基于多路传感器信息融合的旋转机械故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转机械是应用最为广泛的机械设备之一,对于转速较高的旋转机械,其零、部件一旦发生故障,整个生产过程会无法正常进行,甚至发生灾难性事故,因此对旋转机械故障诊断的研究具有一定的学术意义和社会经济意义。旋转机械故障诊断包括信号的采集、特征的提取、故障状态诊断和故障状态分析四个环节。本论文首先对多路传感器获取的信号进行降噪,然后对获得的混合信号进行分离,提取特征信息,最后应用信息融合技术进行旋转机械的故障诊断和分析。
     本论文对旋转机械故障诊断主要进行了以下方面的研究:
     1)确定了适合旋转机械故障诊断相适应的解决方案和不确定性推理方法。由于旋转机械存在着本身特性、检测手段、工作环境和信号采集过程的不确定性,知识的不确定性和结论的不确定性,所以在旋转机械故障诊断过程中,存在着许多不可预测因素,根据旋转机械不确定性的处理原则,确定了适合旋转机械故障诊断相适应的解决方案和不确定性推理方法。
     2)通过对旋转机械非平稳振动信号的降噪方法的研究,提出了一种新的小波阈值滤波降噪算法。该部分详细研究了新阈值降噪的特性,将其结果与软阈值和硬阈值降噪方法进行了对比,验证了新的小波阈值滤波降噪算法具有信噪比高,均方根误差小的良好降噪效果。
     3)通过对混合信号分离方法的研究,提出了基于EMD和FastICA阈值分离算法。对多路传感器获得的旋转机械振动的混合信号难以提取其特征信息的问题,用基于EMD和FastICA阈值分离的算法,解决了仅用FastICA算法分离混合信号时,存在观测信号的数目少于源信号的数目而导致信号分离效果极差的问题。基于EMD和FastICA分离算法得到分离信号后再进行阈值降噪,有效的提取了旋转机械振动信号的故障特征。EMD分解法将信号分解为若干个imf分量,再对每个imf分量进行Hilbert变换得到瞬时频率和瞬时幅值,得到信号的Hilbert谱,表示了信号完整的时间-频率分布。利用EMD分解的imf分量对信号数目进行调整,提高了FastICA分离性能,有效地保证了旋转机械设备故障特征信息的提取。
     4)对BP神经网络学习效率低,收敛速度较慢,并且容易在局部极小值处收敛的问题,提出了基于FastICA遗传神经网络算法。该算法首先应用FastICA算法对带噪的旋转机械混合信号进行估计,得到了源信号完全分离的多个独立分量估计,其次用遗传算法优化BP神经网络的权值和阈值,得到优化的BP神经网络,最后将源信号经过FastICA算法得到的多个独立分量估计的归一化能量作为遗传神经网络的输入,应用到遗传神经网络的训练和预测中,进行旋转机械故障的模式识别。该方法保证了神经网络训练过程的全局收敛性,提高了故障识别能力和精度。
     5)针对多传感器信息在故障诊断中可能存在伪证据,造成证据间剧烈冲突使经典证据理论合成规则失效的问题,提出了一种基于伪证据识别的D-S组合规则。首先,利用D-S合成规则中一致证据的聚焦性,进行伪证据识别,并将被识别的伪证据抽取;其次,将伪证据与矛盾证据重新构造新的证据作为替代证据;最后,将替代证据取代被识别伪证据,进行D-S证据合成,削弱了伪证据的不良影响。利用该组合规则对发动机故障进行了诊断,并将诊断结果与其它D-S合成规则诊断结果进行比较,验证了该规则的有效性和优越性。
Rotating machinery is one of the most widely used mechanical equipments. If high speed parts of rotating machinery are malfunction, the whole production fails to work properly, and even the disaster accident may take place. Therefore, the research on fault diagnosis for rotating machinery has, not only theoretical significance and academic value, but also society and economy value. Fault diagnosis for rotating machinery consists of signal collection, feature extraction, diagnosis and analysis of fault state. First, multi-sensor signals are de-noised. Second, individual source signal is separated from the mixed signals to extract characteristic information. Third, the rotating machinery faults are diagnosed based on information fusion technology.
     The innovated achievements of this dissertation about fault diagnosis for rotating machinery are summed up as follows:
     1) Uncertainty of fault diagnosis for rotating machinery is identified. There are some uncertainties in testing method, work environment, process of data acquisition and characteristic of rotating machinery, some uncertainty of knowledge and conclusion, and lots of unpredictable factors in rotating machinery fault diagnosis. Therefore, uncertainty of fault diagnosis for rotating machinery is determined according to uncertainty principles.
     2) Targeting at non-stationary vibration signals de-noising of rotating machinery, a new kind of wavelet threshold de-noising method is proposed. The characteristic of the suggested method is analyzed in depth. Through comparing the results of signals de-noising with soft and hard threshold value method, it shows that the proposed method has high signal-noise ratio and smaller RMS error.
