必特螺旋霉素体内代谢与药物动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由中国医学科学院医药生物技术研究所研制的必特螺旋霉素,是由基因工程菌产生的具有异戊酰侧链的螺旋霉素类药物。必特螺旋霉素是多种结构类似成分的混合物,异戊酰螺旋霉素Ⅰ,Ⅱ,Ⅲ是其主要成分,分别占总量的7.4%,22.5%和37.7%,三者之和约占必特螺旋霉素的67.6%。目前作为一类新药候选药物即将进入临床Ⅱ期试验。
     螺旋霉素的结构复杂,必特螺旋霉素是具有十余种螺旋霉素衍生物的混合物,其在体内代谢和药物动力学过程研究对于现有的分析方法是一种挑战。本论文目标是利用先进的分析手段,研究必特螺旋霉素这一复杂混合物的体内代谢和药物动力学过程,主要工作如下:
     一、必特螺旋霉素体内代谢和质谱研究
     在有关文献报道的基础上,首次采用LC/MS~n技术,系统地研究了必特螺旋霉素在大鼠体内的代谢情况。
     大鼠灌胃给予40 mg必特螺旋霉素后,分别收集大鼠的尿、粪和胆汁样品进行分析,除10种原形药物外,共发现49种代谢产物。以异戊酰螺旋霉素Ⅲ为例:11个代谢产物分别鉴定为(1)脱去福洛氨糖,生成M1;(2)脱去4″异戊酰侧链,生成M2和M6;(3)醛基发生还原反应,生成M3和M7;(4)发生水解反应,内酯环开环,生成M4和M11;(5)醛基与半胱氨酸结合,生成M5,M8和M10;(6)脱去碳霉糖,生成M9。必特螺旋霉素中其他组分的代谢途径与异戊酰螺旋霉素Ⅲ类似,共分为11个系列。除10种原形药物(M0a-M0i)外,16个代谢产物(M1a-c,M1f,M3a,M5a,M6a-c,M7a-c,M8a-c和M9c)的结构经与对照物质的色谱和质谱行为比较,予以确认。
     其中相对含量最大的是螺旋霉素,同时也是发挥抗菌活性的主要活性物质。对于螺旋霉素类衍生物,醛基还原成羟基和脱福洛氨糖是首次在大鼠体内发现的代谢途径,在尿中和胆汁中均未发现醛基还原产物,说明醛基还原成羟基的过程可能是肠道菌群介导的。脱去福洛氨糖后的代谢产物中包括普拉特霉素、交沙霉素、柱晶白霉素和麦迪霉素等几种临床上常见的的十六元环大环内酯类抗生素。
     通过LC/MS~n方法,得到必特螺旋霉素及其代谢产物的多级质谱特征丢失碎片,总结质谱裂解规律并作为判断依据,以推测代谢物的结构。
     二、定量分析方法的建立
     必特螺旋霉素作为多组分混合物,包含有10种主要成分,均为螺旋霉素衍生物。其中异戊酰螺旋霉素是主要有效成分,本文中以异戊酰螺旋霉素作为跟踪原
    
     摘要il
    形药物的定量指标,同时以必特螺旋霉素的主要代谢产物螺旋霉素作为跟踪代谢
    物的定量指标。
     通过对色谱和质谱条件进行优化,建立了同时定量分析异戊酞螺旋霉素I,11,
    m或螺旋霉素I,n,m的液相色谱离子阱型质谱联用法(LC/MSn),对必特螺旋
    霉素在大鼠体内药物动力学进行了研究。
     在此基础上,为了能满足必特螺旋霉素I期临床药物动力学研究中高灵敏度
    和高通量的需要,建立了液相色谱四极杆型质谱联用法(LC舰S舰S),同时定量
    分析沐口血浆和尿样中异戊酸螺旋霉素I,n,m和螺旋霉素I,n,111六种成分.
    三、必特螺旋霉素的体外酸稳定性研究
     研究了螺旋霉素系列衍生物(大多数为必特螺旋霉素的主要成分)在pH 1 .3
    的人工胃液中,37℃下的水解动力学,以LC舰Sn法鉴定了水解产物;用LC乃以sn
    法测定了螺旋霉素系列衍生物(螺旋霉素I,n,In,乙酞螺旋霉素In,丙酞螺旋
    霉素m,(异)丁酸螺旋霉素m和异戊酞螺旋霉素I,n,m)的降解速率常数,
    并进行了比较研究.旨在寻求螺旋霉素系列衍生物体内外酸稳定性的相关性,为
    代谢研究及临床用药提供参考数据,同时为研究螺旋霉素衍生物构效关系提供数
    据,进而为开发新药莫定基拙.
