离子型聚丙烯酰胺的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯酰胺(PAM)是丙烯酰胺均聚或与其它单体共聚而成的含量在50 %以上的线型水溶性高分子化学品的总称,它是一种重要的水溶性聚合物,在水中能够溶解或溶胀,而形成溶液或分散液。
     随着聚合科学的不断发展,聚丙烯酰胺类聚合物的种类不断增多。目前聚丙烯酰胺按离子性质可分为:非离子聚丙烯酰胺、阴离子聚丙烯酰胺、阳离子聚丙烯酰胺及两性聚丙烯酰胺。本论文分别采用水溶液聚合法合成了阴离子型PAM和三元阳离子P(AM-DMC-DMDAAC),采用乳液聚合法合成了二元阳离子型P(AM-DMC),并对它们的絮凝性能进行了一系列研究。
     采用水溶液聚合法,以丙烯酰胺(AM)、丙烯酸钠为原料,氧化-还原引发剂为引发体系,调节反应温度、pH值、引发剂用量等条件,合成出了一系列阴离子型聚丙烯酰胺,且其对实验室模拟水与实际某厂的印染废水表现出较好的絮凝效果。?
     采用水溶液聚合法,以丙烯酰胺(AM)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)和二甲基二烯丙基氯化铵(DMDAAC)为原料,合成出了三元共聚型阳离子聚丙烯酰胺。三种单体AM:DMC:DMDAAC质量比5:4:1,水溶性偶氮V-50质量分数为0.07%,EDTA-2Na质量分数为0.1%,反应时间为5h,反应温度50℃,单体质量分数为40%,为最优化条件,此时可制备出溶解性好,分子量达到5.1×10~6的三元聚合产物,且与其它自制絮凝剂以及一些市售的优秀絮凝剂相比三元聚合物在对模拟煤泥水的处理中表现出较好的絮凝效果。?
     采用反相乳液聚合发,以丙烯酰胺(AM)与二甲基二烯丙基三甲基氯化铵(DMC)为反应单体,span80-op10为复配乳化剂,合成出了二元阳离子型聚丙烯酰胺。油水比为1.1:1,转速为1000r/min,单体质量分数为30%,反应温度50℃,水溶性偶氮V-50用量0.07%,AM与DMC的摩尔比为95:5,EDTA-2Na的用量为0.1%,乳化剂用量8%,HLB值为6,为最优化条件,此时可制备出分子量达5.0×10~6且溶解性较好的聚合产物,且其在对模拟煤泥水的处理中表现出较好的絮凝效果。
Polyacrylamide (PAM) is a general term of water-soluble polymer, which is homopolymer of acrylamide monomer or copolymerization with other monomers and content is over 50% .It is an important water-soluble polymer and can dissolve or swell in water, forming solution or dispersion .
     With the continuous development of polymerization science, the kinds of polyacrylamide polymers is increased. Polyacrylamide is mainly divided into:non-ionic polyacrylamide, anionic polyacrylamide, cationic polyacrylamide and amphoteric polyacrylamide. In this work, anionic PAM and ternary cationic P (AM-DMC-DMDAAC) was synthesized by solution polymerization and P(AM-DMC) was synthesized by inverse emulsion polymerization, and then examined their flocculent property.
     Series of anionic polyacrylamide was synthesized by solution polymerization with acrylamide (AM) and acrylic acid as raw materials by oxidation– reduction initiator under appropriate conditions. And the polymer shows good flocculating performance to laboratory simulative wastewater .
     The ternary cationic flocculant P(AM-DMC-DMDAAC) was synthesized by aqueous solution polymerization with raw meterials of acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and dimethyl diallyl ammonium chloride (DMDAAC).The ratio of three monomers(AM:DMC:DMDAAC) was 5:4:1, amount of water-soluble azocompound V-50 was 0.07%, amount of EDTA-2Na was 0.1%, monomer mess concentration was 40%, reacted at 50℃for 4hs to get the copolymer with the molecular weight up to 5.0×10~6and it has excellent water-dissolubility. And, the terpolymer shows better flocculating performance to slurry compared with other kinds of flocculants.
     The cationic copolymer P (AM-DMC) was synthesized by inverse emulsion polymerization with monomers of acrylamide (AM) and methacryloyloxyethyl trimethyl ammonium chloride (DMC) , span80-op10 as emulsifier. The oil-water ratio was 1.1:1, speed was 1000r/min, monomer mess concentration was 30%, amount of water-soluble azocompound V-50 was 0.07%, molar ratio of AM and DMC was 95:5, amount of EDTA-2Na was 0.1% , amount of emulsifier was 8%, value of HLB was 6, reacted at 50℃for 4hs to get the copolymer with the molecular weight up to 5.0×10~6 and it has excellent water-dissolubility. This copolymer shows a good flocculating performance to slurry.
引文
Benda D,Snupark J. Inverse emulsion Polymerization of acrylamide and acrylic acid.European Polymer Journal,1997,33(8):1345-1352.