     3) A new method based on EMD, FastICA and threshold algorithm is proposed through researching separated individual source signal from the mixed signals to extract characteristic information. The proposed method solves the problem that extracting features from the mixed vibration signals of rotating machinery obtained by multi-sensor is difficult. Furthermore, when the number of observed signals is less than the number of source signals, the effect of sources separation by FastICA algorithm is poor. The method based on EMD and FastICA algorithm can separated signals, do wavelet threshold de-noising and get fault characteristic information of machinery vibratory signal. EMD is used to decompose the vibratory signals with noises to obtain a number of IMF and then instantaneous frequency and amplitude of the signal can be obtained from each IMF after Hilbert transforming and the Hilbert spectrum is obtained which shows the complete distribution of time and frequency. In this way, enough signals are obtained, then the separated source signals are de-noised, and the features of rotating machinery vibration signals are extracted effectively.
     4) To overcome intrinsic shortcomings of BP neural network, including low learning efficiency, slow convergence rate and easy trapping in local minimum, a new genetic neural network based on FastICA is proposed. First, the mixed signals of rotating machinery by FastICA algorithm are estimated, many individual estimations are obtained from the source signals. Second, the genetic algorithm is used to optimize the weights and thresholds of BP neural network. Third, the normalized power of independent estimation from source signals by FastICA algorithm is obtained, they are put into the genetic neural network to be trained and predicted, and pattern recognition of the rotating machinery fault is shown. The proposed method ensures the global astringency of neural network training and improves the ability and accuracy of fault identification.
     5) The high evidence conflict is caused by the false evidence in multi-sensor systems, and it can make the D-S combination rule out of action. To reduce the negative impact of the false evidence, a D-S combination rule base on false evidence identification is proposed and it is used as follows:first, the false evidence is identified according to consistent evidence focus of the D-S combination rule and extracted of false evidence. Second, the false evidence and conflicting evidence are restructured as an substitute evidence. Third, the substitute evidence is instead of false evidence to be composed by D-S combination rule and weaken the influence of the false evidence. Comparing the diagnosis result of the new method with results of other methods in the engine fault diagnosis, the diagnosis result of the new method turns out to be more accurate. The new false evidence identification method is proved to be credible and excellent.
引文
[1]徐小力,王红军.大型旋转机械运行状态趋势预测[M].北京:科学出版社,2011.
    [2]张文斌.汽轮机发电机组状态趋势预测及故障诊断方法研究[D].浙江大学博士论文,2009.
    [3]胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究[D].浙江大学博士论文,2003.
    [4]吴文杰.基于信息融合的航空发动机故障诊断方法[D].电子科技大学博士论文,2005.
    [5]伍奎.汽轮机发电机组在线监测诊断的网络化、智能化研究[D].重庆大学博士论文,2005.
    [6]董锡明.德国高速列车ICEI重大脱轨事故的启示[J].中国铁路,2000,39(11):46-49.
    [7]袁胜发.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007(11):29-34.
    [8]郭鹏,David Infield,杨锡运.风电机组齿轮箱温度趋势状态监测及分析方法[J].中国电机工程学报,2011,32:129-136.
    [9]孟光,尤明懿.基于状态监测的设备寿命预测与预防维护规划研究进展[J].振动与冲击,2011(8):1-8.
    [10]虞和济,韩庆大,李沈.设备故障诊断工程[M].北京:冶金工业出版社,2001.
    [11]王垚,蒋东翔,战祥森.旋转机械振动故障诊断知识库的研究与实现[J].汽轮机技术,2003(1):11-13.
    [12]胥永刚,马海龙,付胜等.机电设备早期故障微弱信号的非线性检测方法及工程应用[J].振动工程学报,2011,10(5):529-537.
    [13]窦唯.旋转机械振动故障诊断的图形识别方法研究[D].哈尔滨工业大学博士论文,2009.
    [14]夏松波,张嘉钟,徐世昌等.旋转机械故障诊断技术的现状与展望[J].振动与冲击,1997,26(2):1-5.
    [15]Asakura T.,Kobayashi T.and Hatashi S.,A study of fault diagnosis system using neural networks, In Proc.of the 29th ISCIE Int.Symp.On Stochastic systems Theory and Its Applications,Tokyo, Japan,1998.
    [16]Chow M.Y.,Sharpe R.N.and Hung J.C. On the application and design consideration of artificial neural network fault detectors. IEEE Trans, on Industrial Electronics,1993(40) 181-198.
    [17]Hoskins J.C., kaliyur K.M.and Himmelblau D.M.. Fault diagnosis in complex chemical plants using artificial networks.AIChE J.,1991(37):137-141.
    [18]Mah R.S.H.and Chakravarthy V. Pattern recognition using artificial neural networks, Computer & Chemical Engineering,1992(16):371-377.
    [19]Suewatanakul W.and Himmelblau D.M. Fault detection via artificial neural networks[J]. Engineering Simulation,1996(13):967-984.
    [20]J.J. Grefenstette.Optimization of control parameters for genetic algorithms.IEEE Trans. Syst. Man and Cybern,1986(16):122-128.