     研究中发现这些化合物在酸环境下易降解。3位羚基酸化后对于螺旋霉素衍
    生物的稳定性影响不大,而4’’位夯基酞化后可以提高螺旋霉素衍生物在酸中的稳
    定性并且改变降解途径,脱福洛氨糖成为主要降解途径,其产物具有抗菌活性.
    四、必特螺旋霉素在大鼠体内的药物动力学研究
     吸收动力学研究
     分别灌胃或静脉给予大鼠必特螺旋霉素80 mgkg一,后,采用Lc从Sn法测定了
    不同时刻血浆中3种主要成分(异戊酞螺旋霉素I,n,m)及其主要活性代谢物
    (螺旋霉素I,n,m)的浓度,绘制各自化合物的血浆浓度一时间曲线,计算了
    主要的药物动力学参数。
     必特螺旋霉素以上述两种方式给药进入体内后,转化为螺旋霉素的程度牙民高.
    以母体药物异戊酸螺旋霉素I,n,111和活性代谢物螺旋霉素I,n,111的AUCO一1:h
    总和计算的口服绝对生物利用度平均为%.7%,说明以异戊酞螺旋霉素为主的必
    特螺旋霉素与螺旋霉素相比具有更好的口服吸收。
     组织分布研究
     采用LC乃涯S”法,测定了大鼠经灌胃给予必特螺旋霉素后,组织及血浆中必
    特螺旋霉素主要成分和主要代谢物在五个不同时间点的浓度.测定大鼠经灌胃给
    予等剂量螺旋霉素后,组织及血浆中螺旋霉素在两个不同时间,点的浓度。
    
     嘴周日称111
    ........侧.......
     给予等剂量两种药?
Bitespiramycin (Shengjimycin) was developed by the Institute of Medical Biotechnology, Chinese Academy of Medical Science. It is a group of 4"-acylated spiramycins with 4"-isovalerylspiramycins as the major components, produced by recombinant Streptomyces spiramyceticus F21. The contents of isovalerylspiramycin I, II, III in bitespiramycin are 7.4%, 22.5% and 37.7%, respectively. Minor components in bitespiramycin include about 6 derivatives of spiramycin such as (iso) butanoylspiramycin, propionylspiramycin and acetylspiramycin. Phase II clinical trial of bitespiramycin will be performed soon.
    Although spiramycin has been used in clinical therapy for more than 40 years, the research about its metabolism in vivo was limited. This is due in part to difficulties that have been encountered in establishing a sensitive and specific assay for spiramycin and its metabolites. Bitespiramycin is a complex mixture of more than 10 kinds of spiramycin derivatives. The research about its metabolism and pharmacokinetics in vivo was a challenge for the common analytical methods. The aim of this work is to investigate the metabolism and pharmacokinetics of such a complex multicomponents drug in vivo using the advanced LC/MSn and LC/MS/MS method.
    1. Identification of the metabolites of bitespramycin in rats by LC/MSn
    Metabolites in the urine, bile and feces of 4 rats following a single oral dose of 40 mg bitespiramycin were investigated. A total of 49 metabolites were found in bile, urine and feces by HPLC with ion trap mass spectrometric detection. Using the multi-stage MS (MSn) analysis of bitespiramycin and its metabolites, the characteristic fragment ions were obtained.
    The metabolites of isovalerylspiramycin III (MO) were identified as deforosamine derivative of MO (Ml), deisovalery derivative of Ml (M2), reduction derivative of MO (M3), lactone hydrolyzed derivative of MO (M4), cysteine conjugate of MO (M5), deisovalery derivative of MO (M6), reduction derivative of M6 (M7), cysteine conjugate of M6 (M8), demycarose derivative of MO and M6 (M9), cysteine conjugate of M9 (M10), lactone hydrolyzed derivative of M6 (M11). The other components in bitespiramycin have similar metabolic pathways with isovalerylspiramycin III.
    The facile procedure led to identification of all the 10 known components of bitespiramycin, in addition to the characterization of at least 49 metabolites including spiramycin I, II, III, platenomycin A1, josamycin, leucomycin A1 and midecamycin A1 which have been used in clinical therapy for decades. Structures of 16 major metabolites (M1a-c, M1f, M3a, M5a, M6a-c, M7a-c, M8a-c, and M9c) were established by chromatographic and mass spectrometric analyses and
    
    
    
    comparison with synthesized reference substances. The aldehyde reduction and hydrolysis of the forosamine represent two novel biotransformation pathways for spiramycin derivatives in vivo.
