Mn-SOD基因转化猕猴桃(Actinidia deliciosa)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是猕猴桃的起源和分布中心,资源极其非富。猕猴桃果实风味独特,富含维生素C、糖、多种人体必需氨基酸及其他营养成分,有“果中之王”的美称。
    植物的生长发育总是处于环境胁迫之中,它们严重影响着作物的产量。研究表明,提高植物体内Mn-SOD活性是增强植物抗逆性的有效途径之一。本试验通过根癌农杆菌介导将Mn-SOD基因导入美味猕猴桃,获得转化完整植株,选育具有高抗逆性的猕猴桃新品种。
    以美味猕猴桃优良品种海沃德和秦美组培苗为试材,以基本培养基、碳源、6-BA和生长素为试验因子,通过L9(34)正交试验,筛选出秦美离体叶片再生的理想培养基,即MS+6-BA4.0mg/L+NAA1.0mg/L+蔗糖30g/L。通过比较TDZ、ZT、6-BA和IBA对海沃德叶片再生的影响,获得海沃德最适培养基为MS+TDZ1.0mg/L+ IBA0.15mg/L,再生频率为82.2%,再生芽数为4.75。同时,研究了接种方式、AgNO3等因素对离体叶片再生效率的影响,进一步优化了叶片再生体系,从而建立了稳定高效的猕猴桃叶片再生体系。另外,以叶片再生不定芽为试材,进行了基本培养基和不同激素组合对猕猴桃增殖和生根的研究。
    在建立美味猕猴桃叶片再生体系的基础上,研究了Mn-SOD基因转化中影响叶片转化效率的多种因素,包括叶片预培养、Kan浓度、抑菌素浓度、浸染菌液以及Vir基因诱导因子等,从而确立了美味猕猴桃遗传转化体系。选取幼嫩叶平铺在分化培养基中预培养20d,然后剪成0.5cm2大小的叶块作为转化受体,用携带目的基因的农杆菌EHA105浸染10min,置于分化培养基上共培养3d,冲洗干净后,转接到选择分化培养基中。培养6~7周后,分化出抗性不定芽,及时将产生抗性芽的愈伤组织转接至抗性增殖培养基中,待抗性苗伸长到2cm后,从基部切下转接于抗性生根培养基中,3~4周后可获得转化完整植株。经GUS检测和PCR扩增,初步确认Mn-SOD基因已整合到猕猴桃植株基因组中。
China was the original and distributed resource centre of Actinidia. Kiwifruit had a nice taste with high contents of vitamin C, sugar, all kinds of amino acid necessary to human body and other nutritive components, so it was called the king of fruits.
    Under nature conditions of growth and development, plants were invariably exposed to different environmental stress, which had profound effects on crop production. Many studies had examined that modification of Mn-SOD expression in transgenic plants can improve plant stress tolerance. In this study, we had introduced the Mn-SOD gene into kiwifruit to evealuate its effect on the persistence of environmental stress. The transformed kiwifruit derived from leaf explants would pave the way for its breeding via genetic engineering.
    Two commercial Actinidia deliciosa cultivars “Hayward” and “Qinmei”in vitro leaves of seedlings were selected as experimental materials in this study, basal medium, carbohydrate, 6-BA and auxins as factors which had three content levels respectively, an idea medium which was MS+6-BA4.0mg/L+NAA1.0mg/L+sucrose30g/L for leaf regeneration in“Qinmei” was sifted through the crossed test of L 9(34). And leaf regeneration in “Hayward” was studied on MS medium with TDZ, ZT, 6-BA and IBA. Results showed that the optimal medium for leaf regeneration was MS+TDZ1.0mg/L+IBA 0.15mg/L, which regeneration frequency was 82.2% and its buds No.Per leaf up to 4.75. And a system for in vitro high efficient regeneration was established after some factors affecting on leaf regeneration had been studied. For the multiplication and root development of the adventitious bud from leaf disc, both basal medium and hormone concentration and composition were also examined in this study.