    [21]J.H.Holland. Adaptation in natural and artificial systems. Ann, Arbor:The University of Michigan Press,1975.
    [22]K.De Jong.An analysis of the behavior of a class of genetic adaptive systems [D].University of Michigan, Dissertation Abstracts International,36(10),5140B,1975.
    [23]Wang Yanxue,He Zhengjia,Zi Yangyang. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dualtree complex wavelet transform[J].Mechanical systems and signal processing,2010,24(1):119-137.
    [24]Burrell P. and Inman D. Expert system for the analysis of faults in an electricity supply network:problem and achievements[J]. Computers in Industry,1998(37):113-123.
    [25]Angeli C. Online expert system for fault diagnosis in hydraulic systems[J].Expert systems,1999(16):115-120.
    [26]白木万博(日).机械振动讲演论文集.郑州机械研究所,1984.
    [27]叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法[J].信息与控制,1985,15(6):27-34.
    [28]周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社,1994.
    [29]赵艳菊.强噪声背景下机械设备微弱信号的提取与检测技术研究[D].天津大学博士论文,2009.
    [30]高金吉.高速涡轮机械振动故障机理及诊断方法的研究[D].清华大学博十论文.1993.
    [31]徐敏,张瑞林.设备故障诊断手册[M].西安:西安交通大学出版社,1998.
    [32]屈梁生,史东锋.全息谱十年:回顾与展望[J].振动、测试与诊断,1998,4(18):235-242.
    [33]陈予恕.非线性动力学理论与大型火电机组振动故障综合治理技术[J].中国机械工程,1999,10(9):1063-1068.
    [34]McFadden Ph D, Smith J D. Vibration monitoring of rolling element bearings by the high frequency resonance technique a review[J].Tribology International,1984,17(1):3-10.
    [35]McFadden PhD. Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design,1986,108(2):165-170.
    [36]Randall R B. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine singals[J]. Mechanical System and processing,2002,15(5):945-962.
    [37]芮执元,徐龙云,李贵明.基于倒频谱理论的滚动轴承故障检测[J].轴承,2007(1):35-37.
    [38]Y. Grenier. Time-dependent ARMA modeling of nonstationary signals. IEEE Trans, on ASSP,1983,31(4):899-911.
    [39]Xing Qi, Jiang Genshiro, Kiagawa. A time varying coefficient vector AR modeling of nonstationary covariance time series[J]. Signal Processing,1993,33(3):315-331.
    [40]Li Hui, Zhang Yuping, Zheng Haiqi. Application of hermitian wavelet to crack fault detection in gearbox[J]. Mechanical systems and signal processing,2011,25 (4): 1353-1363
    [41]Edgar F Velez, Richard Absher. Parametric modeling of the Wigner half-kernel and its application to spectral estimation[J]. Signal Frocessing,1992,26(2):161-175.
    [42]F Shen, M Zheng, D F Shi, et al. Using the cross-correlation technique to extract modal parameters on response-only data[J]. Journal of Sound and Vibration,2003,259(5): 1163-1179.
    [43]R J Martin. Autoregression and irregular sampling:Spectral estimation[J]. Signal processing,1999,77 (2):139-157.
    [44]Altmann J, Mathew J. Multiple band-pass autoregressive demodulation for rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing,2001,15(5): 963-977.
    [45]徐玉秀,原培新,邢钢.极大熵谱法及其在滚动轴承故障诊断中的应用[J].机械科学与技术,2001,20(4):571-574.
    [46]吕志民,徐金梧,翟绪圣.分形维数及其在滚动轴承故断中的应用.机械工程学报,1999,35(2):88-91.
    [47]Lee S K, White P R. Higher-order time-frequency analysis and its application to fault detection in rotating machinery. Mechanical Systems and Signal Processing,1997,11(4): 637-650.
    [48]李志农,丁启全,吴昭同,等.转子裂纹的高阶谱分析.振动与冲击,2002,21(1):60-63.
    [49]Abeysekera S S. Time-frequency domain features of ECG signal:An interpretation and their application in computer aided diagnosis.Ph.D.Thesis, University of Queensland, Australia,1989.
    [50]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社[M],1998.
    [51]Boashash B.Note on the use of Wiger distribution for time-frequency signal analysis. IEEE Trans.Acoust. Speech,Signal Processing,1988(36):1518-1521.
    [52]Boashash B.O'Shea P. Polynomial Wiger-Ville distributions and their relationship to time varying higher order spectra. Proc.IEEE,1992(80):540-568.
    [53]Vetterli M and Herley C.Wavelet and Filter Banks:Theory and Design. IEEE Transaction on Signal Processing,1992,40(9):2207-2231.
    [54]Newland D N. Wavelet Analysis of Vibration. Part Ⅰ:Theory. Journal of Vibration and Acoustics,1994(116):409-416.
    [55]Newland D N.Wavelet Analysis of Vibration. Part Ⅱ:Theory. Journal of Vibration and Acoustics,1994(116):417-425.