    2. The development of the quantitation methods
    A sensitive and specific LC/MSn method was developed for the simultaneous determination of major components (isovalerylspiramycin I, II, III) or their major metabolites (spiramycin I, II, III) in biological samples of rats.
    A more sensitive and fast LC/MS/MS quantitative method was developed to simultaneously determine six components (isovalerylspiramycin I, II, III and spiramycin I, II, III) in human plasma and urine.
    3. Kinetics of acid-catalyzed hydrolysis
    The developed LC/MSn method was used to clarify the degradation pathways and validated for monitoring degradation process of spiramycin derivatives at 37C in synthetic gastric fluid to simulate human gastric environment. Spiramycin III, acetylspiramycin III, propionylspiramycin III, (iso)butanoylspiramycin III and isovalerylspiramycin I, II, III were also the major components of bitespiramycin, which was developed as a novel antibiotic. These components were found susceptible to degradation from exposure to acidic condition (pH 1.3). Furthermore, the degradation rate constants (Ke) and half-life (t1/2) of spiramycin derivatives were calculated
引文
1. 钟大放主编.药物代谢.北京:中国医药科技出版社,1996,1-3
    2. 加腾隆一,镰龟哲也主编.药物代谢学.东京:化学同人出版社,1995,3-5
    3. 宋振玉主编.药物代谢研究意义、方法、应用.北京:人民卫生出版社,1990,4-8
    4. 郭宗儒.药物化学总论.北京:中国医药科技出版社,1994,5
    5. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, Macintyre F, Rance DJ, Wastall P. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 1997, 283:46-58
    6. Humphrey MJ, Smith DA. Role of metabolism and pharmacokinetic studies in the discovery of new drugs-present and future perspectives. Xenobiotica 1992, 22:743-755
    7. Gumbleton M, Sneader W. Pharmacokinetic considerations in rational drug design. Clin. Pharmacokinet. 1994, 26:161-168
    8. Omura S, Sano H, Sunazuka T. Structure activity relationships of spiramycins. J. Antimicrob. Chemother. 1985, 16 (Suppl A):1-11
    9. Sano H, Sunazuka T, Tanaka H, Yamashita K, Okachi R, Omura S. Chemical modification of spiramycins. Ⅳ. Synthesis and in vitro and in vivo activities of 3", 4"-diacylates and 3, 3", 4"-triacylates of spriamycin I. J. Antibiot. (Tokyo) 1984, 37:760-772
    10. Sano M, Sunazuka T, Tanaka H, Yamashita K, Okachi R, Omura S. Chemical modification of spiramycins. Ⅵ. Synthesis and antibacterial activities of 3,3"-di-O-acyl-4"-O-sulfonyl and 3, 3"-di-O-aeyl-4"-O-alkyl derivatives of spiramyein I. J. Antibiot. (Tokyo) 1985, 38:1350-1358
    11. Inoue A, Deguchi T. The pharmacokinetic studies on spiramycin and acetylspiramycin in rats. Jpn. J. Antibiot. 1982, 35:1998-2004
    12.顾觉奋.微生物药品化学与分析.北京,军事医学科学出版社,1996,9-10
    13. Shang GD, Dai JL, Wang YG. Construction and physiological studies on a stable bioengineered strain of shengjimycin. J. Antibiot. (Tokyo) 2001, 54:66-73
    14.王以光,金莲舫,金文藻,张秀华,曾应,徐小敏,姚军.麦迪霉素4″酰化酶基因的克隆及在螺旋霉素产生菌中的表达.生物工程学报 1992,8:1-14
    15. Willoughby R, Sheehan E, Mitrovich S. A global view of LC/MS. Global View Publishing, Pittsburgh, 2002, X
    16. Niessen WMA. State of the art liquid chromatography-mass spectrometry. J. Chromatogr. A 1999, 856:179-197
    17. Van Bocxlaer JF, Clauwaert KM, Lambert WE. Liquid chromatography-mass spectrometry in forensic toxicology. Mass Spectrom. Rev. 2000, 19:165-214
    18. Ermer J, Vogel M. Application of hyphenated LC-MS techniques in pharmaceutical analysis. Biomed. Chromatogr. 2000, 14:373-383
    19. Wu Y. The use of liquid chromatography-mass spectrometry for the identification of drug degradation products in pharmaceutical formulations. Biomed. Chromatogr. 2000, 14:384-396
