nanotube quantum resistors[J]. Science,1998,280(5370):1744-1746
    [37] Liang W., Bockrath M., Bozovic D., et al. Fabry-Perot interference in a nanotubeelectron waveguide[J]. Nature,2001,411(6838):665-669
    [38] Chauvet O., Forro L., Bacsa W., et al. Magnetic anisotropies of aligned carbonnanotubes[J]. Physical Review B,1995,52(10):6963-6966
    [39] Zhu H., Xu C., Wu D., et al. Direct synthesis of long single-walled carbon nanotubestrands[J]. Science,2002,296(5569):884-886
    [40]邓俊强.碳纳米管的研究近况[J].广东建材,2012,28(10):35-37
    [41]王强.高性能锂离子电池负极材料的新型结构设计与研究[D].合肥:中国科学技术大学博士学位论文,2007
    [42] Banerjee S., Hemraj-Benny T., Wong S.S. Covalent surface chemistry of single-walled carbon nanotubes[J]. Advanced Materials,2005,17(1):17-29
    [43] Balasubramanian K., Burghard M. Chemically functionalized carbon nanotubes[J].Small,2004,1(2):180-192
    [44] Britto P.J., Santhanam K.S., Rubio A., et al. Improved charge transfer at carbonnanotube electrodes[J]. Advanced Materials,1999,11(2):154-157
    [45] Figueiredo J.L., Pereira M.F.R. The role of surface chemistry in catalysis withcarbons[J]. Catalysis Today,2010,150(1):2-7
    [46] Ionescu M.I., Zhang Y., Li R., et al. Nitrogen-doping effects on the growth, structureand electrical performance of carbon nanotubes obtained by spray pyrolysis method[J].Applied Surface Science,2012,258(10):4563-4568
    [47] Peng F., Yu H., Tan J., et al. Selective Catalysis of the Aerobic Oxidation ofCyclohexane in the Liquid Phase by Carbon Nanotubes[J]. Angewandte Chemie-International Edition,2011,50(17):3978-3982
    [48] Peng F., Liu Z.L., Z. W., Wang H.J., et al. Phosphorus-doped graphite layers withhigh electrocatalytic activity for the O2reduction in an alkaline medium[J].Angewandte Chemie-International Edition,2011,50(14):3257-3261
    [49] Gong K., Du F., Xia Z., et al. Nitrogen-doped carbon nanotube arrays with highelectrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764
    [50]胡晓伟,谈俊,余皓,等.碳材料在多相催化过程中的应用[J].工业催化,2010,18(3):22-30
    [51] Planeix J., Coustel N., Coq B., et al. Application of carbon nanotubes as supports inheterogeneous catalysis[J]. Journal of the American Chemical Society,1994,116(17):7935-7936
    [52] Galvagno S., Capannelli G. Hydrogenation of cinnamaldehyde over Ru/C catalysts:effect of Ru particle size[J]. Journal of Molecular Catalysis,1991,64(2):237-246
    [53] Lordi V., Yao N., Wei J. Method for supporting platinum on single-walled carbonnanotubes for a selective hydrogenation catalyst[J]. Chemistry of Materials,2001,13(3):733-737
    [54]吕德义,徐铸德,徐丽萍,等.碳纳米管作为载体在邻硝基甲苯多相催化加氢中的应用[J].浙江工业大学学报,2002,30(5):464-466
    [55] Onoe T., Iwamoto S., Inoue M. Synthesis and activity of the Pt catalyst supported onCNT[J]. Catalysis Communications,2007,8(4):701-706
    [56] Ma H., Wang L., Chen L., et al. Pt nanoparticles deposited over carbon nanotubes forselective hydrogenation of cinnamaldehyde[J]. Catalysis Communications,2007,8(3):452-456
    [57] Han X.X., Chen Q., Zhou R.X. Study on the hydrogenation of p-chloronitrobenzeneover carbon nanotubes supported platinum catalysts modified by Mn, Fe, Co, Ni andCu[J]. Journal of Molecular Catalysis A: Chemical,2007,277(1):210-214
    [58] Guczi L., Stefler G., Geszti O., et al. CO hydrogenation over cobalt and iron catalystssupported over multiwall carbon nanotubes: Effect of preparation[J]. Journal ofCatalysis,2006,244(1):24-32
    [59] Wang M., Li F., Zhang R. Study on catalytic hydrogenation properties and thermalstability of amorphous NiB alloy supported on carbon nanotubes[J]. Catalysis Today,2004,93:603-606
    [60] Zhao Y., Li C.H., Yu Z.X., et al. Effect of microstructures of Pt catalysts supported oncarbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzenehydrogenation[J]. Materials Chemistry and Physics,2007,103(2):225-229
    [61] Antonetti C., Oubenali M., Raspolli Galletti A.M., et al. Novel microwave synthesis ofruthenium nanoparticles supported on carbon nanotubes active in the selectivehydrogenation of p-chloronitrobenzene to p-chloroaniline[J]. Applied Catalysis A:General,2012,421:99-107
    [62] Zhang X., Guo Y.C., Cheng Zhang Z., et al. High performance of carbon nanotubesconfining gold nanoparticles for selective hydrogenation of1,3-butadiene andcinnamaldehyde[J]. Journal of Catalysis,2012,292:213-226
    [63] Ovejero G., Sotelo J., Rodriguez A., et al. Platinum catalyst on multiwalled carbonnanotubes for the catalytic wet air oxidation of phenol[J]. Industrial&EngineeringChemistry Research,2007,46(20):6449-6455
    [64] Garcia J., Gomes H., Serp P., et al. Carbon nanotube supported ruthenium catalysts forthe treatment of high strength wastewater with aniline using wet air oxidation[J].Carbon,2006,44(12):2384-2391
    [65] Yu H., Fu X., Zhou C., et al. Capacitance dependent catalytic activity of RuO2·xH2O/CNT nanocatalysts for aerobic oxidation of benzyl alcohol[J]. ChemicalCommunications,2009,(17):2408-2410
    [66] Fu X., Yu H., Peng F., et al. Facile preparation of RuO2/CNT/CNT catalyst by ahomogenous oxidation precipitation method and its catalytic performance[J]. AppliedCatalysis A: General,2007,321(2):190-197
    [67] Nie A., Yang H., Li Q., et al. Catalytic Oxidation of Chlorobenzene over V2O5/TiO2-Carbon Nanotubes Composites[J]. Industrial&Engineering Chemistry Research,2011,50(17):9944-9948
    [68] Farahzadi M., Towfighi J., Mohamadalizadeh A. Catalytic oxidation of isopropylmercaptan over nano catalyst of tungsten oxide supported multiwall carbonnanotubes[J]. Fuel Processing Technology,2012,97:15-23
    [69] Chen H.B., Lin J.D., Cai Y., et al. Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure[J]. AppliedSurface Science,2001,180(3):328-335
    [70] Cai Y., Lin J., Chen H., et al. Novel Ru-K/carbon nanotubes catalyst for ammoniasynthesis[J]. Chinese Chemical Letters,2000,11(4):373-374
    [71] Xu Q.C., Lin J.D., Li J., et al. Microwave-assisted synthesis of MgO-CNTs supportedruthenium catalysts for ammonia synthesis[J]. Catalysis Communications,2007,8(12):1881-1885
    [72]高伟洁,郭淑静,张洪波,等.氮掺杂碳纳米管对其负载的Ru催化剂上合成氨的促进作用[J].催化学报,2011,32(8):1418-1423
    [73] Guo S., Pan X., Gao H., et al. Probing the electronic effect of carbon nanotubes incatalysis: NH3synthesis with Ru nanoparticles[J]. Chemistry-A European Journal,2010,16(18):5379-5384
    [74] Li W., Liang C., Qiu J., et al. Carbon nanotubes as support for cathode catalyst of adirect methanol fuel cell[J]. Carbon,2002,40(5):787-790