    On the base of regeneration system from leaf explant of “Hayward” and “Qinmei”, several factors that affected genetic transformation of kiwifruit cultivars were examined, including preculture of leaf explant, selection of Kan concentrations, the suspension of strain EHA105, concentrations of Carb and Cef and Vir gene expression factors, and so on. Thus a simple and efficient genetic transformation system was developed. Selecting young leaves as explants were first precultured on the differentiation medium for 20 days, then cocultured on the differentiation medium with Agrobacterium tumefaciens EHA105 harboring a binary vector containing chimeric genes of NptⅡ, Gus report gene and Mn-SOD gene driven by CaMV35S promoter. After 3 days cocultureation, these explants were transferred to the differentiation-resistant medium to select transgenic shoots. Some regenerated Kanamycin-resistant plants were obtained by multiplying and rooting. Through examination of GUS report gene and PCR amplification of Mn-SOD gene, it was showed that that the foreign cecropin Mn-SOD gene was introduced into the regenerated plants genome.
引文
安和祥。猕猴桃种间杂交的新种质[J]。园艺学报,1995,22(2):133~137
    布坎南[美](Buchanan,B B)等主编,瞿礼嘉等译。植物生物化学和分子生物学[M]。北京:科学出版社,2004,976~987
    蔡起贵,钱迎倩,何善强,等。美味猕猴桃原生质体再生植株无性系变异的研究[J]。植物学报,1992,34(11):822~828
    蔡起贵。猕猴桃。见孙勇如,安锡培主编。植物原生质体培养[M]。北京:科学出版社,1991,190~194
    陈振光,林顺权,凌经天。果树原生质体培养及细胞融合的研究进展[J]。福建农学院学报,1990,19:102~113
    催凯荣,戴若兰主编。植物体细胞发生的分子生物学[M]。北京:科学出版社,2000,1~12
    樊军锋,李嘉瑞,韩一凡,等。mtlD/gutD双价耐盐基因转化秦美猕猴桃的研究[J]。西北农林科技大学学报,2002,30(3):53~58
    樊军锋,李玲,韩一凡,李嘉瑞。秦美猕猴桃叶片最佳再生系统的建立[J]。西北植物学报,2002,22(4):907~912
    傅荣昭,刘敏,梁红健,等。通过根癌农杆菌介导法获得菊花转基因植株[J]。植物生理学报,1998,24(1):72~76
    桂耀林,安和祥,蔡达荣,王俊儒。猕猴桃的组织培养[J]。科学通报,1979(4):188~190
    桂耀林,母锡金,徐廷玉。猕猴桃胚乳植株形态分化研究[J]。植物学报,1982(24):216~221
    桂耀林,徐廷玉,顾淑荣,刘淑琼。猕猴桃胚乳培养中的胚胎发生[J]。武汉植物学研究,1988,6(4):395~397
    桂耀林,徐延玉。猕猴桃离体茎端形态发生的组织学和组织化学研究[J]。植物学报,1982, 24(4):301~306
    桂耀林。猕猴桃离体茎段愈伤组织的诱导和植株再生[J]。植物学报,1979,21(4):339~344
    桂耀林。猕猴桃胚乳分化出苗[J]。植物杂志,1981,6:15
    郭卫东,沈向等。利用Lfy cDNA转化猕猴桃的研究[J]。园艺学报,1999,26(2):116~117
    郭延平,李嘉瑞。美味猕猴桃果实愈伤组织诱导[J]。植物生理通讯,1991,27(2):21~24
    
    洪树荣。猕猴桃离体茎段和叶愈伤组织的诱导和植株再生[J]。湖北农业大学学报,1981,9:54~57
    胡桂珍等。软枣猕猴桃未成熟杂种胚培养再生植株[J]。特产研究,1992,4:55~59
    胡家金,萧浪淘,熊兴耀,等。美味猕猴桃不同类型愈伤组织的形态发生能力比较[J]。植物生理学通讯,2001,37(2):119~121
    胡家金,熊兴耀,张秋明,等。美味猕猴桃原生质体培养及植株再生技术研究[J]。湖南农业大学学报,1998,24(3):184~190
    胡家金等。适宜原生质体分离的美味猕猴桃愈伤组织的筛选[J]。湖南农业大学学报, 2000,26(2):105~107
    黄贞光等。猕猴桃胚乳培养获得三倍体植株[J]。科学通报,1982,4:1~8
    黄贞光等。中华猕猴桃组织培养繁殖[J]。农业科技通讯,1983,2:23~24
    贾景明,马纯艳,郑国。软枣猕猴桃体细胞培养获得再生植株[J]。沈阳师范学院学报(自然科学版),1999,4:63~5
    贾书忠,张政。多花猕猴桃组织培养[J]。生物学杂志,1991,2:55~56
    姜维梅,李凤玉。大籽猕猴桃(A. macrosperma)离体再生系统的建立[J]。浙江大学学报(农业与生命科学版)2003,29 (3):295~299
    李浚明编译。植物组织培养教程[第2版][M]。北京:中国农业大学出版社,2002:60~75