    Debulgne F,Jeunieau L,Wiame M,etal. Synthesis of organic nanoparticles indifferent W/O microemulsions.Langmuir,2000,16(20):7605-7611.
    Fang S J, Fujimoto K, Kondo S. Emulsifier-free emulsion Polymerization of styrene and acrylamide using an amphoteric initiator. Colloid Polym Sci,2000,(278):864~871.
    James P, Richard G J. Direct evidence for the interaction of the mechanism of thermally
    initiated and atom transfer radical polymerization.Macromolecules,2000,(33):9166-9168.
    Haruma Kawaguch,Hirotomo Hoshino,Yasuji Ohtsuka. Preparation of amphoteric latex by modification of styrene-acrylamide copolymer latex. Journal of Applied Science Polymer, 1981, 26(6): 2015-2022.
    Kallon K Ghosh, Lallan Kjumar Tiwary.Influence of sodium Bis(2-ethyl-1-Hexyl) sulfosuccinate/Isooctane/Water Microemulsions on the Hydrolysis of salicylhydroxamic Acid. Journal of molecular liquids,2003,102(l-3):183-195.
    Liu Cui-yun, Feng Wei. Development of cationic and amphoteric polyacrylamide coagulants . Corrosion & Protection in Petrochemical Industry, 2002, 12(2):45-48.
    Meier W. Poly(oxyethylene) adsorption in water/oil microemulsions:a conductivity study.Langmuir,1996,12:1188-1192.
    Ovenden Cherie, Xiao Hui-ning. Flocculation behavior and mechanisms of cationic inorganic microparticle/polymer system. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2002, (197):1-3.
    Paul J C, David M D, Gary A E. 3-Demensional submicron Polymerization of acrylamide by multiphoton excitation of Xanthene dyes.Macromolecules,2001(33):1511-1513.
    Suzuki A, Maruyama H, Seki H, etal. Adsorption characteristics and optimal dosage of flocculants in the solid separation of suspensions.Industrial and Engineering Chemistry Research, 2006,45(3):1123-1127.
    Venkataramana Runkana, Omasundaran P S,Kapu P C. A population balance model forflocculation of colloidal suspensions by polymer bridging. Chemical Engineering Science,2006, 61(1):182-191.
    Wan Jiang,Wu Li-Yang,Xian bao-Zeng. Structure and Properties of Poly (methylmethacrylate) Particles Prepared by a Modified Microemulsion. Polymerization Journal of Polymer Science: Polymer chemistry, 2004(42):733-741.
    Wei M, Rank N J,Fu S K.Synthesis of nanosized ploy(methyl methacrylate)micro latexes with high polymer content by a modifled microemulsion Polymerization.Polymer Bulletin, 1998,40(6):749-756.
    Yan Ze-gui,Yu lin.Cationic microparticle based flocculation and retention systems. Chemical Engineering Journal,2000,80(5):1-3.
    Zhang Li-Ming,Tan Ye-bang,Li Zhou-mei.New amphoteric graft copolymers of sodium carboxymethyl cellulose with acrylamide an aqueous solution properties.J Polym Sci:Part A,2000,76(3):305-318.
    车现红,徐妙侠,廖玖明等.阳离子絮凝剂的反相乳液聚合研究.油气田地工程,2008(6):24-26.
    陈洁,陈平,王宏力等.反相乳液聚合法合成阳离子聚丙烯酰胺的研究.河南化工,2008(3):18-19.
    陈密峰.二甲基二烯丙基氯化铵(DMDAAC)及其聚合物研究新进展.化学世界,2003(9):496-499.
    胡三清,张友浩,胡志朋等.DMDAAC的合成条件优选及防膨性能评价.长江大学学报(自然科学版)理工卷, 2010(1):131-135.
    陈晓蕾.共聚法合成阴离子型聚丙烯酰胺石油驱油剂研究:[硕士学位论文].西安:西北工业大学,2004(3).
    顾雪芳,田澎,张跃华等.水溶性偶氮引发剂引发丙烯酸钠的反相乳液聚合反应.化学世界,2008:715-718.
    顾学芳,王南平等.丙烯酰胺和阳离子单体反相乳液共聚合及其絮凝性能.材料科学与工程学报,2008:888-890.
    胡子恒,张黎明.淀粉与丙烯酰胺和二甲基二烯丙基氯化铵的接枝共聚物.中山大学学报,2001(1):51-55.
    黄福堂,赵佳等.影响聚丙烯酰胺聚合的因素分析与研究.国外油田工程,2001(7):13-15.
    黄鹏程.二甲基二烯丙基氯化胺的反相乳液聚合动力学及机理的研究.化学学报,1996,54(3):209-213.
    吉永超.阳离子型丙烯酰胺絮凝剂的反相微乳液共聚研究:[硕士学位论文].重庆:重庆大学,2008,12-34.
    蒋秋静.阳离子聚丙烯酰胺絮凝剂在污泥脱水工艺中的应用研究.太原理工大学学报,2010,41(4):352-355.