    [75] Li W., Wang X., Chen Z., et al. Pt-Ru supported on double-walled carbon nanotubesas high-performance anode catalysts for direct methanol fuel cells[J]. The Journal ofPhysical Chemistry B,2006,110(31):15353-15358
    [76] Jeng K.T., Hsu N.Y., Chien C.C. Synthesis and evaluation of carbon nanotube-supported RuSe catalyst for direct methanol fuel cell cathode[J]. International Journalof Hydrogen Energy,2011,36(6):3997-4006
    [77] Wang H., Zheng J., Peng F., et al. Pt/IrO2/CNT Anode Catalyst with HighPerformance for Direct Methanol Fuel Cells[J]. Catalysis Communications,2013,33:34-37
    [78] Ahmadi R., Amini M.K. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbon nanotubes for methanol oxidation[J]. International Journal ofHydrogen Energy,2011,36(12):7275-7283
    [79] Chen S., Ye F., Lin W. Effect of operating conditions on the performance of a directmethanol fuel cell with PtRuMo/CNTs as anode catalyst[J]. International Journal ofHydrogen Energy,2010,35(15):8225-8233
    [80] Liu Z., Shi Q., Peng F., et al. Enhanced methanol oxidation activity of Pt catalystsupported on the phosphorus-doped multiwalled carbon nanotubes in alkalinemedium[J]. Catalysis Communications,2012,22:34-38
    [81] Bahome M.C., Jewell L.L., Hildebrandt D., et al. Fischer-Tropsch synthesis over ironcatalysts supported on carbon nanotubes[J]. Applied Catalysis A: General,2005,287(1):60-67
    [82] Chen W., Fan Z., Pan X., et al. Effect of confinement in carbon nanotubes on theactivity of Fischer-Tropsch iron Catalyst[J]. Journal of the American ChemicalSociety,2008,130(29):9414-9419
    [83] Thiessen J., Rose A., Meyer J., et al. Effects of Manganese and Reduction Promoterson Carbon Nanotube Supported Cobalt Catalysts in Fischer-Tropsch Synthesis[J].Microporous and Mesoporous Materials,2012,164:199-206
    [84] Zhu Y., Ye Y., Zhang S., et al. Synthesis and catalysis of location-specific cobaltnanoparticles supported by multiwall carbon nanotubes for Fischer-TropschSynthesis[J]. Langmuir,2012,28(21):8275-8280
    [85] Xiong H., Motchelaho M.A., Moyo M., et al. Correlating the preparation andperformance of cobalt catalysts supported on carbon nanotubes and carbon spheres inthe Fischer-Tropsch synthesis[J]. Journal of Catalysis,2011,278(1):26-40
    [86] Abbaslou R.M.M., Soltan J., Dalai A.K. Effects of nanotubes pore size on the catalyticperformances of iron catalysts supported on carbon nanotubes for Fischer-Tropschsynthesis[J]. Applied Catalysis A: General,2010,379(1):129-134
    [87] Giordano R., Serp P., Kalck P., et al. Preparation of rhodium catalysts supported oncarbon nanotubes by a surface mediated organometallic reaction[J]. European Journalof Inorganic Chemistry,2003,2003(4):610-617
    [88] Liu Z.J., Yuan Z.Y., Zhou W., et al. Co/carbon-nanotube monometallic system: theeffects of oxidation by nitric acid[J]. Physical Chemistry Chemical Physics,2001,3(12):2518-2521
    [89] Wang W., Serp P., Kalck P., et al. Visible light photodegradation of phenol onMWNT-TiO2composite catalysts prepared by a modified sol-gel method[J]. Journalof Molecular Catalysis A: Chemical,2005,235(1):194-199
    [90]>hang.., ller J.O., Zheng W., et al. Individual Fe-Co Alloy Nanoparticles onCarbon Nanotubes: Structural and Catalytic Properties[J]. Nano Letters,2008,8(9):2738-2743
    [91] Su D.S., Zhang J., Liu X., et al. Surface-modified carbon nanotubes catalyze oxidativedehydrogenation of n-butane[J]. Science,2008,322(5898):73-77
    [92] Su D., Maksimova N., Delgado J., et al. Nanocarbons in selective oxidativedehydrogenation reaction[J]. Catalysis Today,2005,102:110-114
    [93] Zhang J., Su D., Zhang A., et al. Nanocarbon as robust catalyst: Mechanistic insightinto carbon-mediated catalysis[J]. Angewandte Chemie-International Edition,2007,46(38):7319-7323
    [94] Frank B., Morassutto M., Schom cker R., et al. Oxidative dehydrogenation of ethaneover multiwalled carbon nanotubes[J]. ChemCatChem,2010,2(6):644-648
    [95] Bégin D., Ulrich G., Amadou J., et al. Oxidative dehydrogenation of9,10-dihydroanthracene using multi-walled carbon nanotubes[J]. Journal of MolecularCatalysis A: Chemical,2009,302(1):119-123
    [96] Liu X., Su D.S., Schl gl R. Oxidative dehydrogenation of1-butene to butadiene overcarbon nanotube catalysts[J]. Carbon,2008,46(3):547-548
    [97] Rinaldi A., Zhang J., Frank B., et al. Oxidative purification of carbon nanotubes andits impact on catalytic performance in oxidative dehydrogenation reactions[J].Chemsuschem,2010,3(2):254-260
    [98] Qui N., Scholz P., Krech T., et al. Multiwalled carbon nanotubes oxidized by UV/H2O2as catalyst for oxidative dehydrogenation of ethylbenzene[J]. CatalysisCommunications,2011,12(6):464-469
    [99] Qui N.V., Scholz P., Keller T., et al. Ozonated multiwalled carbon nanotubes ashighly active and selective catalyst in the oxidative dehydrogenation of ethyl benzeneto styrene[J]. Chemical Engineering&Technology,2013,36(2):300-306
    [100] Wang Z., Jia R., Zheng J., et al. Nitrogen-promoted self-assembly of N-doped carbonnanotubes and their intrinsic catalysis for oxygen reduction in fuel cells[J]. ACS Nano,2011,5(3):1677-1684
    [101] Xiong C., Wei Z., Hu B., et al. Nitrogen doped carbon nanotubes as catalysts foroxygen reduction reaction[J]. Journal of Power Sources,2012,215:216-220
    [102] Chen Z., Higgins D., Tao H., et al. Highly active nitrogen-doped carbon nanotubes foroxygen reduction reaction in fuel cell applications[J]. The Journal of PhysicalChemistry C,2009,113(49):21008-21013
    [103] Dorjgotov A., Ok J., Jeon Y., et al. Activity and active sites of nitrogen-doped carbonnanotubes for oxygen reduction reaction[J]. Journal of Applied Electrochemistry,2013,43:387-397
    [104] Li H., Liu H., Jong Z., et al. Nitrogen-doped carbon nanotubes with high activity foroxygen reduction in alkaline media[J]. International Journal of Hydrogen Energy,2011,36(3):2258-2265
    [105] Rao C.V., Cabrera C.R., Ishikawa Y. In search of the active site in nitrogen-dopedcarbon nanotube electrodes for the oxygen reduction reaction[J]. The Journal ofPhysical Chemistry Letters,2010,1(18):2622-2627
    [106] Chen Z., Higgins D., Chen Z. Nitrogen doped carbon nanotubes and their impact onthe oxygen reduction reaction in fuel cells[J]. Carbon,2010,48(11):3057-3065
    [107] Tang Y., Allen B.L., Kauffman D.R., et al. Electrocatalytic activity of nitrogen-dopedcarbon nanotube cups[J]. Journal of the American Chemical Society,2009,131(37):13200-13201