    李美如,刘鸿先,王以柔。细胞氧化应激机制与植物抗冷性机理的研究[J]。生命科学,1996,8(4):30~34
    林顺权,宋刚,马英,等。果树转基因研究进展[J]。园艺学报,2001,28(增刊):589~596
    刘春林,董延瑜。美味猕猴桃遗传转化研究初报[J]。湖南农学院学报,1994,20(3):214~221
    刘庆昌,吴国良主编。植物细胞组织培养[M]。北京:中国农业大学出版社,2003:46~77
    母锡金,王文玲,蔡达荣,等。猕猴桃属美味猕猴桃和毛花猕猴桃种间杂交的胚胎学和胚挽救[]。植物学报,1990,32:425~321
    欧阳波,李汉霞,叶志彪。玉米素和IAA对番茄子叶再生的影响[J]。植物生理学通讯,2003,39 (3):217~218
    宋纯鹏编著。植物衰老生物学[M]。北京:北京大学出版社,1998.12
    王爱国,罗广华,邵从本等。植物的氧代谢及活性氧对细胞的伤害[J]。中科院华南植物所集刊,1989,5:11~22
    王碧琴。不同固化物对中华猕猴桃胚乳试管苗生根的影响[J]。江西林业科技,
    
    
    1997,4
    王关林,方宏筠。植物基因工程与技术[M]。北京:科学出版社,1998
    王宏文主编。猕猴桃研究进展[M]。北京:科学出版社,2000.4
    王际轩,李淑珍,李博文,任思瀛。猕猴桃的组织培养繁殖[J]。辽宁农业科学,1982(1):32~34
    王圣梅,黄仁煌,吴显维。猕猴桃远缘杂交育种研究[J]。果树科学,1994,11(1):23~26
    王圣梅。猕猴桃种间杂交[J]。果树科学,1995,12(增刊):145~145
    王圣梅,武显维,黄仁煌,等。猕猴桃种间杂交结果初报[J]。武汉植物研究,1989,7(4):399~402
    肖尊安,韩碧文。猕猴桃原生质体融合和植株再生[J]。细胞生物学杂志,1995(增刊):24~25
    肖尊安,沈德绪,林佰年。美味猕猴桃子叶愈伤组织的原生质体培养和再生植株[J]。武汉植物学研究,1993,11(3):247~252
    肖尊安,沈德绪,林佰年。中华猕猴桃原生质体再生植株[J]。植物学报,1992,34(10):736~742
    肖尊安,沈德绪,林伯年。猕猴桃愈伤组织的生理差异与原生质体生长和分化的关系[J]。植物生理学报,1992,18(4):369~375
    肖尊安,王碧琴。猕猴桃属种间体细胞杂种(英文) [J]。植物学报,1997,39(2):1110~1117
    熊治庭,王圣梅。中华猕猴桃与毛花猕猴桃种间杂交初步研究[J]。武汉植物学研究,1987(5):321~327
    徐小彪,张秋明。基因工程与猕猴桃种质改良[J]。果树学报,2003,20(4):300~304
    杨莉,徐昌杰,陈昆松。:果树转基因研究进展与产业化展望[J]。果树科学,2003,20(5):331~337
    杨增海。猕猴桃离体培养[J]。植物生理学通讯,1985,3:25
    余师珍。猕猴桃子叶组织培养分化成苗[J]。植物生理通讯,1983(2):37~38
    余叔文,汤章诚主编。植物生理与分子生物学[M]。第二版,北京:科学技术出版社,1999,366~389
    张鹏,傅爱根,王爱国。AgN03在植物离体培养中的作用及可能的机制[J]。植物生理学通讯,1997,33(5):376~379
    张远记,母锡金,蔡起贵等。毛花猕猴桃原生质体再生植株[J]。植物学报,1995,37(1):48~52
    张远记,钱迎倩。毛花猕猴桃愈伤组织诱导与植株再生[J]。广西科学,1994,
    
    
    1(4):1~5
    张远记,钱迎倩。软枣猕猴桃试管苗叶片和茎段的愈伤组织诱导及植株再生[J]。西北植物学报,1996,16(2):137~141
    张志宏,方宏筠,景士西,等。苹果主栽品种高效遗传转化系统的建立及其影响因子的研究[J]。遗传学报,1998,25(2):160~165
    郑裕国,王远山,薛亚平,等。抗氧化剂的生产及应用[M]。北京:化学工业出版社,2003.9
    朱道圩,米银法,陈延惠,等。GFP基因在软枣猕猴桃愈伤组织原生体中瞬间表达的初步研究[J]。河南农业大学学报,2003,37(2):145~148
    朱道圩,秦永华,郅玉宝,等。软枣猕猴桃(A. argut)原生质体培养与细胞团再生的初步研究[J]。河南农业大学学报,2001,35(3):221~223
    朱道圩。软枣猕猴桃叶片愈伤组织分化再生植株[J]。植物生理通讯,1997,33(2):89~93
    朱至清编著。植物细胞工程[M]。北京:化学工业出版社,2003,1~14
    Asada K. The water-water cycle in chloroplasts:scavenging of acticity oxygens and of excess photons[J]. Annu Rev Plant physiol Mol Biol,1999,50:601~639
    Bakkeren GZ, Koukolikova N, Grimsley N. Recovery of Agrobacterium tumefaciens T-DNA molecules from whole plants early after transfer[J]. Cell, 1989, 57:847
    Barbieri C, Morini S. Plant regeneration from Actinidia callus cultures[J]. Hort Science, 1987(62):107~109
    Barbieri C, Morini S. Shoot regeneration from callus cultures of Actinidia chinensis (Cv. Haiward) [J]. Acta Horticulturae, 1988(227):470~472
    Bartels D, Nelson D. Approceches to improve stress tolerance using molecuar genetics. Plant,Cell and Environment, 1994,17:659~667