    20. Jemal M. High-throughput quantitative bioanalysis by LC/MS/MS. Biomed. Chromatogr. 2000, 14:422-429
    21. Wang T. A new ultra-high throughput method for characterizating combinatorial libraries incorporating a multiple probe autosampler coupled with flow injection mass spectrometry analysis. Rapid Commun. Mass Spectrom. 1998, 12:1123-1129
    
    
    22. Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J. Nat. Prod. 1997, 60:52-60
    23. Shu YZ. Recent natural products based drug development: A pharmaceutical industry perspective, J. Nat. Prod. 1998, 61:1053-1071
    24.赵匡华.化学通史.北京:高等教育出版社,1990,363-381
    25. Hamburger M, Hostettmann K. Bioaetivity in plants: The link between phytochemistry and medicine. Phytochemistry 1991, 30:3864-3874
    26. Wolfender JL, Rodriguez S, Hostettmann K. Liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy for the screening of plant constituents. J. Chromatogr. A 1998, 794:299-316
    27. Vogler B, Klaiber I, Roos G, Walter U, Hiller W, Sandor P, Kraus W. Combination of LC-MS and LC-NMR as a tool for the structural elucidation of natural products. J. Nat. Prod. 1998, 61:175-178
    28. Hostettmann K, Wolfender JL, Rodriguez S. Rapid detection and subsequent isolation of bioaetive constituents of crude plant extracts. Planta Med. 1997, 63:2-10
    29. Si DY, Zhong DF, Chen XY. Profiling oflsovalertatin-family aminooligo-saccharides extracted from the culture of Streptomyces luteogriseus by using liquid chromatography-electrospray ionization mass spectrometry. Anal Chem. 2001, 73:3808-3815
    30. Sanz-Nebot V, Benavente F, Barbosa J. Separation and characterization of multicomponent peptide mixtures by liquid chromatography-electrospray mass spectrometry. Application to crude products of the synthesis of leuprolide, J. Chromatogr. A 2000, 870:315-334
    31. Sanz-Nebot V, Benavente F, Castillo A, Barbosa J. Liquid ehromatography-electrospray mass spectrometry of multicomponent peptide mixtures. Characterization of a mixture from the synthesis of hormone goserelin. J. Chromatogr. A 2000, 889:119-133
    32. Sanz-Nebot V, Benavente F, Barbosa J. Liquid chromatography-mass spectrometry and capillary electrophoresis combined approach for separation and characterization of multicomponent peptide mixtures. Application to crude products of leuprolide synthesis. J. Chromatogr. A 2002, 950:99-111
    33. Kite GC, Howes MJ, Leon CJ, Simmonds MS. Liquid chromatography/mass spectrometry of malonyl-ginsenosides in the authentication of ginseng. Rapid Commun. Mass Spectrom. 2003, 17:238-244
    34. Cui M, Song F, Zhou Y, Liu Z, Liu S. Rapid identification of saponins in plant extracts by electrospray ionization multi-stage tandem mass spectrometry and liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14:1280-1286
    35. Choi BK, Hercules DM, Houalla M. Characterization of polyphosphates by electrospay mass spectrometry. Anal Chem. 2000, 72:5087-5091
    36. Yates N, Wisloeki D, Roberts A, Berk S, Klatt T, Shen DM, Willoughby C, Rosauer K, Chapman K, Griffin P. Mass spectrometry screening of combinatorial mixtures, correlation of measured and predicted electrospray ionization speetra. Anal Chem. 2001, 73:2941-2951
    37.胡蓓,江骥.串联质谱在药品及其代谢产物分析中的应用.现代药理实验方法.张均田主编,北京医科大学中国协和医科大学联合出版社,1998,1637-1642
    38.李慧义,罗淑荣,周同惠.液相色谱—质谱联用技术及其在药物代谢研究中的应用.国外医学药学分册 1997,24:257-263
    
    
    39. Lee MS, Yost PA. Rapid identification of drug metabolites with tandem mass spectrometry. Biomed. Environ. Mass Spectrom. 1988, 15: 193-204