    [108] Yang L., Jiang S., Zhao Y., et al. Boron-doped carbon nanotubes as metal-freeelectrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie,2011,123(31):7270-7273
    [109] Liu Z., Peng F., Wang H., et al. Novel phosphorus-doped multiwalled nanotubes withhigh electrocatalytic activity for O2reduction in alkaline medium[J]. CatalysisCommunications,2011,16(1):35-38
    [110] Lv W.X., Zhang R., Xia T.L., et al. Influence of NH3flow rate on pyridine-like Ncontent and NO electrocatalytic oxidation of N-doped multiwalled carbonnanotubes[J]. Journal of Nanoparticle Research,2011,13(6):2351-2360
    [111] Hu X., Wu Y., Zhang Z. CO oxidation on metal-free nitrogen-doped carbon nanotubesand the related structure-reactivity relationships[J]. Journal of Materials Chemistry,2012,22(30):15198-15205
    [112] Chizari K., Deneuve A., Ersen O., et al. Nitrogen-doped carbon nanotubes as a highlyactive metal-free catalyst for selective oxidation[J]. ChemSusChem,2012,5(1):102-108
    [113] Frank B., Blume R., Rinaldi A., et al. Oxygen insertion catalysis by sp2carbon[J].Angewandte Chemie International Edition,2011,50(43):10226-10230
    [114] Kang Z., Wang E., Mao B., et al. Heterogeneous hydroxylation catalyzed by multi-walled carbon nanotubes at low temperature[J]. Applied Catalysis A: General,2006,299:212-217
    [115] Croston M., Langston J., Takacs G., et al. Conversion of aniline to azobenzene atfunctionalized carbon nanotubes: a possible case of a nanodimensional reaction[J].International Journal of Nanoscience,2002,1:285-293
    [116] Yang S., Zhu W., Li X., et al. Multi-walled carbon nanotubes (MWNTs) as anefficient catalyst for catalytic wet air oxidation of phenol[J]. CatalysisCommunications,2007,8(12):2059-2063
    [117] Yang S., Li X., Zhu W., et al. Catalytic activity, stability and structure of multi-walledcarbon nanotubes in the wet air oxidation of phenol[J]. Carbon,2008,46(3):445-452
    [118] Rocha R.P., Sousa J.P., Silva A.M., et al. Catalytic activity and stability ofmultiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role ofthe basic nature induced by the surface chemistry[J]. Applied Catalysis B:Environmental,2011,104(3):330-336
    [119] Zhang J., Comotti M., Schüth F., et al. Commercial Fe-or Co-containing carbonnanotubes as catalysts for NH3decomposition[J]. Chemical Communications,2007,(19):1916-1918
    [120] Muradov N. Catalysis of methane decomposition over elemental carbon[J]. CatalysisCommunications,2001,2(3):89-94
    [121] Peng F., Zhang L., Wang H., et al. Sulfonated carbon nanotubes as a strong protonicacid catalyst[J]. Carbon,2005,43(11):2405-2408
    [1] Qian W., Yu H., Wei F., et al. Synthesis of carbon nanotubes from liquefied petroleumgas containing sulfur[J]. Letters to the editor,2002,40:2961-2973
    [2] Peng F., Yu H., Tan J., et al. Selective catalysis of the aerobic oxidation ofcyclohexane in the liquid phase by carbon nanotubes[J]. Angewandte Chemie-International Edition,2011,50(17):3978-3982
    [3] Yang S., Li X., Zhu W., et al. Catalytic activity, stability and structure of multi-walledcarbon nanotubes in the wet air oxidation of phenol[J]. Carbon,2008,46(3):445-452
    [4] Bradley R.H., Cassity K., Andrews R., et al. Surface studies of hydroxylated multi-wall carbon nanotubes[J]. Applied Surface Science,258(11):4835-4843
    [5] Li Y., Wang J., Li X., et al. Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries[J]. Electrochemistry Communications,2011,13(7):668-672
    [6] Belmabkhout Y., Serna-Guerrero R., Sayari A. Adsorption of CO2from dry gases onMCM-41silica at ambient temperature and high pressure.1: Pure CO2adsorption[J].Chemical Engineering Science,2009,64(17):3721-3728
    [7] Sing K., Everett D., Haul R., et al. Reporting physisorption data for gas/solidsystems[J]. Pure and Applied Chemistry,1985,57(4):603-619
    [8] Kosa S.A., Al-Zhrani G., Salam M.A. Removal of heavy metals from aqueoussolutions by multi-walled carbon nanotubes modified with8-hydroxyquinoline[J].Chemical Engineering Journal,2012,181:159-168
    [9]高晓明,付峰,武玉飞,等. Co-BiVO4光催化剂的制备及其用于光催化氧化噻吩[J].无机材料学报,2012,27(10):1073-1078
    [10]张玉龙,蒋鑫,夏玮,等.调控博物馆微环境的新型甲醛吸附剂的研制[J].环境工程,2012,30(6):75-78
    [11]刘伟凤.菱角皮活性炭表面改性及其对水体中Cr(Ⅵ)和头孢氨苄的吸附性能研究[D].济南:山东大学硕士学位论文,2012
    [12]徐哲,张卫红,冯亚青,等.四氢糠醇合成吡啶催化剂的制备及工艺研究[J].化学工业与工程,2011,28(6):22-26
    [13]林琳.纳米层状二氧化锰的制备及其性能研究[D].重庆:重庆理工大学,2010
    [14] Pierotti R., Rouquerol J. Reporting physisorption data for gas/solid systems withspecial reference to the determination of surface area and porosity[J]. Pure andApplied Chemistry,1985,57(4):603-619
    [15] Jang J.W., Lee C.E., Lyu S.C., et al. Structural study of nitrogen-doping effects inbamboo-shaped multiwalled carbon nanotubes[J]. Applied Physics Letters,2004,84(15):2877-2879
    [16] Sumpter B.G., Meunier V., Romo-Herrera J.M., et al. Nitrogen-mediated carbonnanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation[J]. ACS Nano,2007,1(4):369-375
    [17] Nxumalo E.N., Letsoalo P.J., Cele L.M., et al. The influence of nitrogen sources onnitrogen doped multi-walled carbon nanotubes[J]. Journal of OrganometallicChemistry,2010,695(24):2596-2602
    [18] Chen Z., Higgins D. Electrocatalytic activity of nitrogen doped carbon nanotubes withdifferent morphologies for oxygen reduction reaction[J]. Electrochimica Acta,2010,55(16):4799-4804
    [19] Liu H., Zhang Y., Li R., et al. Structural and morphological control of alignednitrogen-doped carbon nanotubes[J]. Carbon,2010,48(5):1498-1507
    [20] Koós A.A., Dowling M., Jurkschat K., et al. Effect of the experimental parameters onthe structure of nitrogen-doped carbon nanotubes produced by aerosol chemicalvapour deposition[J]. Carbon,2009,47(1):30-37
    [21] Mo Z., Liao S., Zheng Y., et al. Preparation of nitrogen-doped carbon nanotube arraysand their catalysis towards cathodic oxygen reduction in acidic and alkaline media[J].Carbon,2012,50(7):2620-2627
    [22] Rao C.V., Cabrera C.R., Ishikawa Y. In search of the active site in nitrogen-dopedcarbon nanotube electrodes for the oxygen reduction reaction[J]. Journal of PhysicalChemistry Letters,2010,1(18):2622-2627
    [23] Zhao L., Baccile N., Gross S., et al. Sustainable nitrogen-doped carbonaceousmaterials from biomass derivatives[J]. Carbon,2010,48(13):3778-3787
    [24] Figueiredo J., Pereira M., Freitas M., et al. Modification of the surface chemistry ofactivated carbons[J]. Carbon,1999,37(9):1379-1389
    [25] Zhang J., Zou H., Qing Q., et al. Effect of chemical oxidation on the structure ofsingle-walled carbon nanotubes[J]. The Journal of Physical Chemistry B,2003,107(16):3712-3718