    [56]Norden E.Huang, ZhengShen,StevenR.Long, et al.The empirical mode decom-position and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A,1998(454):903-995.
    [57]Cvetkovic Z. On discrete short-time Fourier analysis. IEEE Transactions on Signal Processing,2000,48(9):2628-2640.
    [58]Kim Y H. Fault detection in a ball bearing system using a moving window. Mechanical Systems and Signal Processing,1991,5(6):461-473.
    [59]Stazewski W J, Tomlinson G R. Local tooth fault detection in gearboxes using a moving window procedure [C]. Mechanical Systems and Signal Processing,1997,11(3): 331-350.
    [60]王志刚,李友荣,李方.基于谐波小波分析的故障诊断方法研究[J].振动与冲击.2006(2):125-128.
    [61]Y Meyer. Wavelets and applications[C], Proceedings of the International Conference Marseiile, France,1989.
    [62]S Mallat. A theory of multiresolution signal decomposition:the wavelet transform[J], IEEE Trans. Pattern Anal. Machine Intell.,1989,11 (7):674-693.
    [63]S Mallat. Multi-frequency channel decompositions of images and wavelet models[J], IEEE Trans. ASSP,1989,37(12):2091-2110.
    [64]S Mallat, W L Huang. Singularity detection and processing with wavelets[J], IEEE Trans. Information Theory,1992,38(2):617-643.
    [65]S Mallat, S Zhong. Characterization of signals from multiscal edges[J], IEEE Trans. Pattern Anal. Machine Intell.,1992,14(7):710-732.
    [66]Coifman R, Wickerhauser M V. Entropy based algorithms for best basis selection[J], IEEE Transactions on Information Theory,1992,38(2):313-318.
    [67]Mori K, Kasashima N, Yonhioka T, et al. Prediction of spalling on a ball bearing by applying the discrete wavelet transform to vibration signals[J]. Wear,1996(195):163-168.
    [68]Nikolaou N G. Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets[J]. NDT&E International,2002,35(3):197-205.
    [69]张中民,张英堂,张培林.基于小波分析的变速箱滚动轴承故障诊断方法的研究[J].机械科学与技术,1999,18(4):121-124.
    [70]张进,冯志鹏,褚福磊.滚动轴承故障特征的时间一小波能量谱提取方法.机械工程学报.2011(9):44-49
    [71]赵犁丰,王振芬,张晓亮.基于经验模式分解的希尔伯特变换包络提取在机械故障诊断中的应用[J].青岛海洋大学学学报,2002,32(6):965-970.
    [72]张超,陈建军,徐亚兰.基于EMD分解和奇异值差分谱理论的轴承故障诊断方法.振动工程学报.2011(10):540-545
    [73]Hall D L, Llinas J. An introduction to muliti-sensor data fusion[J].Proc IEEE,1997, 85(1):6-23.
    [74]蔡猛,张大发,张宇声等.基于信息融合技术的核动力装置智能故障诊断系统研究[J].核动力工程,2011,8:105-108.
    [75]闫飞,庄严,王伟.移动机器人基于多传感器信息融合的室外场景理解[J].控制理论与应用,2011,8:1093-1098.
    [76]吕峰,王秀青,杜海莲.基于信息融合技术故障诊断方法与进展[J].华中科技大学学报,2009(1):217-220.
    [77]徐春梅,张浩,彭道刚.基于改进D-S的汽轮机组集成故障诊断研究.系统仿真学报.2011(10):2190-2195
    [78]王敏,王万俊,熊春山等.基于多传感器数据融合的故障诊断技术[J].华中科技大学学报,2001,29(2):96-98.
    [79]Mcculloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943(5) 115-133.
    [80]Kajiro, Watanabe. Diagnosis of multiple simultaneous fault via hierarchical artificial neural Networks[J]. Journal of American Institute of Chemical Engineers,1994,40(5): 839-848.
    [81]T.Mitoma, H.Q. Wang and P.Chen. Fault Diagnosis and Condition Surveillance for Plant Rotating Machinery Using Partially-Linearized Neural Network[J]. Computers &Industrial Engineering.2008,55(4):783-794.
    [82]杨伟东,李岭森,商同等.改进BP算法及其在滚动轴承故障诊断中的应用[J].河北工业大学学报.1998(04):83-86.
    [83]胡凯成,孔凡让,李川奇.神经网络诊断模型的隐层压缩算法[J].振动工程学报.1997(3):87-90.
    [84]侯祥林,李永强,虞和济等.非线性机械设备系统的分形神经网络诊断方法[J].振动工程学报,2001,6(2):220-223.
    [85]赵纪元,何正嘉,孟庆丰等.基于小波包特征提取的模糊诊断网络建立及应用[J].振动与冲击,1997(03):57-60.
    [86]陈文戈,赵学智.轴承故障的自适应小波神经网络分类[J].轴承,2009(03).
    [87]许飞云,贾民平,钟秉等.旋转机械振动故障诊断的一种模糊神经网络方法研究[J].振动工程学报,1996(03):43-47.