    40. Li K, Chen X, Zhong D, Li Y. Identification of the metabolites of 9-nitro-20(s)-camptothecin in rats. Drug Metab. Dispos. 2003, 31: 792-797
    41. Peon GK, Raynaud FI, Mistry P, Odell DE, Kelland LR, Harrap KR, Barnard CF, Murrer BA. Metabolic studies of an orally active platinum anticancer drug by liquid chromatography-electrospray ionization mass spectrometry, J. Chromatogr. A 1995, 712: 61-66
    42. Zhong DF, Zhang SQ, Sun L, Zhao XY. Metabolism of roxithromycin in phenobarbital-treated rat liver microsomes. Acta Pharmacol. Sin. 2002, 23: 455-460
    43. Zhong D, Li X, Wang A, Xu Y, Wu S. Identification of the metabolites of roxithromycin in humans. Drug Metab. Dispos. 2000, 28: 552-559
    44. Blum W, Aichholz R, Ramstein P, Kuhnol J, Bruggen J, O'Reilly T, Florsheimer A. In vive metabolism of epothilone B in minor-bearing nude mice: identification of three new epothilone B metabolites by capillary high-pressure liquid chromatography/mass spectrometry/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15: 41-49
    45. Jairaj M, Watson DG, Grant MH, Gray AI, Skellem GG. Comparative biotransformation of morphine, codeine and pholcodine in rat hepatocytes: identification of a novel metabolite of pholcodine. Xenobiotica 2002, 32: 1093-1107
    46. Higashi T, Homma S, Iwata H, Shimada K. Characterization of urinary metabolites of vitamin D(3) in man under physiological conditions using liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2002, 29: 947-955
    47. Kamao M, Tatematsu S, Reddy GS, Hatakeyama S, Sugiura M, Ohashi N, Kubodera N, Okano T. Isolation, identification and biological activity of 24R, 25-dihydroxy-3-epi-vitamin D3: a novel metabolite of 24R,25-dihydroxyvitamin D3 produced in rat osteosarcoma cells (UMR 106). J. Nutr. Sci. Vitaminol. (Tokyo) 2001, 47: 108-115
    48. Dal Bo L, Mazzucchelli P, Marzo A. Assay of zofenopril and its active metabolite zofenoprilat by liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B 2000, 749: 287-294
    49. Matuszewsld BK, Constanzer ML, Chavez-Eng. Matrix effect in quantitative LC/MS/MS analysis of biological fluids: A method for determination of finasteride in human plasma at picogram per milliliter concentration. Anal. Chem. 1998, 70: 882-889
    50. Ito S, Tsukada K. Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins. J. Chromatogr. A 2001, 943: 39-46
    51. Eric TG, Meg A, Neil S, Paul V. Reduction of signal suppression effects in ESI-MS using a nanosplitting device. Anal. Chem. 2001, 73: 5635-5644
    52. Choi BK, Gusev AI, Hercules DM. Postcolumn introduction of an internal standard for quantitative LC-MS analysis. Anal. Chem. 1999, 71: 4107-4110
    53. Zrostlikova J, Hajslova J, Poustka J, Begany P. Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography-electrospray ionization tandem mass spectrometry analysis of pesticide residues in plant materials, J. Chromatogr. A 2002, 973: 13-26
    54. Lim J, Jang B, Lee R, Park S, Yun H. Determination of roxithromycin residues in the flounder muscle with electrospray liquid chromatography-mass spectrometry. J. Chromatogr. B 2000,
    
    746: 219-225
    55. Motta M, Ribeiro W, Ifa DR, Moares ME, Moraes MO, Corrado AP, De Nucci G. Bioequivalence evaluation of two roxithromycin formulations in healthy human volunteers by high performance liquid cromatography coupled to tandem mass spectrometry. Acta Physiol. Pharmacol. Ther. Latinoam. 1999, 49: 233-241
    56. Zahir H, Nand RA, Brown KF, Tattam BN, McLachlan AJ. Validation of methods to study the distribution and protein binding of tacrolimus in human blood. J. Pharmacol. Toxicol. Methods 2001, 46: 27-35