    [26] Chen Y., Wang J., Liu H., et al. Nitrogen doping effects on carbon nanotubes and theorigin of the enhanced electrocatalytic activity of supported Pt for proton-exchangemembrane fuel cells[J]. Journal of Physical Chemistry C,2011,115(9):3769
    [27] Ionescu M.I., Zhang Y., Li R., et al. Nitrogen-doping effects on the growth, structureand electrical performance of carbon nanotubes obtained by spray pyrolysis method[J].Applied Surface Science,2012,258(10):4563-4568
    [28] Dresselhaus M.S., Dresselhaus G., Saito R., et al. Raman spectroscopy of carbonnanotubes[J]. Physics Reports,2005,409(2):47-99
    [29] Zhang H., Sun C.H., Li F., et al. Purification of multiwalled carbon nanotubes byannealing and extraction based on the difference in van der waals potential[J]. TheJournal of Physical Chemistry B,2006,110(19):9477-9481
    [30] Boehm H.P. Surface oxides on carbon and their analysis: a critical assessment[J].Carbon,2002,40(2):145-149
    [31] Andrews R., Jacques D., Qian D., et al. Purification and structural annealing ofmultiwalled carbon nanotubes at graphitization temperatures[J]. Carbon,2001,39(11):1681-1687
    [32] Kim Y., Hayashi T., Osawa K., et al. Annealing effect on disordered multi-wallcarbon nanotubes[J]. Chemical Physics Letters,2003,380(3):319-324
    [33] Endo.,/im=., ayashi T., et al. icrostructural changes induced in “stacked cup”carbon nanofibers by heat treatment[J]. Carbon,2003,41(10):1941-1947
    [34] Kim Y., Muramatsu H., Hayashi T., et al. Thermal stability and structural changes ofdouble-walled carbon nanotubes by heat treatment[J]. Chemical Physics Letters,2004,398(1):87-92
    [35] Tessonnier J.P., Rosenthal D., Hansen T.W., et al. Analysis of the structure andchemical properties of some commercial carbon nanostructures[J]. Carbon,2009,47(7):1779-1798
    [36] Rinaldi A., Zhang J., Frank B., et al. Oxidative purification of carbon nanotubes andits impact on catalytic performance in oxidative dehydrogenation reactions[J].ChemSusChem,2010,3(2):254-260
    [37] Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+and Fe3+ions in oxidematerials[J]. Applied Surface Science,2008,254(8):2441-2449
    [38] Ago H., Kugler T., Cacialli F., et al. Work functions and surface functional groups ofmultiwall carbon nanotubes[J]. Journal of Physical Chemistry B,1999,103(38):8116-8121
    [39] Yue Z.R., Jiang W., Wang L., et al. Surface characterization of electrochemicallyoxidized carbon fibers[J]. Carbon,1999,37(11):1785-1796
    [40] Datsyuk V., Kalyva M., Papagelis K., et al. Chemical oxidation of multiwalled carbonnanotubes[J]. Carbon,2008,46(6):833-840
    [41] Xia W., Wang Y., Bergstr er R., et al. Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectronspectroscopy and temperature-programmed desorption[J]. Applied Surface Science,2007,254(1):247-250
    [42] Chiang Y.C., Lin W.H., Chang Y.C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3oxidation[J]. AppliedSurface Science,2011,257(6):2401-2410
    [43] Van Dommele S., Romero-Izquirdo A., Brydson R., et al. Tuning nitrogenfunctionalities in catalytically grown nitrogen-containing carbon nanotubes[J]. Carbon,2008,46(1):138-148
    [44] Pels J., Kapteijn F., Moulijn J., et al. Evolution of nitrogen functionalities incarbonaceous materials during pyrolysis[J]. Carbon,1995,33(11):1641-1653
    [45] Ghosh K., Kumar M., Maruyama T., et al. Tailoring the field emission property ofnitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution[J].Carbon,2010,48(1):191-200
    [46] Matter P.H., Zhang L., Ozkan U.S. The role of nanostructure in nitrogen-containingcarbon catalysts for the oxygen reduction reaction[J]. Journal of Catalysis,2006,239(1):83-96
    [47] Casanovas J., Ricart J.M., Rubio J., et al. Origin of the large N1s binding energy inX-ray photoelectron spectra of calcined carbonaceous materials[J]. Journal of theAmerican Chemical Society,1996,118(34):8071-8076
    [48] Biniak S., Szymański., Siedlewski.., et al. The characterization of activated carbonswith oxygen and nitrogen surface groups[J]. Carbon,1997,35(12):1799-1810
    [49] Niwa H., Horiba K., Harada Y., et al. X-ray absorption analysis of nitrogencontribution to oxygen reduction reaction in carbon alloy cathode catalysts forpolymer electrolyte fuel cells[J]. Journal of Power Sources,2009,187(1):93-97
    [50] Stańczyk/., Dziembaj R., Piwowarska>., et al. Transformation of nitrogen structuresin carbonization of model compounds determined by XPS[J]. Carbon,1995,33(10):1383-1392
    [51] Dorjgotov A., Ok J., Jeon Y., et al. Activity and active sites of nitrogen-doped carbonnanotubes for oxygen reduction reaction[J]. Journal of Applied Electrochemistry,2013,43:387-397
    [1] Gomez-Hortiguela L., Cora F., Catlow C.R.A. Aerobic oxidation of hydrocarbonscatalyzed by Mn-doped nanoporous aluminophosphates (IV): Regenerationmechanism[J]. ACS Catalysis,2011,1(11):1475-1486
    [2] Li X.H., Chen J.S., Wang X., et al. Metal-free activation of dioxygen by graphene/g-C3N4nanocomposites: Functional dyads for selective oxidation of saturatedhydrocarbons[J]. Journal of the American Chemical Society,2011,133(21):8074-8077
    [3] Qi J.Y., Ma H.X., Li X.J., et al. Synthesis and characterization of cobalt (III)complexes containing2-pyridinecarboxamide ligands and their application in catalyticoxidation of ethylbenzene with dioxygen[J]. Chemical Communications,2003,(11):1294-1295
    [4] Yang G., Ma Y., Xu J. Biomimetic catalytic system driven by electron transfer forselective oxygenation of hydrocarbon[J]. Journal of the American Chemical Society,2004,126(34):10542-10543
    [5] Devika S., Palanichamy M., Murugesan V. Selective oxidation of ethylbenzene overCeAlPO-5[J]. Applied Catalysis A: General,2011,407(1-2):76-84
    [6] Olah G.A. Friedel-Crafts and related reactions [M]. Interscience Publishers,1963
    [7] Clark J.H., Kybett A.P., Landon P., et al. Catalytic oxidation of organic substratesusing alumina supported chromium and manganese[J]. Journal of the ChemicalSociety, Chemical Communications,1989,(18):1355-1356
    [8] Lu C., Fu Z., Liu Y., et al. A moderate and efficient method for oxidation ofethylbenzene with hydrogen peroxide catalyzed by8-quinolinolato manganese (III)complexes[J]. Journal of Molecular Catalysis A: Chemical,2010,331(1):106-111
    [9] Alcántara R., Canoira L., Joao P.G., et al. Ethylbenzene oxidation with air catalysedby bis (acetylacetonate) nickel (II) and tetra-n-butylammonium tetrafluoroborate[J].Applied Catalysis A: General,2000,203(2):259-268