    [88]Holland. Adaptation in Natural and Artificial Systems[M].Bradford Book,1975.
    [89]Goldberg D E. Genetic Algorithm in Search,Optimization and Machine Learning [M]. Mass:Addison-Wessley Publishing Company,1989.
    [90]骆志高,陈保磊,庞朝利等.基于遗传算法的滚动轴承复合故障诊断研究[J].振动与冲击2010,29(6):174-177.
    [91]刘占生,窦唯,王东华等.基于遗传算法的旋转机械故障诊断方法融合[J].机械工程学报,2007(10):227-233.
    [92]陈真勇,何永勇,褚福磊等.递阶结构进化神经网络在故障诊断中的应用[J].清华大学学报(自然科学版),2002(6):750-753.
    [93]罗跃纲,闻邦春.遗传神经网络法在风机故障诊断中的应用[J].风机技术,2001(2):43-47.
    [94]B Samanta.Artificial neural networks and genetic algorithms for gear fault detection[J], Mech.Syst. Signal Process,2004,18(5):1273-1282.
    [95]程力,谢志江,刘利云等.运用免疫遗传神经网络的汽轮机振动故障诊断[J].振动、测试与诊断,2010(12):675-678.
    [96]Asakura T.,Kobayashi T.and Hatashi S.,A study of fault diagnosis system using neural networks,In Proc.of the 29thISCIE Int.Symp.On Stochastic systems Theory and Its Applications,Tokyo,Japan,1998.
    [97]Chow M.Y.,Sharpe R.N.and Hung J.C.. On the application and design consider-ation of artificial neural network fault detectors. IEEE Trans.on Industrial Electronics,1993,40: 181-198.
    [98]Suewatanakul W. and Himmelblau D.M.. Fault detection via artificial neural networks[J]. Engineering Simulation,1996(13):967-984.
    [99]杨叔子,史铁林,丁洪.机械设备诊断的理论、技术与方法[J].振动工程学报,1992.5(3):193-201.
    [100]Sohre J S. Trouble-shooting to stop vibration of centrifugal. Petro/Chem engineering, 1968 (11):22-33.
    [101]李陶深.人工智能[M].重庆:重庆大学出版社,2002.
    [102]Dempster A P. Upper and lower probabilities induced by a multi-valued mapping [J]. Annals of Mathematical Statistics,1967,38(4):325-339.
    [103]Shafer G A mathematical theory of evidence [M]. Princeton:Princeton University Press,1976.
    [104]Osman A, Kaftandjian V, Hassler U. Improvement of X-ray castings inspection reliability by using Dempster-Shafer data fusion theory[J]. Pattern Recognition Letters, 2011,32(2):168-180.
    [105]Paksoy A, G kturk M. Information fusion with Dempster-Shafer evidence theory for software defect prediction[J]. Procedia Computer Science,2011(3):600-605.
    [106]卜乐平,刘开培,侯新国.采用D-S证据推理的电机转子故障诊断[J].振动、测试与诊断,2011,31(1):23-36.
    [107]秦海勤,徐可君,隋育松等.基于系统信息融合的滚动轴承故障模式识别[J].振动、测试与诊断,2011,31(3):372-376.
    [108]李俭川,陶俊勇,胡莺庆等.基于贝叶斯网络的智能故障诊断方法[J].中国惯性技术学报,2002,4(10):24-28.
    [109]Judea Pearl. Graphical Models for Probabilistic and Causal Reasoning[J]. The Computer Science and Engineering Handbook,1997.
    [110]Chickering D M. Learning Bayesian networks is NP-complete [J]. learning from data: AI and Statistics, New York:Springer,1996:121-130.
    [111]Lofti A. Zadeh. Fuzzv sets. Information and Control,1965(8):338-353.
    [112]Smiley, R.G. Rotating Machinery Monitoring and Fault Diagnosis[J]. Sound Vibration,1983,15(9):220-234.
    [113]陈铁华,陈启卷.模糊聚类分析在水电机组振动故障诊断中的应用[J].中国电机工程学报,2002,22,(3):43-47.
    [114]Zhang Yao, Su Fen. A fuzzy production rule based expert system[J]. Fuzzy Set and Systems,1991(44).
    [115]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [116]衡彤.小波分析及其应用研究[D].四川大学博士论文,2003,3.
    [117]单佩韦.时频分析系统及其应用[D].华东师范大学博士论文,2011,3.
    [118]徐长发,李国宽.实用小波方法[M].武汉:华中科技大学出版社,2004.
    [119]杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005.
    [120]李翔.基于小波分析的测量信号处理技术研究[D].哈尔滨工业大学博士论文,2009,3.
    [121]Mallat S. A. Theory for Multiresolution Signal Decomposition:The Wavelet Representation[J]. IEEE Trans Part Anal Machine Intell,1993,11(7):674-693.
    [122]Mallat S. Multiresolution and Wavelets, Philadelphia:university of Pennsylvania, 1988.