    Bond JE, Roose ML. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange[J]. Plant Cell Rep, 1998,18: 229 ~234
    Bondt AD, Eggermont K, Druart P, et al. Agrobacterium-mediated transformation of apple (Malus×domestica Borkh): an assessment of facters affecting gene transfer efficiency during early transformation step[J]. Plant Cell Rep, 1994,13:587~593
    Bowler C, Alliotte T, De Loose M, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J, 1991, 10: 1723 ~1732
    Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Ann Rev Plant Physiol Mol Bio,1992,43:83~116
    
    Cassio F, Marion G. Ortoflorofrutt. Ital, 1983,67:455~464
    Chiariotti A, Caboni E, Frattarelli A. Shoot regeneration from in vitro roots of kiwi[J]. Acta Horticulturae, 1991(289):97~99
    Cristina P M, Oliverira M M, Pais M S. Micropropagation and simultaneous rooting of Actinidia deliciosa var. Deliciosa ‘Hayward’. Hort Science, 1992,27(5):443~445
    Fraser L G, Harvey C F. Somatic embryogenesis from anther-derived callus in two Actinidia species[J]. Scientia Horticulturae, 1988(29):335~346
    Gautheret R J. In: Bergmann W, Ed. Cell Differentiation and Morphogenesis. Amsterdam: North-Holland Publishing Co. 1966,55~95
    Gupta A S, et al. Increased resistance to oxidative stress in transgenic plants over express chloroplastic Cu/Zn SOD[J]. Proc Nat Acad Sci USA, 1993,163:1067~1073
    Harada H, In vitro organ culture of Actinidia chinensis Planch. as a technique for vegetative multiplication[J]. Hort Science, 1975(50):81~83
    Horsch RB, Fry TE, Hoffmann NL. A Simple and general method for transfering genes into plant. Science,1985,227:1229~1231
    Janssen B J, Gardner R C. The use of transient GUS expression to develop an Agrobacterium -mediated gene transfer system for kiwifruits[J]. Plant Cell Rep, 1993 13:28~31
    Kobayashi Y, Nakamuura M, Kaneyoshi J. Transformation of kiwifruit and trifoliate orange with a synthetic gene encoding the human epidermal growth factor[J]. J Japan Soc Hort Sci. 1996,64:763~769
    Kovac J. Micropropagation of Actinidia Kolomikta. Plant Cell Tissue Organ Cult, 1993, 35 (3):301~303
    Kusada S, Kano-MurakamiY, SakamotoT, et al. A rice homeobox gene,OSH1, alters morphology of kiwifruit and inhibits the gibberellin biosynthesis[J]. Acta Horti, 1998, 463: 53~60
    Leshem Y.Y, Halevy A.H, Frenkel C. Processes and Control of Plant Senescence, Elsevier, New York,1986
    Leva A R, Bertocci F. The effect of sorbitol and mannitol on the morphogensis of Actinidia deliciosa[(A. Chev)Liang and Ferguson] Callus[J]. Acta Horticulturae, 1988,227:447~449
    Leva A R. Tests on organogenesis from callus of Actinidia chinensis[J]. Acta Horticulturae, 1986,179:883~884
    Low JW, Davey MR, Power JB et al. A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendranthema grandiflora
    
    