    [10] Sakthivel A., Dapurkar S.E., Selvam P. Mesoporous (Cr) MCM-41and (Cr) MCM-48molecular sieves: promising heterogeneous catalysts for liquid phase oxidationreactions[J]. Catalysis Letters,2001,77(1):155-158
    [11] Ghiaci M., Sadeghi Z., Sedaghat M., et al. Preparation of Pd (0) and Pd (II) nanotubesand nanoparticles on modified bentonite and their catalytic activity in oxidation ofethyl benzene to acetophenone[J]. Applied Catalysis A: General,2010,381(1):121-131
    [12] Beier M.J., Schimmoeller B., Hansen T.W., et al. Selective side-chain oxidation ofalkyl aromatic compounds catalyzed by cerium modified silver catalysts[J]. Journal ofMolecular Catalysis A: Chemical,2010,331(1):40-49
    [13] Evans S., Smith J.R.L. The oxidation of ethylbenzene by dioxygen catalysed bysupported iron porphyrins derived from iron (III) tetrakis (pentafluorophenyl)porphyrin[J]. Journal of the Chemical Society, Perkin Transactions2,2001,(2):174-180
    [14] Partenheimer W. Methodology and scope of metal bromide autoxidation ofhydrocarbons[J]. Catalysis Today,1995,23(2):69-158
    [15] Arshadi M., Ghiaci M. Highly efficient solvent free oxidation of ethylbenzene usingsome recyclable catalysts: The role of linker in competency of manganesenanocatalysts[J]. Applied Catalysis A: General,2011,399(1):75-86
    [16] Rajabi F., Luque R., Clark J.H., et al. A silica supported cobalt (II) Salen complex asefficient and reusable catalyst for the selective aerobic oxidation of ethyl benzenederivatives[J]. Catalysis Communications,2011,12(6):510-513
    [17] Bhagya K.N., Gayathri V. Zeolite encapsulated Ru (III), Cu (II) and Zn (II) complexesas effective catalysts for the oxidation of ethylbenzene[J]. Journal of Porous Materials,2012,19(6):1037-1045
    [18] Vetrivel S., Pandurangan A. Side-chain oxidation of ethylbenzene with tert-butylhydroperoxide over mesoporous Mn-MCM-41molecular sieves[J]. Journal ofMolecular Catalysis A: Chemical,2004,217(1):165-174
    [19] Yu F., Zheng P.Q., Long Y.X., et al. Polyoxometalate-based metal-organicframeworks as heterogeneous catalysts for selective oxidation of ethylbenzene[J].European Journal of Inorganic Chemistry,2010,2010(28):4526-4531
    [20] Jana S.K., Wu P., Tatsumi T. NiAl hydrotalcite as an efficient and environmentallyfriendly solid catalyst for solvent-free liquid-phase selective oxidation of ethylbenzeneto acetophenone with1atm of molecular oxygen[J]. Journal of Catalysis,2006,240(2):268-274
    [21] Engel P.S., Billups W.E., Abmayr Jr D.W., et al. Reaction of single-walled carbonnanotubes with organic peroxides[J]. The Journal of Physical Chemistry C,2008,112(3):695-700
    [22] Kresse G., Hafner J. Ab initio molecular dynamics for open-shell transition metals[J].Physical Review B,1993,48(17):13115
    [23] Zhao J., Lu J.P., Han J., et al. Noncovalent functionalization of carbon nanotubes byaromatic organic molecules[J]. Applied Physics Letters,2003,82(21):3746-3748
    [24] Hermans I., Peeters J., Jacobs P.A. Autoxidation of ethylbenzene: The mechanismelucidated[J]. The Journal of organic chemistry,2007,72(8):3057-3064
    [25] Zhou L., Chen Y., Yang X., et al. Electronic effect of substituent of quinones on theircatalytic performance in hydrocarbons oxidation[J]. Catalysis Letters,2008,125(1):154-159
    [26] Ma H., Xu J., Zhang Q., et al. Selective oxidation of ethylbenzene by a biomimeticcombination: Hemin and N-hydroxyphthalimide (NHPI)[J]. CatalysisCommunications,2007,8(1):27-30
    [27] Evans S., Smith J.R.L. The oxidation of ethylbenzene and other alkylaromatics bydioxygen catalysed by iron (III) tetrakis (pentafluorophenyl) porphyrin and relatediron porphyrins[J]. Journal of the Chemical Society, Perkin Transactions2,2000,(7):1541-1552
    [28] Yang X., Wang Y., Zhou L., et al. Efficient aerobic oxidation of hydrocarbons with O2catalyzed by DDQ/NHPI[J]. Journal of Chemical Technology and Biotechnology,2010,85(4):564-568
    [29] Bégin D., Ulrich G., Amadou J., et al. Oxidative dehydrogenation of9,10-dihydroanthracene using multi-walled carbon nanotubes[J]. Journal of MolecularCatalysis A: Chemical,2009,302(1-2):119-123
    [30] Chen W., Duan L., Zhu D. Adsorption of polar and nonpolar organic chemicals tocarbon nanotubes[J]. Environmental Science&Technology,2007,41(24):8295-8300
    [31] Zhao T.J., Sun W.Z., Gu X.Y., et al. Rational design of the carbon nanofiber catalystsfor oxidative dehydrogenation of ethylbenzene[J]. Applied Catalysis A: General,2007,323:135-146
    [32] Melone L., Prosperini S., Gambarotti C., et al. Selective catalytic aerobic oxidation ofsubstituted ethylbenzenes under mild conditions[J]. Journal of Molecular Catalysis A:Chemical,2012,355:155-160
    [33] Ayala P., Arenal R., Rümmeli M., et al. The doping of carbon nanotubes with nitrogenand their potential applications[J]. Carbon,2010,48(3):575-586
    [34] Ewels C., Glerup M. Nitrogen doping in carbon nanotubes[J]. Journal of Nanoscienceand Nanotechnology,2005,5(9):1345-1363
    [35] Kaun C.C., Larade B., Mehrez H., et al. Current-voltage characteristics of carbonnanotubes with substitutional nitrogen[J]. Physical Review B,2002,65(20):205416
    [36] Zhou G., Duan W. Field emission in doped nanotubes[J]. Journal of Nanoscience andNanotechnology,2005,5(9):1421-1434
    [37] Banks C.E., Crossley A., Salter C., et al. Carbon nanotubes contain metal impuritieswhich are responsible for the “Electrocatalysis” seen at some nanotube-modifiedelectrodes[J]. Angewandte Chemie International Edition,2006,45(16):2533-2537
    [38] ljukic B., Banks C.E., Richard.-ron oxide particles are the active sites forhydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes[J].Nano Letters,2006,6(7):1556-1558
    [39] Maksimova N., Mestl G., Schl gl R. Catalytic activity of carbon nanotubes and othercarbon materials foroxidative dehydrogenation of ethylbenzene to styrene[J]. Studiesin Surface Science and Catalysis,2001,133:383-389
    [40] Su D.S., Zhang J., Liu X., et al. Surface-modified carbon nanotubes catalyze oxidativedehydrogenation of n-butane[J]. Science,2008,322(5898):73-77
    [41] Goettmann F., Fischer A., Antonietti M., et al. Chemical synthesis of mesoporouscarbon nitrides using hard templates and their use as a metal-free vatalyst for Friedel-Crafts reaction of benzene[J]. Angewandte Chemie International Edition,2006,45(27):4467-4471