    李清涛.超高分子量聚丙烯酰胺的研究:[硕士学位论文].黑龙江:大庆石油学院,2003,(6):12-15.
    李万捷,赵彦生,温亚龙.两性有机高分子絮凝剂的合成.水处理技术,1994(1):112-115.
    李振泉,孔令干,曹绪龙等.超高分子量高阳离子度P(AM-DMC-DAC)三元共聚物的合成及其絮凝性能.功能高分子学报,2009,22(3):289-292.
    刘翠云,冯伟.阳离子及两性聚丙烯酰胺类絮凝剂的研究进展.石油化工腐蚀与防护,2002,12(2):45-48.
    刘茂刚.孔振兴.蒋拥华等.高分子量阳离子聚丙烯酰胺共聚物P(DMDAAC-AM)的合成.化学与生物工程,2006,23(3):18-22.
    刘晓平,王洪运,张鹏等.三元共聚阳离子聚丙烯酰胺的合成及性能评价.山东大学学报(工学版),2009,39(3):71-76.
    卢晓然,王庆涛,彭晓宏等. AM/DMC/DMDAAC三元共聚物粉剂的制备及应用.现代化工,2010(5):44-48.
    吕荣湖,张红岩,于建宁.阳离子型改性淀粉絮凝剂的制备及絮凝性能研究.中国石油大学化学化工学报,2006(4): 118-131.
    马跃香,胡玉国等.超高分子量聚丙烯酰胺生产工艺研究及应用.石油与天然气化工,2002(31):323-326.
    宁英男,姜涛啊,矿洞庭等.均聚共水解制备超高分子量聚丙烯酰胺.大庆石油学院学报,2000(1):24-26.
    秦雪峰.超高分子量聚丙烯酰胺的合成与工业化生产:[硕士学位论文].杭州:浙江大学,2005:22-28.
    尚宏周,刘建平,郑玉斌等.阳离子聚丙烯酰胺类高聚物的研究进展.现代化工,2007,27(1):119-121.
    沈敬之,李万捷,赵彦生.两性聚丙烯酰胺的制备研究.环境化学,1994(5):13-16.
    沈一丁,张宁.P(AM-DMC)高分子絮凝剂的制备及絮凝性能研究.精细化工,2005,22(8):607-611.
    司晓慧.二甲基二烯丙基氯化铵-丙烯酰胺的反相乳液和微乳液共聚合研究:[硕士学位论文].济南:山东大学,2009:19-21.
    王洪艳.反相乳液法制备水溶性阳离子聚丙烯酰胺的研究:[硕士学位论文].济南:山东大学,2009,26-33.
    王杰.两性高分子絮凝剂在污泥脱水上的应用研究.工业水处理, 2000, 20(8): 28-33.
    王晶,孙潇,雷武等.两性聚丙烯酰胺的合成及应用.化工时刊, 2003, 17(2): 46-48.
    王磊.丙烯酰胺类反相微乳液聚合研究及应用进展.油田化学,2009:458-460.
    吴建军.反相乳液聚合合成AM/DMC阳离子共聚物.石油化工,2005,34(2):140-143.
    严瑞瑄.水处理剂应用手册.北京:化学工业出版社,2003:52-58.
    杨国臣,温月丽,王斌.两型聚丙烯酰胺的应用研究.山西化工,2006(3):12-14.
    杨洁颖.共聚型超高分子量聚丙烯酰胺的研究:[硕士学位论文].西北工业大学,2003:30-59.
    杨开吉,苏文强,沈静.两性聚丙烯酰胺类化学品的合成与应用.上海造纸,2008(2):44-48.
    夏峥嵘,李绵贵.两性高相对分子质量聚丙烯酰胺的合成.精细石油化工,2005,22(1): 47-49.
    张素霞.丙烯酰胺微乳液聚合及引发剂选择的研究.武汉科技大学,2007, 23-44.
    张兴英.高分子化学.中国轻工业出版社,2000:13-33.
    张旭红.超高分子量聚丙烯酰胺的研究:[硕士学位论文].黑龙江:大庆石油学院,2002:10-29.
    张忠兴,韩淑珍,刘昆元.反相悬浮共聚合成聚丙烯酰胺的中试研究.北京化工大学学报,2001(1):52-55.
    赵艳娜,李小瑞.自交联阳离子淀粉接枝两性聚丙烯酰胺环压增强剂的制备及性能.中华
    纸业,2009(24):56-59.
    郑怀礼,唐雪,沈烈翔等.阳离子P(AM-DAC)污泥脱水剂的合成、表征与应用.重庆大学学报,2010,33(07):115-121.
    中华人民共和国国家技术监督局.GB12005.1-89,聚丙烯酰胺特性粘度测定方法.北京:中国标准出版社,1989-12-25.
    钟宏,常庆伟,李明华等.反相乳液聚合制备阳离子型高分子絮凝剂P(AM-DMC).化工进展,2009:241-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700