    57. Lerner FE, Caliendo G, Santagada V, Santana GSM, Moraes MEA, De Nucci G. Clarithromycin bioequivalence study of two oral formulations in healthy human volunteers. Int. J. Clin. Pharmacol. Ther. 2000, 38: 345-354
    58. Delepine B, Hurtaud-Pessel D, Sanders P. Multiresidue method for confirmation of macrolide antibiotics in bovine muscle by liquid chromatography/mass spectrometry. J. AOAC Int. 1996, 79: 397-404
    59. Delepine B, Hurtaud D, Sanders P. Identification of tylosin in bovine muscle at the maximum residue limit level by liquid chromatography-mass spectrometry, using a particle beam interface. Analyst 1994, 119: 2717-2721
    60. Kurath P, Jones PH, Egan RS, Perun TJ. Acid degradation of erythromycin A and erythromycin B. Experientia 1971, 27: 362-365
    61. Periti P, Mazzei T, Mini E, Novelli A. Pharmacokinetic drug interactions of macrolides. Clin. Pharmacokinet. 1992, 23: 106-131
    62. Rubinstein E, Keller N. Spiramycin renaissance, J. Antimicrob. Chemother. 1998, 42: 572-576
    63.朱峰,王尔健.螺旋霉素的再评价.中国抗生素杂志1991,16:231-236
    64.冯闻铮,亓平言,周倜,苗勇,段训宝.螺旋霉素在酸碱溶液中的降解动力学.药学学报1997,32:934-937
    65. Chabbert YA. Early studies on in-vitro and experimental activity of spiramycin: a review. J Antimicrob. Chemother. 1988, 22 (Suppl B): 1-11
    66. Mourier P, Brun A. Study of the metabolism of spiramycin in pig liver. J. Chromatogr. B 1997, 704: 197-205
    67.孙丽文.螺旋霉素类抗生素体内过程探讨.国外医药·抗生素分册 1990,11:358-365
    68.李显志,王浴生.抗生素抗菌后效作用的研究.国外医药·抗生素分册 1990,11:439-444
    69.戴自英.实用抗菌药物学。上海:上海科学技术出版社,1991,218
    70. Weikel C, Lazenby A, Belitsos P, McDewitt M, Fleming HE Jr, Barbacci M. Intestinal injury associated with spiramycin therapy of cryptosporidium infection in AIDS. J. Protozool. 1991, 38: 147S
    71. Hardy DJ, Hensey DM, Beyer JM, Vojtko C, McDonald EJ, Fernandes PB. Comparative in vitro activities of new 14-, 15-, and 16-membered macrolides. Antimicrob. Agents Chemother. 1988, 32: 1710-1719
    72. Webster C, Ghazanfar K, Slack R. Sub-inhibitory and post-antibiotic effects of spiramycin and erythromycin on Staphylococcus aureus. J. Antimicrob. Chemother. 1988, 22 (Suppl B): 33-39
    73. Nakahama K, Igarasi S. Microbial conversion of antibiotics. IV. Reduction of maridomycin. J. Antibiot. (Tokyo) 1974, 27: 605-609
    74. Omura S, Katagiri M, Umezawa I, Komiyama K, Maekawa T. Structure-biological activities relationships among the leucomycins and their derivatives. J. Antibiot. (Tokyo) 1968,
    
    21:532-538
    75.彭司勋主编.药物化学.北京:化学工业出版社,1988,344
    76. Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H. Epothilons A and B: antifungal and eytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J. Antibiot. (Tokyo) 1996, 49: 560-563
    77. Shioda K, Miki F, Higashi T, Iwasaki S, Akao M. Basic and clinical studies on acetylspiramycin. J. Antibiot. (Tokyo) 1966, 19: 292-296
    78. Frydman AM, Le Roux Y, Desnottes JF, Kaplan P, Djebbar F, Coumot A, Duehier J, Gaillot J. Pharmacokineties of spiramycin in man. J. Antimicrob. Chemother. 1988, 22 (Suppl B): 93-103
    79. Friis C, Erhardsen E, Madsen EB, Nielsen P, Raun K. Respiratory tract distribution and bioavailability of spiramycin in calves. Am. J. Vet. Res. 1991, 52: 1269-1273
    80.周森麟,谭明,沈刚,葛国庆,郑斯骥.健康受试者口服两种螺旋霉素片剂的相对生物利用度.中国新药杂志1993,2:48-50
    81. Schoondermark-Van de Ven E, Glama J, Camps W, Vree T, Russel F, Meuwissen J, and Melchers W. Pharmacokinetics of spiramycin in the Rhesus monkey: transplacental passage and distribution in tissue in the fetus. Antimicrob. Agents Chemother. 1994, 38: 1922-1929