    [42] Peng F., Yu H., Tan J., et al. Selective catalysis of the aerobic oxidation ofcyclohexane in the liquid phase by carbon nanotubes[J]. Angewandte Chemie-International Edition,2011,50(17):3978-3982
    [43] Luo J., Peng F., Yu H., et al. Aerobic liquid-phase oxidation of ethylbenzene toacetophenone catalyzed by carbon nanotubes[J]. ChemCatChem,2013,http://dx.doi.org/10.1002/cctc.201200603
    [44] Yang S., Li X., Zhu W., et al. Catalytic activity, stability and structure of multi-walledcarbon nanotubes in the wet air oxidation of phenol[J]. Carbon,2008,46(3):445-452
    [45] Dreyer D.R., Jia H.P., Bielawski C.W. Graphene oxide: A convenient carbocatalystfor facilitating oxidation and hydration reactions[J]. Angewandte Chemie-International Edition,2010,49(38):6813-6816
    [46] Huang L., Santiso E.E., Nardelli M.B., et al. Catalytic role of carbons in methanedecomposition for CO-and CO-free hydrogen generation[J]. The Journal of chemicalphysics,2008,128:214702
    [47] Zhang J., Comotti M., Schueth F., et al. Commercial Fe-or Co-containing carbonnanotubes as catalysts for NH3decomposition[J]. Chemical Communications,2007,(19):1916-1918
    [48] Grunewald G.C., Drago R.S. Carbon molecular sieves as catalysts and catalystsupports[J]. Journal of the American Chemical Society,1991,113(5):1636-1639
    [49] Szymanski G.S., Karpinski Z., Biniak S., et al. The effect of the gradual thermaldecomposition of surface oxygen species on the chemical and catalytic properties ofoxidized activated carbon[J]. Carbon,2002,40(14):2627-2639
    [50] Moreno-Castilla C., Carrasco-Marín F., Parejo-Pérez C., et al. Dehydration ofmethanol to dimethyl ether catalyzed by oxidized activated carbons with varyingsurface acidic character[J]. Carbon,2001,39(6):869-875
    [51] Zhang J., Su D., Zhang A., et al. Nanocarbon as robust catalyst: Mechanistic insightinto carbon-mediated catalysis[J]. Angewandte Chemie-International Edition,2007,46(38):7319-7323
    [52] Frank B., Rinaldi A., Blume R., et al. Oxidation stability of multiwalled carbonnanotubes for catalytic applications[J]. Chemistry of Materials,2010,22(15):4462-4470
    [53] Pereira M., Orfao J., Figueiredo J. Oxidative dehydrogenation of ethylbenzene onactivated carbon catalysts. I. Influence of surface chemical groups[J]. AppliedCatalysis A: General,1999,184(1):153-160
    [54] Cho H.H., Smith B.A., Wnuk J.D., et al. Influence of surface oxides on the adsorptionof naphthalene onto multiwalled carbon nanotubes[J]. Environmental Science&Technology,2008,42(8):2899-2905
    [55] Ren X., Chen C., Nagatsu M., et al. Carbon nanotubes as adsorbents in environmentalpollution management: A review[J]. Chemical Engineering Journal,2011,170(2-3):395-410
    [56] Piao L., Liu Q., Li Y., et al. Adsorption of L-phenylalanine on single-walled carbonnanotubes[J]. The Journal of Physical Chemistry C,2008,112(8):2857-2863
    [57] Onyestyák G., tv s Z., Valyon J., et al. Acetylene sorption dynamics in carbonnanotubes[J]. Helvetica chimica acta,2004,87(6):1508-1514
    [58] Liao Q., Sun J., Gao L. The adsorption of resorcinol from water using multi-walledcarbon nanotubes[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2008,312(2-3):160-165
    [59] rancisco-arquez., alano A., art nez A. On the free radical scavengingcapability of carboxylated single-walled carbon nanotubes[J]. The Journal of PhysicalChemistry C,2010,114(14):6363-6370
    [60] Shi X., Jiang B., Wang J., et al. Influence of wall number and surface functionalizationof carbon nanotubes on their antioxidant behavior in high density polyethylene[J].Carbon,2012,50(3):1005-1013
    [61] Wang H., Maiyalagan T., Wang X. Review on recent progress in nitrogen-dopedgraphene: Synthesis, characterization, and its potential applications[J]. ACS Catalysis,2012,2(5):781-794
    [62] Su D.S., Zhang J., Frank B., et al. Metal-free heterogeneous catalysis for sustainablechemistry[J]. ChemSusChem,2010,3(2):169-180
    [63] Chizari K., Janowska I., HoulléM., et al. Tuning of nitrogen-doped carbon nanotubesas catalyst support for liquid-phase reaction[J]. Applied Catalysis A: General,2010,380(1):72-80
    [64] Long J., Xie X., Xu J., et al. Nitrogen-doped graphene nanosheets as metal-freecatalyst for aerobic selective oxidation of benzylic alcohols[J]. ACS Catalysis,2012,2(4):622-631
    [65] Yang X., Yu H., Peng F., et al. Confined iron nanowires enhance the catalytic activityof carbon nanotubes in the aerobic oxidation of cyclohexane[J]. ChemSusChem,2012,5(7):1213-1217
    [66] Ago H., Kugler T., Cacialli F., et al. Work functions and surface functional groups ofmultiwall carbon nanotubes[J]. Journal of Physical Chemistry B,1999,103(38):8116-8121
    [1] Sharma R.V., Soni K.K., Dalai A.K. Preparation, characterization and application ofsulfated Ti-SBA-15catalyst for oxidation of benzyl alcohol to benzaldehyde[J].Catalysis Communications,2012,29(5):87-91
    [2] Hutchings G.J., Li G., Enache D.I., et al. Solvent-free oxidation of benzyl alcohol withoxygen using zeolite-supported Au and Au-Pd catalysts[J]. Catalysis Letters,2006,110(1-2):7-13
    [3] Chen Y., Lim H., Tang Q., et al. Solvent-free aerobic oxidation of benzyl alcohol overPd monometallic and Au-Pd bimetallic catalysts supported on SBA-16mesoporousmolecular sieves[J]. Applied Catalysis A: General,2010,380(1-2):55-65
    [4] Zhan G., Huang J., Du M., et al. Liquid phase oxidation of benzyl alcohol tobenzaldehyde with novel uncalcined bioreduction Au catalysts: High activity anddurability[J]. Chemical Engineering Journal,2012,187(1):232-238
    [5] Joshi S.R., Kataria K.L., Sawant S.B., et al. Kinetics of oxidation of benzyl alcoholwith dilute nitric acid[J]. Industrial&Engineering Chemistry Research,2005,44(2):325-333
    [6] Zhan G., Hong Y., Lu F., et al. Kinetics of liquid phase oxidation of benzyl alcoholwith hydrogen peroxide over bio-reduced Au/TS-1catalysts[J]. Journal of MolecularCatalysis A: Chemical,2013,366:215-221
    [7] Kuang Y., Islam N.M., Nabae Y., et al. Selective aerobic oxidation of benzylicalcohols catalyzed by carbon-based catalysts: A nonmetallic oxidation system[J].Angewandte Chemie International Edition,2010,49(2):436-440
    [8] Dileep R., Bhat B.R. Palladium-Schiff base-triphenylphosphine catalyzed oxidation ofalcohols[J]. Applied Organometallic Chemistry,2010,24(9):663-666
    [9] Cao E., Sankar M., Firth S., et al. Reaction and Raman spectroscopic studies ofalcohol oxidation on gold-palladium catalysts in microstructured reactors[J]. ChemicalEngineering Journal,2011,167(2):734-743