    [123]潘泉,张磊,孟晋丽等.小波滤波方法及应用[M].北京:清华大学出版社,2005.
    [124]潘泉,孟晋丽,张磊等.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242.
    [125]褚福磊,彭志科,冯志鹏等.机械故障诊断中的现代信号处理方法[M].北京:科学出版社.2009.
    [126]臧玉萍,张德江,王维正.小波分层阈值降噪法及其在发动机振动信号分析中的应用[J].振动与冲击,2009,28(8):57-60.
    [127]滕军,朱焰煌,周峰等.自适应分解层数的小波域中值滤波振动信号降噪法[J].振动与冲击,2009,28(12):58-62.
    [128]沈路,周晓军,刘莉等.形态小波降噪方法在齿轮故障特征提取中的应用[J].农业机械学报,2010,41(4):217-221.
    [129]张雄希,刘振兴.共振解调与小波降噪在电机故障诊断中的应用[J].电机与控制学报,2010,14(6):66-70.
    [130]孟宗,戴桂平,刘彬等.基于模极大值小波域的包络去噪算法研究[J].仪器仪表学报,2005,26(8):582-583.
    [131]张翠芳.基于小波变换的模极大值降噪法的实现及改进[J].南京邮电大学学报,2009,29(1):74-77.
    [132]Donoho D L. Denoising by soft-thresholding [J].IEEE Trans. on Inform. Theory, 1995,41(3):613-627.
    [133]Borras Dolores, CastillaM, Moreno Narciso. Wavelet and Neural Structure:A New Tool for Diagnostic of Power System Disturbances. IEEE Trans on Industry Application, 2001,37(1):184-190.
    [134]Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Assoc,1995,90(432):1200-1224.
    [135]郭健.基于小波分析的结构损伤识别方法研究[D].浙江大学博士论文,2004,5.
    [136]唐进元,陈维涛,陈思雨等.一种新的小波闽值函数及其在振动信号去噪分析中的应用[J].振动与冲击,2009,28(7):118-121.
    [137]王宏强,尚春阳,高瑞鹏等.基于小波系数变换的小波闽值去噪算法改进[J].振动与冲击,2011,30(10):165-168.
    [138]张磊,潘泉.小波域滤波阈值参数c的选取[J].电子学报,2001,29(3):400-402.
    [139]胡广书.现代信号处理教程[M].清华大学出版社,2004.
    [140]蒋永华,汤宝平,董绍江.自适应Morlet小波降噪方法及在轴承故障特征提取中的应用[J].仪器仪表学报,2010,12,31(12):2712-2717.
    [141]曾庆虎,邱静,刘冠军等.基于小波相关滤波法的滚动轴承早期故障诊断方法研究[J].机械科学与技术,2008,27(1).
    [142]李富才,何正嘉,陈进.小波域相关滤波法及其早期故障预示应用[J].振动工程学报,2005,6,18(2):145-148.
    [143]陈岳东,蒋林,屈梁生.机械故障信号的分离[J].中国机械工程.1995,6(2):48-50.
    [144]He Q,Yan R,Kong F,et al. Machine condition monitoring using principal component representations[J].Mechanical Systems and Signal Processing,2009,23(2):446-466.
    [145]袁小宏,史东峰.奇异值分解技术在齿轮箱故障诊断中的应用[J].振动、测试与诊断,2000,20(2):91-96.
    [146]温广瑞,张西宁,屈梁生.奇异值分解技术在声音信息分离中的应用[J].西安交通大学学报,2003(1):37-40.
    [147]Jutten C, Herault J. Blind Separation of Sources, Part1:An Adaptive Algorithm Based on Neuromimetic Architecture [J]. Signal Processing,1991,24(1).
    [148]马建仓,牛奕龙.盲信号处理[M].北京:国防工业出版社,2006.
    [149]Nabil Char kanj, Yannick Deville. Selfadaptive Separation of Convolutively Mixed Signals with a Recursive Structure. Part1:Stability analysis and Optimization of Asymptotic Behavior [J]. Signal Processing,1999(73):225-236.
    [150]杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.
    [151]Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis [M].New York: John Wiley &sons, Inc,2001.
    [152]胥永刚,李强,王正英等.基于独立分量分析的机械故障信息提取[J].天津大学学报,2006,39(9):1066-1071.
    [153]赵谊虹,张洪渊,史习智.一种有效的振动信号分离算法[J].噪声与振动控制,2003,37(1):13-16.
    [154]刘婷婷,任兴民,康召辉.Fast ICA算法在机械振动信号分离中的应用[J].西安工业大学学报,2008(02):27-31.
    [155]A.Hyvarinen. Fast and Robust fixed-point algorithms for independent component analysis[J]. Transactions and Neural Networks.1999,10(3):626-634.
    [156]Wu Z, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society of London, Series A, 2004(460):1597-1611.
    [157]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006.
    [158]Huang N E.A new view of nonlinear waves:The Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999(31):417-457.