    Tzelev (Syn Chrysanthemummorifolium Ramat). Plant Cell Tiss Org Cult,1993,33:171~180
    Luehrsen KR, Walbot V. Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol Gen Genet, 1991,225:81~93
    Marino G, Battistini S. Micropropagation of Actinidia deliciosa cvs.“Hayward” and “Tomuri”. Scientia Hort, 1990(45):65~75
    Mayerhofer R, Koncz- Kalman Z,Nawrach C, et al. T-DNA intergration: a mode of illegitimate recombination in plants. The EMBO Journal, 1991,10(3):697~704
    Mc Cord JM, Fridovich I. Superoxide dismutase: an enzymic funcition for crythrocuprein (hemocuperin) [J]. J Bio Chem, 1969, 244:6049~6055
    Mckersis BD, Chen Y. Superoxide dismutase enhance tolerance of freezing stress in transgenic alfalfa (Medicago sativa L) [J]. Plant physiol,1993,103(4):1155~11
    Mii M, Ohashi H. Plantlet regeneration from protoplasts of kiwifruit[J]. Actinidia chinensis planch. Acta Horticulturae,1988(230):167~170
    Mok MC, Mok WS. The metabolism of carbon-14-Thidiazuron in callus tissues of phaseous lunatus cultivar Kingston[J]. Physiol plant. 1985,65:627~632
    Monette P. Organogenesis and plantlet regeneration following in vitro cold storage of kiwifruit shoot tip culture[J]. Scientia Hort, 1987(31):101~106
    Mu S K, Fraser L G, Harvey C F. Rescue of hybrid embryos of Actinidia species[J]. Scientia Horticulturae,1990(44):97~106
    Mu X J, Tsai D R, An H X, et al. Embryology and embryo rescue of inter specific hybrids in Actinidia[J]. Acta Horticulturae,1991(297):93~98
    Murashige T, Skoog F S. Revised medium for rapid growth and bioassays with tobacco tissue culture[J].Physiol plant,1962(15):473~497
    Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA[J]. Nucl Acid Res, 1980, 8:4321~4325
    Nakamuura M, Sawada H, Kobayashi S, et al. Expression of soybean b-1,3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants[J].Plant Cell Rep,1999,18:527~532
    O1iveira MM, Pais M S. Somatic embryogenesis in leaves and leaf-derived protoplasts of kiwifriut[J]. Plant Cell.Rep,1992,11:314~317
    Oliveira MM, Barroso J, Pais MS. Direct gene transfer into Actinidia deliciosa protoplasts: analysis of transient expression of the CAT gene using TLC autoradiography and a GC-MS- based method[J]. Plant Mol Boil. 1991,17:235~242
    Oliveira MM, Pais M S. Plant regeneration from Protoplasts of long-term callus
    
    
    cultures of Actinidia deliciosa cv Hayward (kiwifruit). Plant cell Rep.1991,(10):643~646
    Pais M S, Oliverira M M, Barroso J. Use of petiole segments Actinidia chinensis(kiwi) for plant differentiation and production of friable calli for protoplasts isolation. Acta Horticulturae,1987(212):687~690
    Perl A, Perl-Treves R, Galili G, et al. Enhanced oxidative stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases.Theor Appl Genet, 1991,85:568~576