    [10] Sheldon R.A., Dijksman A., Marino-Gonzalez A., et al. Efficient and selective aerobicoxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as thecatalytic system[J]. Journal of the American Chemical Society,2001,123(28):6826-6833
    [11] Fukahori S., Morikawa M., Ninomiya J. Preparation of ruthenium-containing sheetcomposites using a papermaking technique for selective oxidation of alcohol[J].Chemical Engineering Journal,2010,157(2-3):311-315
    [12] Villa A., Wang D., Dimitratos N., et al. Pd on carbon nanotubes for liquid phasealcohol oxidation[J]. Catalysis Today,2010,150(1-2):8-15
    [13] Tsuruya S., Yamamoto R., Sawayama Y., et al. Promoted partial oxidation activity ofsupported Ag catalysts in the gas-phase catalytic oxidation of benzyl alcohol[J].Journal of Catalysis,2005,234(2):308-317
    [14] Choudhary V.R., Dhar A., Jana P., et al. A green process for chlorine-freebenzaldehyde from the solvent-free oxidation of benzyl alcohol with molecularoxygen over a supported nano-size gold catalyst[J]. Green Chemistry,2005,7(11):768-770
    [15] Kuang Y., Rokubuichi H., Nabae Y., et al. A nitric acid-assisted carbon-catalyzedoxidation system with nitroxide radical cocatalysts as an efficient and green protocolfor selective aerobic oxidation of alcohols[J]. Advanced Synthesis&Catalysis,2010,352(14-15):2635-2642
    [16] Aellig C., Girard C., Hermans I. Aerobic alcohol oxidations mediated by nitric acid[J].Angewandte Chemie International Edition,2011,50(51):12355-12360
    [17] Aellig C., Neuenschwander U., Hermans I. Acid-catalyzed decomposition of thebenzyl nitrite intermediate in HNO3-mediated aerobic oxidation of benzyl alcohol[J].ChemCatChem,2012,4(4):525-529
    [18] Mudgal P.K., Bansal S., Gupta K. Kinetics of atmospheric oxidation of nitrous acid byoxygen in aqueous medium[J]. Atmospheric Environment,2007,41(19):4097-4105
    [19] Ren X., Chen C., Nagatsu M., et al. Carbon nanotubes as adsorbents in environmentalpollution management: A review[J]. Chemical Engineering Journal,2011,170(2):395-410
    [20] Chen W., Duan L., Zhu D. Adsorption of polar and nonpolar organic chemicals tocarbon nanotubes[J]. Environmental Science&Technology,2007,41(24):8295-8300
    [21] Zhao T.J., Sun W.Z., Gu X.Y., et al. Rational design of the carbon nanofiber catalystsfor oxidative dehydrogenation of ethylbenzene[J]. Applied Catalysis A: General,2007,323:135-146
    [22] Belmabkhout Y., Serna-Guerrero R., Sayari A. Adsorption of CO2from dry gases onMCM-41silica at ambient temperature and high pressure.1: Pure CO2adsorption[J].Chemical Engineering Science,2009,64(17):3721-3728
    [23] Sing K., Everett D., Haul R., et al. Reporting physisorption data for gas/solidsystems[J]. Pure and Applied Chemistry,1985,57(4):603-619
    [24] Kosa S.A., Al-Zhrani G., Salam M.A. Removal of heavy metals from aqueoussolutions by multi-walled carbon nanotubes modified with8-hydroxyquinoline[J].Chemical Engineering Journal,2012,181:159-168
    [25]张玉龙,蒋鑫,夏玮,等.调控博物馆微环境的新型甲醛吸附剂的研制[J].环境工程,2012,30(6):75-78
    [26]刘伟凤.菱角皮活性炭表面改性及其对水体中Cr (Ⅵ)和头孢氨苄的吸附性能研究[D].济南:山东大学硕士学位论文,2012
    [27]高晓明,付峰,武玉飞,等. Co-BiVO4光催化剂的制备及其用于光催化氧化噻吩[J].无机材料学报,2012,27(10):1073-1078
    [28]徐哲,张卫红,冯亚青,等.四氢糠醇合成吡啶催化剂的制备及工艺研究[J].化学工业与工程,2011,28(6):22-26
    [29]林琳.纳米层状二氧化锰的制备及其性能研究[D].重庆:重庆理工大学,2010
    [30] Baltrusaitis J., Jayaweera P.M., Grassian V.H. XPS study of nitrogen dioxideadsorption on metal oxide particle surfaces under different environmentalconditions[J]. Physical Chemistry Chemical Physics,2009,11(37):8295-8305
    [31] Szanyi J., Kwak J.H., Chimentao R.J., et al. Effect of H2O on the adsorption of NO2on γ-Al2O3: an in situ FTIR/MS study[J]. The Journal of Physical Chemistry C,2007,111(6):2661-2669
    [32]成会明.纳米碳管:制备,结构,物性及应用[M].北京:化学工业出版社,2002:6
    [33] Kovtyukhova N.I., Ollivier P.J., Martin B.R., et al. Layer-by-layer assembly ofultrathin composite films from micron-sized graphite oxide sheets and polycations[J].Chemistry of Materials,1999,11(3):771-778
    [34] Stankovich S., Dikin D.A., Piner R.D., et al. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565
    [35] D’Angelo.A., Brunet0., Cognet P., et al. odelling and constraint optimisation ofan aromatic nitration in liquid-liquid medium[J]. Chemical Engineering Journal,2003,91(1):75-84
    [36] Liu L., Ma J., Xia J., et al. Confining task-specific ionic liquid in silica-gel matrix bysol-gel technique: A highly efficient catalyst for oxidation of alcohol with molecularoxygen[J]. Catalysis Communications,2011,12(5):323-326
    [37] Krupke R., Hennrich F., L hneysen H., et al. Separation of metallic fromsemiconducting single-walled carbon nanotubes[J]. Science,2003,301(5631):344-347
    [38] Kong J., Franklin N.R., Zhou C., et al. Nanotube molecular wires as chemicalsensors[J]. Science,2000,287(5453):622-625
    [39] Prato M., Kostarelos K., Bianco A. Functionalized carbon nanotubes in drug designand discovery[J]. Accounts of Chemical Research,2008,41(1):60-68
    [40] Eitan A., Jiang K., Dukes D., et al. Surface modification of multiwalled carbonnanotubes: toward the tailoring of the interface in polymer composites[J]. Chemistryof Materials,2003,15(16):3198-3201
    [41] Deng J., Shao Y., Gao N., et al. Multiwalled carbon nanotubes as adsorbents forremoval of herbicide diuron from aqueous solution[J]. Chemical Engineering Journal,2012:
    [42] Su D.S., Zhang J., Liu X., et al. Surface-modified carbon nanotubes catalyze oxidativedehydrogenation of n-butane[J]. Science,2008,322(5898):73-77
    [43] Serp P., Corrias M., Kalck P. Carbon nanotubes and nanofibers in catalysis[J].Applied Catalysis A: General,2003,253(2):337-358
    [44] Serp P., Castillejos E. Catalysis in Carbon Nanotubes[J]. ChemCatChem,2010,2(1):41-47
    [45] Machado B.F., Serp P. Graphene-based materials for catalysis[J]. Catalysis Science&Technology,2012,2(1):54-75
    [46] Maksimova N., Mestl G., Schl gl R. Catalytic activity of carbon nanotubes and othercarbon materials foroxidative dehydrogenation of ethylbenzene to styrene[J]. Studiesin Surface Science and Catalysis,2001,133:383-389
    [47] Goettmann F., Fischer A., Antonietti M., et al. Chemical synthesis of mesoporouscarbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene[J]. Angewandte Chemie International Edition,2006,45(27):4467-4471
    [48] Peng F., Yu H., Tan J., et al. Selective catalysis of the aerobic oxidation ofcyclohexane in the liquid phase by carbon nanotubes[J]. Angewandte Chemie-International Edition,2011,50(17):3978-3982