    [159]冯志鹏,褚福磊.基于Hilbert-Huang变换的水轮机非平稳压力脉动信号分析[J].中国电机工程学报,2005,25(10):111-115.
    [160]Huang N E, Wu M C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London, Series A,2003(459):2317-2345.
    [161]于德介,程军圣.EMD方法在齿轮故障诊断中的应用[J].湖南大学学报,2002,29(6).
    [162]马孝江,王凤利,蔡悦等.局域波时频分布在转子系统早期故障诊断中的应用研究[J].中国电机工程学报,2004,24(3):161-164.
    [163]Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J].IEEE Signal Processing Letters,2004,11(2):112-114.
    [164]Funabashi K. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks,1989(2):183-192.
    [165]J.M.Vegas and P.J.Zufiria, Generalized neural networks for spectral analysis: Dynamics and Liapunov functions[J], Neural Networks,2004,17(2):233-245.
    [166]张铃,张钹.M-P神经元模型的几何意义及其应用[J].软件学报,1998(5):334-338.
    [167]张立明.人工神经网络的模型及其应用.上海:复日大学出版社,1994.
    [168]钟义信等.智能理论与技术—人工智能与神经网络.北京:人民邮电出版社,1992.
    [169]Rumelhart D E, Hinton G E, Williams R J, Learning representation by back-propagating errors[J], Nature,1986(323):533-536.
    [170]张铃,张钹.多层前馈神经网络的综合和学习算法[J].软件学报,1997,8(4):252-258.
    [171]J.M.Vegas and P.J.Zufiria, Generalized neural networks for spectral analysis: Dynamics and Liapunov functions[J], Neural Networks,2004,17(2):233-245.
    [172]高雪鹏,丛爽.BP网络改进算法的性能对比研究[J].控制与决策,2001,16(2):168-169.
    [173]张代远.神经网络新理论与方法[M].北京:清华大学出版社,2006.
    [174]穆阿华,周绍磊,刘青志等,利用遗传算法改进BP算法[J].计算机仿真,2005,22(2):150-152.
    [175]卢纯,石秉学,采用BP-GA算法的一种LSI神经网络的电路设计[J].清华大学学报(自然科学版),2001,41(1):103-106.
    [176]王智平,刘在德,高成秀等.遗传算法在BP网络权值学习中的应用[J].甘肃工业大学学报,2001,27(2):20-22.
    [177]Vogl T P, Mangis J K, Rigler A K, Accelerating the convergence of the back-propagation method, Biological Cybernetics,1988(59):257-263.
    [178]DeJong K A. Analysis of the Behavior of a class of Genetic Adaptive Systems [D]: [Ph D thesis]. Ann Arbor:Univ michigan,1975.
    [179]玄光男,程润伟.遗传算法与工程优化[M].于歆杰,周根贵,译.北京:清华大学出版社,2004.
    [180]Baum E B. DNA sequences useful for computation. Proceedings of the 2nd DIM A CS Workshop on DNA Based Computers. Princeton University,1996:122-127.
    [181]杨启文,蒋静坪.遗传算法优化速度的改进[J].软件学报,2001,12(2):270-275.
    [182]J Andre,etal.An Improvement of the Standard Genetic Algorithms Fighting Premature Convergence in Continuous Optimization[J]. Advances in Engineering Software,2001,32(1):49-60
    [183]李敏强,寇纪淞等.遗传算法的基本理论与应用[M].科学出版社,2002.
    [184]陈皓,崔杜武,李雪等.交叉点规模的优化与交叉算子性能的改进[J].软件学报,2009,20(4):890-901.
    [185]Zhang J, Chung Henry SH, Lo WL. Clustering-Based adaptive crossover and mutation probabilities for genetic algorithms. IEEE Trans. on Evolutionary Computation, 2007,11(3):326-335
    [186]Domingo OB, Cesar HM, Nicolas GP. Improving crossover operator for real -coded genetic algorithms using virtual parents[J]. Journal of Heuristics,2007,13(3):265-314.
    [187]Garcia-Martinez C, Lozano M, Herrera F, Molina D, Sanchez AM. Global and local real-coded genetic algorithms based on parent-centric crossover operators[J]. European Journal of Operational Research,2006,185(3):1088-1113.
    [188]张军英,许进,保铮.遗传交叉运算的可达性研究[J].自动化学报,2002,28(1):120-125.
    [189]R K Belew, J McInerney, N N Schraudolph. Evolving networks:Using the genetic algorithm with connectionist learning [C].Proceedings of the Second Conference on Artificial Life. CA, USA:Addison-Wesley,1992.
    [190]C H Wang, H L Liu, C T Lin. Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm [J]. IEEE Trans, on Systems, Man, and Cybernetics, Part B:Cybernetics (S1083-4419),2001,31(3):467-475.
    [191]F H F Leung, H Lam, S Ling, P K S Tam. Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J]. IEEE Trans. on Neural Networks (S1045-9227),2003,14(1):79-88.
    [192]Peter Bladon, Richard J. Hall and W. Andy Wright. Situation Assessment Using Graphical Models[J]. ISIF 2002, pp886-893.