    82. Vachon F, Kembaum S. Acute bronchopulmonary infections: treatment with i.v. spiramycin. Chemioterapia 1987, 6: 282-285
    83. Allen HH, Khalil MW, Vachon D, Glasier MA. Spiramyein concentrations in female pelvic tissues, determined by HPLC: a preliminary report. J. Antimicrob. Chemother. 1988, 22 (Suppl B): 111-116
    84. Cester CC, Dubech N, Toutain PL. Effect of sexual steroid hormones on spiramycin disposition in genital tract secretions of the ewe. J. Pharm. Sci. 1992, 81: 33-36
    85. Cester CC, Laurentie MP, Garcia-Villar R, Toutain PL. Spiramycin concentration in plasma and genital-tract secretions after intravenous administration in the ewe. J. Vet. Pharmacol. Ther. 1990, 13: 7-14
    86. Hart R, Panteix G, Desnottes JF, Diallo N, Leclercq M. Spiramycin uptake by alveolar macrophages. J. Antimicrob. Chemother. 1988, 22 (Suppl B): 135-140
    87. Kitzis M, desnottes JF, Brunel D, Giudicelli A, Jacotot F, Andreassian B. Spiramycin concentrations in lung tissue. J. Antimicrob. Chemother. 1988, 22 (Suppl B): 123-126
    88. Kernbaum S. Susceptibility of mycoplasmas and chlamydiae to macrolides. J. Antimicrob. Chemother. 1985, 16(suppl A): 199-200
    89. Amsden G.W. Advanced-generation macrolides: tissue-directed antibiotics, Int. J. Antimicrob. Agents 2001, 18 (Suppl 1): S11-15
    90. Bengtsson B, Franklin A, Jacobsson Set al. Distribution of penicillin-G and spiramycin to tissue cages and subcutaneous tissue fluid in calves. Res. Vet. Sci. 1991, 50: 301-317
    91. Rocha RT, Awad CE, Ali A, Matyas R, Vital AC, Silva CO. Comparison of spiramyein and clarithromycin for community-acquired lower respiratory tract infections, Int. J. Clin. Pract. 1999, 53: 433-436
    92. Inoue A, Deguchi T. Biosynthesis and the metabolic fate of carbon-14 labeled spiramyein I. J. Antibiot. (Tokyo) 1983, 36: 442-444
    93. Champney WS, Tober CL. Specific inhibition of 50S ribosomal subunit formation in Staphylococcus aurens cells by 16-membered macrolide, lineosamide, and streptogramin B antibiotics. Curr. Microbiol. 2000, 41: 126-135
    
    
    94.中国医学科学院医药生物技术研究所.一类新药必特螺旋霉素申报资料8,原料药质量标准草案及起草说明,2000
    95.姜威,孙承航,金文藻.生技霉素小组分的研究Ⅱ:生技霉素A0、B3和C2的结构鉴定.中国抗生素杂志2002,7:387-391
    96.方纲主编.抗生素生物理化特性第二分册.人民卫生出版社,1981,93
    97. Ramu K, Shringarpure S, Williamson JS. A solution conformation analysis of forocidins Ⅰ and isoforocidins Ⅰ using NMR and molecular modeling. Pharm. Res. 1995, 12: 621-629
    98. Ramu K, Shringarpure S, Cooperwood S, M.Beagle J, Williamson JS. 1H-NMR and 13C-NMR spectral assignments of spiramycins Ⅰ and Ⅲ. Pharm. Res. 1994, 11: 458-465
    99. Budavari S. The Merck Index. Twelfth edition. Published by Merck Research Laboratories Division of Merck & Co., Inc. 1996: 898
    100. Budavari S. The Merck Index. Twelfth edition. Published by Merck Research Laboratories Division of Merck & Co., Inc. 1996: 930
    101.顾觉奋.微生物药品化学与分析.北京,军事医学科学出版社,1996,88
    102. Budavari S. The Merck Index. Twelfth edition. Published by Merck Research Laboratories Division of Merck & Co., Inc. 1996: 1057
    103.中国医学科学院医药生物技术研究所.一类新药必特螺旋霉素申报资料6,化学结构和组分确证的试验资料,1999
    104. Zhong DF, Li XQ, Wang AM, Xu YJ, Wu SD. Identification of the metabolites of roxithromycin in humans. Drug Metab. Dispos. 2000, 28: 552-559
    105. Renard L, Henry P, Sanders P, Laurentie M, Delmas JM. Determination of spiramycin and neospiramycin in plasma and milk of lactating cows by reversed-phase high-performance liquid chromatography. J. Chromatogr. B 1994, 657: 219-226