    [49] Luo J., Peng F., Yu H., et al. Aerobic liquid-phase oxidation of ethylbenzene toacetophenone catalyzed by carbon nanotubes[J]. ChemCatChem,2013,http://dx.doi.org/10.1002/cctc.201200603
    [50] Yang S., Li X., Zhu W., et al. Catalytic activity, stability and structure of multi-walledcarbon nanotubes in the wet air oxidation of phenol[J]. Carbon,2008,46(3):445-452
    [51] Dreyer D.R., Jia H.P., Bielawski C.W. Graphene oxide: A convenient carbocatalystfor facilitating oxidation and hydration reactions[J]. Angewandte Chemie-International Edition,2010,49(38):6813-6816
    [52] Huang L., Santiso E.E., Nardelli M.B., et al. Catalytic role of carbons in methanedecomposition for CO-and CO-free hydrogen generation[J]. The Journal of chemicalphysics,2008,128:214702
    [53] Zhang J., Comotti M., Schueth F., et al. Commercial Fe-or Co-containing carbonnanotubes as catalysts for NH3decomposition[J]. Chemical Communications,2007,(19):1916-1918
    [54] Grunewald G.C., Drago R.S. Carbon molecular sieves as catalysts and catalystsupports[J]. Journal of the American Chemical Society,1991,113(5):1636-1639
    [55] Szymanski G.S., Karpinski Z., Biniak S., et al. The effect of the gradual thermaldecomposition of surface oxygen species on the chemical and catalytic properties ofoxidized activated carbon[J]. Carbon,2002,40(14):2627-2639
    [56] Moreno-Castilla C., Carrasco-Marín F., Parejo-Pérez C., et al. Dehydration ofmethanol to dimethyl ether catalyzed by oxidized activated carbons with varyingsurface acidic character[J]. Carbon,2001,39(6):869-875
    [57] Zhang J., Su D., Zhang A., et al. Nanocarbon as robust catalyst: Mechanistic insightinto carbon-mediated catalysis[J]. Angewandte Chemie-International Edition,2007,46(38):7319-7323
    [58] Ionescu M.I., Zhang Y., Li R., et al. Nitrogen-doping effects on the growth, structureand electrical performance of carbon nanotubes obtained by spray pyrolysis method[J].Applied Surface Science,2012,258(10):4563-4568
    [59] Chen Y., Wang J., Liu H., et al. Nitrogen doping effects on carbon nanotubes and theorigin of the enhanced electrocatalytic activity of supported Pt for proton-exchangemembrane fuel cells[J]. Journal of Physical Chemistry C,2011,115(9):3769
    [60] Dresselhaus M.S., Dresselhaus G., Saito R., et al. Raman spectroscopy of carbonnanotubes[J]. Physics Reports,2005,409(2):47-99
    [61] Zhang H., Sun C.H., Li F., et al. Purification of multiwalled carbon nanotubes byannealing and extraction based on the difference in van der waals potential[J]. TheJournal of Physical Chemistry B,2006,110(19):9477-9481
    [62] Andrews R., Jacques D., Qian D., et al. Purification and structural annealing ofmultiwalled carbon nanotubes at graphitization temperatures[J]. Carbon,2001,39(11):1681-1687
    [63] Kim Y., Hayashi T., Osawa K., et al. Annealing effect on disordered multi-wallcarbon nanotubes[J]. Chemical Physics Letters,2003,380(3):319-324
    [64] Yu S.S., Zheng W.T. Effect of N/B doping on the electronic and field emissionproperties for carbon nanotubes, carbon nanocones, and graphene nanoribbons[J].Nanoscale,2010,2(7):1069-1082
    [65] Zhou G., Duan W. Field emission in doped nanotubes[J]. Journal of Nanoscience andNanotechnology,2005,5(9):1421-1434
    [66] Bai L., Zhou Z. Computational study of B-or N-doped single-walled carbon nanotubesas NH3and NO2sensors[J]. Carbon,2007,45(10):2105-2110
    [67] Zhang Y.H., Chen Y.B., Zhou K.G., et al. Improving gas sensing properties ofgraphene by introducing dopants and defects: a first-principles study[J].Nanotechnology,2009,20(18):185504
    [68] Zhou Z., Gao X., Yan J., et al. Doping effects of B and N on hydrogen adsorption insingle-walled carbon nanotubes through density functional calculations[J]. Carbon,2006,44(5):939-947
    [69] Wang Y., Wang X., Antonietti M. Polymeric graphitic carbon nitride as aheterogeneous organocatalyst: From photochemistry to multipurpose catalysis tosustainable chemistry[J]. Angewandte Chemie International Edition,2012,51(1):68-89
    [70] Gong K., Du F., Xia Z., et al. Nitrogen-doped carbon nanotube arrays with highelectrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764
    [71] Chen Y., Wang J., Liu H., et al. Enhanced stability of Pt electrocatalysts by nitrogendoping in CNTs for PEM fuel cells[J]. Electrochemistry Communications,2009,11(10):2071-2076
    [72] Chizari K., Janowska I., HoulléM., et al. Tuning of nitrogen-doped carbon nanotubesas catalyst support for liquid-phase reaction[J]. Applied Catalysis A: General,2010,380(1):72-80
    [73] O'Byrne J.P., Li Z., Jones S.L.T., et al. Nitrogen-doped carbon nanotubes: Growth,mechanism and structure[J]. ChemPhysChem,2011,12(16):2995-3001
    [74] Tang Y., Allen B.L., Kauffman D.R., et al. Electrocatalytic activity of nitrogen-dopedcarbon nanotube cups[J]. Journal of the American Chemical Society,2009,131(37):13200-13201
    [75] Liu R., Wu D., Feng X., et al. Nitrogen-doped ordered mesoporous graphitic arrayswith high electrocatalytic activity for oxygen reduction[J]. Angewandte Chemie,2010,122(14):2619-2623
    [76] Hu X., Wu Y., Zhang Z. CO oxidation on metal-free nitrogen-doped carbon nanotubesand the related structure-reactivity relationships[J]. Journal of Materials Chemistry,2012,22:15198-15205
    [77] Lv W.X., Zhang R., Xia T.L., et al. Influence of NH3flow rate on pyridine-like Ncontent and NO electrocatalytic oxidation of N-doped multiwalled carbonnanotubes[J]. Journal of Nanoparticle Research,2011,13(6):2351-2360
    [78] Chizari K., Deneuve A., Ersen O., et al. Nitrogen-doped carbon nanotubes as a highlyactive metal-free catalyst for selective oxidation[J]. ChemSusChem,2012,5(1):102-108
    [79] Yang X., Yu H., Peng F., et al. Confined iron nanowires enhance the catalytic activityof carbon nanotubes in the aerobic oxidation of cyclohexane[J]. ChemSusChem,2012,5(7):1213-1217
    [80] Ago H., Kugler T., Cacialli F., et al. Work functions and surface functional groups ofmultiwall carbon nanotubes[J]. Journal of Physical Chemistry B,1999,103(38):8116-8121
    [81] Cao Y., Yu H., Tan J., et al. Nitrogen-, phosphorous-and boron-doped carbonnanotubes as catalysts for the aerobic oxidation of cyclohexane[J]. Carbon,2013,57:433-442
    [82] Fu X., Yu H., Peng F., et al. Facile preparation of RuO2/CNT catalyst by ahomogenous oxidation precipitation method and its catalytic performance[J]. AppliedCatalysis A: General,2007,321(2):190-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700