    Plata E,Ana M.Vieitez.In vitro regeneration of Camellia reticulate by somatic embryogenesis. Hort Sci. 1990,65:707~714
    Rao MV, Paliyath G. Ultraviolet-B and oxone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol,1996,110:125~136
    Revilla M A, Power J B. Morphogenetic potential long-term callus of Actinidia deliciosa[J]. Hort Science, 1988(63):541~545
    Rugini E, Pellegrineschi A, Mencuccini M, Mariotti D. Increase of rooting ability in the woody species kiwi(Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes[J]. Plant Cell Rpt,1991(10):291~295
    Salin M L. Toxic oxygen species and protective systems of the chloroplast[J]. Plant Physiol,1987,72:681~689
    Scandalios J.G, Oxygen stress and superoxide dismutases[J]. Plant Physiol, 1993,101: 7~124
    Sreenivasulu N, Grimm B, Wobus U, et al, Differential response of antioxidants to salinity stress in salt-tolerant and salt-sensitive seedings of foxtailmillet (Setariaitalica)[J].Plant physiol, 2000,109:435~442.
    Steward F.C, Mapes M.O & Mears K. Growth and organized development of cultured cells.ⅡOrganization in cultures grown from freely suspended cells[J]. Amerian Journal of Botany, 1958,45:705~708
    Suezawa K, Yamamoto N, Tanaka O. Plantlet formation from cell suspension of kiwifruit (Actinidia chinensis Planch var chinensis)[J]. Sci. Hortic, 1988,37:123~128
    Sugawara F, Yamamoto N, Tanaka O. Plant regeneration in vitro culture of leaf, stem and petiole segments of Actinidia.polygama Miq. Plant Tissue Culture Leeters,1994,11(1):14~18
    Tepperman JM, Dunsmuiv P.Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity[J]. Plant Mol Biol,1990,14:501~511
    
    Tingay S, et al. Agrobacterium tumefaciens-mediated barley transformation[J]. The Plant Journal, 1997,11(6):1369~1376
    Tsai Q.G.(蔡起贵).Plants regeneration from leaf callus protoplasts of Actinidia chinensis Planch var chinensis[J]. Plant Sci.1988,54:231~235
    Uematsu C, Murase M, Inhikawa H, Imamura J. Agrobacterium-mediated transformation and regeneration of kiwifruit[J]. Plant Cell Rpt,1991(10):286~290
    Van Camp W et al, Enhancement of oxidative stress toleranc in transgenic tobacco plant overproducing superoxide dismutase in chloroplasts. Plant Physiol, 1996, 112:1703~1714
    Victora GM, Rey M, Roberto R. Plant regeneration from petioles of kiwifruit microshoots[J]. Hort Science,1995,30(6):1302~1303
    Weising K, Raymond W, Fung M, et al. Characterisation of microsatellites from Actinidia chinensis. Molecular Breeding.1996(2):117~131
    Yazawa M, Suginuma C,Ichikkawa K. Regeneration of transgeneic plants from hairy root of kiwifruit induced by Agrobacterium rhizogengs[J]. 1995,45 (2):241~244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700