    106. Juhel-Gaugain M, Anger B, Laurentie M. Multiresidue chromatographic method for the determination of macrolide residues in muscle by high-performance liquid chromatography with UV detection. J. AOAC Int. 1999, 82: 1046-1053
    107. Delepine B, Hurtaud-Pessel D, Sanders P. Multiresidue method for confirmation of macrolide antibiotics in bovine muscle by liquid chromatography/mass spectrometry. J. AOAC. Int. 1996, 79: 397-404
    108. Dubois M, Fluchard D, Sior E, Delahaut P. Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B 2001, 753: 189-202
    109. Sanders P, Delepine B. Confirmatory analysis for spiramycin residue in bovine muscle by liquid chromatography/particle beam mass spectrometry. Biol. Mass Spectrom. 1994, 23: 369-375
    110. Shah VP, Midha KK, Dighe S, et al. Analytical methods validation: bioavailability, bioequivalenee and pharmaeoldnetie studies. J. Pharm. Sci. 1992, 81: 309-312
    111. Karnes HT, March C. Precision, accuracy and data acceptance criteria in biopharma- ceutical analysis. Pharm. Res. 1993, 10: 1420-1422
    112.萧参,陈坚行.生物药剂分析方法的认证.中国药学杂志,1993,24:425-426
    113.宁永成.有机化合物结构鉴定与有机波谱学.科学出版社.2000:224-265
    114. Niessen WMA. Advances in instrumentation in liquid chromatography-mass spectrometry and related liquid-introduction techniques. J. Chromatogr. A, 1998, 794: 407-435
    
    
    115. Wieboldt R, Campbell DA, Henion J. Quantitative liquid chromatographic-tandem mass spectrometric determination of orlistat in plasma with a quadrupole ion trap. J. Chromatogr. B, 1998, 708: 121-129
    116.国家药品监督管理局药品审评中心.化学药品临床前药代动力学研究指导原则(草案).2001
    117.中国医学科学院医药生物技术研究所.一类新药必特螺旋霉素申报资料22,药代动力学的试验资料,1997-1998
    118. Woo E, Greenblett DJ. Pharmacokinetic and clinical implications of quinidine protein binding. J. Pharm. Sci. 1979, 68: 466-470
    119.何钦,全钰珠,邱宗荫.吡喹酮对映异构体与血浆蛋白结合的立体选择性.药学学报 1991,28:488-492
    120. Brook I. Pharmacodynamics and pharmacokinetics of spiramycin and their clinical significance. Clin. Pharm. 1998, 34: 303-309
    121.Rowland M,Tozer TN原著,彭彬主译.临床药动学.湖南省新华印刷二厂.1999.72-92
    122.邵志高,孙国平,邱莉.口服乙酰螺旋霉素的药物动力学研究.南京医学院学报 1992,12:12-15
    123. Inui T, Taira T, Matsushita Y, Endo T. Pharmacokinetic properties and oral bioavailabilities of difloxacin in pig and chicken. Xenobiotica 1998, 28: 887-893
    124. Yata N, Toyoda T, Murakami T, Nishiura A, Higashi Y. Phosphatidylserine as a determinant for the tissue distribution of weakly basic drugs in rats. Pharm. Res. 1990, 7: 1019-1025
    125. Nishiura A, Murakami T, Higashi Y, Yata N. Role of phosphatidylserine in the cellular and subcellular lung distribution of quinidine in rats. Pharm. Res. 1988, 5: 208-213
    126. Friis C, Erhardsen E, Madsen EB et al. Respiratory tract distribution and bioavailability of spiramycin in calves. Am. J. Vet. Res. 1991, 52: 1269-1273
    127. Kavi J, Webberley JM, Andrews JM et al. A comparison of the pharmacokinetics and tissue penetration of spiramycin and erythromycin. J.. Antimicrob. Chemother. 1989, 23: 471-476
    128. Amsden GW. Advanced-generation macrolides: tissue-directed antibiotics, Int. J. Antimicrob. Agents 2001, 18 (Suppl 1): S11-15
    129. Zweers-Zeilmaker WM, Miert AS, Horbach GJ, Witkamp RF. In vitro complex formation and inhibition of hepatic cytochrome P450 activity by different macrolides and tiamulin in goats and cattle. Res. Vet. Sci. 1999, 66: 51-55
    130.庞贻慧主编,物理化学,第二版,人民卫生出版社,1987:274-321
    131.章燕豪主编,物理化学,上海交通大学出版社,1988:306-311
    132.抗生素微生物检定法.中华人民共和国药典(二部),2000年版.北京:化学工出版社:附录81-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700