    [193]钱徽.一种机器人多传感器联合系统的逻辑和代数分析方法[J].传感技术学报,2005,18(3):540-546.
    [194]杜艺,龚循平,林祥国.基于IHS的高通滤波法影像融合研究[J].测绘与空间地理信息,2010,33(5):144-146.
    [195]蒋洪明,张庆.多分辨力传感器信息融合中的故障检测与恢复[J].传感技术学报,1995(2):15-19.
    [196]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    [197]杨宇.基于EMD和支持向量机的旋转机械故障诊断方法研究[D].湖南大学,2005.
    [198]张育智.基于神经网络与数据融合的结构损伤识别理论研究[D].西南交通大学,2007.
    [199]Funahashi K. On the approximate realization of continuous mapping by neural network[J]. Neural Networks,1989,2(3):183-192.
    [200]Samarasooriya VNS, Varshney PK. A fuzzy modeling approach to decision fusion under uncertainty [J]. Fuzzy Sets and Systems,2000 (114):59-69.
    [201]TOTH D, AACH T. Improved minimum distance classification with Gaussian outlier detection for industrial inspection[J]. Italy, 1th International Conference on Image Analysis and Processing Palermo,2001:584-588.
    [202]刘海军,许丹,周一宇等.基于D-S证据理论多传感器信息融合的辐射源及平台识别[J].信号处理,2009,25(2):294-297.
    [203]程汉文,陈亮,吴乐南.基于加权表决的决策层融合多系统调制识别[J].系统工程与电子技术,2010,32(2):342-345.
    [204]姜万录,刘思远.多特征信息融合的贝叶斯网络故障诊断方法研究[J].中国机械工程,2010,21(8):940-945.
    [205]顾雪平,盛四清,张文勤等.电力系统故障诊断神经网络专家系统的一种实现方式[J].电力系统自动化,1995,19(9):26-29.
    [206]Hall D. L. Mathematical techniques in multisensor data fusion[M]. London:Artech House, Inc.,1992.
    [207]Dempster A P. Upper and Lower Probabilities Induced by a Multi-valued Mapping [J].Annual Mach Statist,1967,38(4):325-339.
    [208]Shafer G. A Mathematical Theory of Evidence[M]. Princeton University. PressPrinceton,1976.
    [209]陈博,万寿红,岳丽华.改进的D-S证据舰船融合检测研究[J].计算机工程与应用,2010,46(28):222-224.
    [210]贾瑞生,孙红梅,闫相宏.基于证据融合理论的煤矿顶板安全评价模型[J].煤炭学报,2010,35(9):1496-2000.
    [211]M.J. Beynon. A method of aggregation in DS/AHP for group decision-making with the non-equivalent importance of individuals in the group[J]. Computers & Operations Research,2005, (32):1881-1896.
    [212]Philippe Smets, Branko Ristic. Kalman filter and joint tracking and classification based on belief functions in the TBM framework[J]. Information Fusion,2007(8):16-27.
    [213]Walley P. Measure of uncertainty in expert system[J]. Artificial Intelligence,1996, 83(1):1-58
    [214]Zadeh L. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination[J]. A I Magazine,1986,7(1):85-90.
    [215]YAGER R R. On the Dempster-Shafer framework and new combination rules[J]. Information Science,1989,41(2):93-137.
    [216]李弼程,王波,魏俊等.一种一有效的证据理论合成公式[J].数据采集与处理,2002,17(1):33-36.
    [217]孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,28(8):117-119.
    [218]Smets P. The combination of evidence in the transfer belief model[J]. IEEE Transaction on Pattern and Machine Intelligence,1990,6(5):447-458.
    [219]Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and confict management[J], Information Fusion,2002,3(3):149-162.
    [220]MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision support systems,2000,29(1):1-9.
    [221]梁昌勇,叶春森,张恩桥.一种基于一致性证据冲突的证据合成方法[J].中国管理科学,2010,18(4):152-156.
    [222]邓勇,施文康,朱振福.一种有效处理冲突证据的组合方法[J].红外与毫米波学报,2004,23(1):27-32
    [223]李剑峰,乐光新,尚勇.基于改进型D-S证据理论的决策层融合滤波算法[J].电子学报,2004(7)1160-1164.
    [224]Voorbraak F. On the justification of demapster rule of combination[J].Artifical intelligence,1991,48(2):171-197.
    [225]Wu Yong-ge,Yong Jing-yu,Liu Ke, et al. On the evidence inference theory[J]. International Jounral of Information Science,1996,89:245-260.
    [226]Zadeh 1 A.A simple view of the dempster-shafer theory of evidence and it's implication for the rule of combination[J]. Artifical Intelligence Magazine,1986(7):34-38.
    [227]Jousselme A L, Dominic Grenier, Eloi Bosse. A new distance between two bodies of evidence[J]. Information Fusion,2001(2):91-101.
    [228]BASIR O, YUAN X. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion,2007,8(4): 379-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700