无机纳米粒子/无皂苯丙复合乳液的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用反应性乳化剂代替传统乳化剂制备无皂苯丙乳液,由于乳化剂参与聚合反应,成膜后成为膜的组成部分,因此可以解决传统乳液聚合产品中游离乳化剂的存在使涂膜耐水性、表面性质下降的缺点。将无皂苯丙乳液与无机纳米粒子复合制备无机纳米粒子/无皂苯丙复合乳液,可综合无皂乳液涂膜耐水性好和无机物高刚性、高强度的优点,使乳液具有更优异的性能。
     本文首先研究了反应性乳化剂存在下的无皂苯丙乳液聚合。根据各单体的作用及对乳液性能的影响,确定了苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸、丙烯腈五元单体共聚体系,以赋予乳液涂膜较高的硬度。在反应性乳化剂SE-10N的存在下,通过正交实验和单因素实验,研究了丙烯酸、丙烯腈、反应性乳化剂、引发剂的用量及甲基丙烯酸甲酯与苯乙烯的质量比、聚合温度等因素对乳液性能的影响,确定了合成无皂苯丙乳液的组成及条件为:相对于体系总投料量,St为15.2%,MMA为9.9%,AN为3.7%,n-BA为15.6%,AA为2.3%,反应性乳化剂为0.9%,引发剂为0.3%,链转移剂为0.9%,缓冲剂为0.2%,聚合温度为85℃。
     在此基础上,采用预乳化半连续种子乳液聚合工艺,将改性无机纳米粒子与无皂苯丙乳液复合,原位合成了无机纳米粒子/无皂苯丙复合乳液。通过无机纳米粒子种类的选择及正交实验,对聚合条件进行了优化,最终确定了合成纳米TiO_2/无皂苯丙复合乳液的工艺条件为:纳米TiO_2用量为单体总质量的1.5%,预乳化的混合单体占其总量的25.0%,种子乳液聚合阶段所加引发剂的量为引发剂总量的30.0%,聚合反应温度85℃。热分析实验表明所制得的复合乳液的热稳定性比未加纳米TiO_2粒子的无皂苯丙乳液高,且其性能总体上优于纳米TiO_2/有皂苯丙复合乳液,其中涂膜铅笔硬度可高达2H级,吸水率降低了29.0%,耐水性提高。透射电镜分析结果表明该复合乳液乳胶粒具有核壳结构,激光粒度分析仪的测定结果显示其乳胶粒的平均粒径为79.8nm。
     对该聚合体系进行了表观动力学及成核机理的研究。结果表明,种子乳液聚合阶段以吸附了乳化剂分子的改性纳米TiO_2粒子成核为主,在壳层聚合阶段则为胶束成核机理。体系的表观动力学方程为R_p=k[I]~(0.15)[E]~(0.83)[M]~(0.69),表观活化能为104.3KJ·mol~(-1)。通过研究滴加速率对聚合反应表观速率的影响,引入动力学系数K,对乳液聚合过程的反应状态进行描述。结果表明,随着滴加速率的增加,反应逐渐由饥饿态向半充溢态转变直至间歇法代表的全充溢态。要使体系聚合状态保持在饥饿态,混合单体的滴加时间应控制在多于140min。
     此外,本文分别对以无皂苯丙复合乳液、无皂苯丙乳液及有皂苯丙复合乳液、有皂苯丙乳液为基料制备的水性乳胶涂料进行了性能测试。结果表明,反应性乳化剂与纳米TiO_2的复合可使涂层耐水性、耐洗刷性得到明显改善,其中用无皂苯丙复合乳液制备的涂料涂层耐水性达126小时不脱落、不起泡,且耐洗刷次数在10000次以上,涂料的性能明显提高。
     本文的研究为无机纳米粒子/无皂苯丙复合乳液的聚合及其应用提供了一定的理论及实验基础。
The technique of styrene-acrylate emulsion polymerization using reactive emulsifier which can participate in polymerization and can become parts of the formed film after reaction in place of traditional emulsifier can solve the disadvantages of traditional emulsion products such as the film water resistance and surface properties declining because of the dissociative emulsifier existing. It is possible that emulsions with more excellent function can be prepared on condition that inorganic nano-particles are compounded with emulsifier-free emulsions. This kind of composite can combine the perfect film water resistance of emulsifier-free emulsions and high rigid and strength of nano-particles.
     The styrene-acrylate emulsion polymerization using reactive emulsifier was studied first, in order to obtain harder film, the five-unit system of styrene, butyl acrylate, acrylic acid, acrylonitrile and methyl methacrylate was chosen according to the monomers characteristics and roles played in emulsion system. Furthermore, influences of the concentration of acrylic acid, acrylonitrile, reactive emulsifier, initiator, monomer proportion between styrene and methyl methacrylate, polymerization temperature on properties of emulsion were studied through orthogonal test and single factor test using reactive emulsifier. The better experimental components and conditions that were gotten finally were : St was 15.2%, MMA was 9.9%, AN was 3.7%, n-BA was 15.6%, AA was 2.3%, reactive emulsifier was 0.9%, initiator was 0.3%, chain transfer agent(DDMC) was 0.9%, NaHCO_3 was 0.2%, polymerization temperature was 85℃.
     On the basis, using the technique of pre-emulsification semi-continuous seeded polymeriz -ation system, modified inorganic nano-particles/styrene-acrylate composite emulsions obtained by in-situ emulsion polymerization had been prepared. The polymerization conditions were opt -imized through the inorganic nanoparticles choosing and orthogonal test. The results showed that the pre-emulsification mixture was 25.0% of its total weight, the nano-TiO_2 was 1.5% of the total monomers weight, the initiator using in seeded polymerization was 30% of its total weight, the seeded polymerization temperature was 85℃were the best experimental conditions. The thermal analysis results showed that the composite latex film presented higher thermal stability than the latex film unmodified by the nano-particles, and its physical properties were superior to nano-TiO_2 / emulsifier-included styrene-acrylate composite emulsion on the whole. The film of the nano-TiO_2/ emulsifier-free styrene-acrylate composite emulsion had a hardness up to 2H grade, and the water absorption was reduced by 29% which
     indicated that the film water resistance was improved. The structure and the morphology of the composite emulsion particles had been characterized. The TEM images showed that the emulsifier-free composite emulsion particles had core-shell structure. The light scattering experiments showed that the average particle size of nano-TiO_2/ emulsifier-free styrene-acryla -te composite emulsion was 79.8nm.
     Furthermore, the apparent kinetics and particles nucleation mechanism of nano-particles / emulsifier-free styrene-acrylate composite emulsion were studied. The results showed that in the stage of seeded polymerization, the modified nano-TiO_2 particles adsorbed emulsifier were the predominant particle nucleation, in the stage of shell-polymerization, the nucleation mechanism was "micellar nucleation". The apparent kinetics equation was R_p= k[I]~(0.15)[E]~(0.83)[M]~(0.69), and the apparent active energy of the polymerization system was 104.3kJmol"1. Through the study of the effect of different dropping speed on the rate of polymerization, the coefficient of apparent kinetics K was used to discuss the polymerization condition. The results showed that with the increasing of mixture dropping speed, the condition of polymerization changed from starved to semi-starved semi-flowed state, and untill over-flowed state of the batch process finally. If the polymerization wanted to keep starved condition steadily, the time of feeding should be longer than 140min.
     In addition, the physical properties of coatings which were prepared by using nano-TiO_2 / emulsifier-free styrene-acrylate composite emulsions, emulsifier-free styrene- acrylate emulsio -ns and nano-TiO_2/ emulsifier-included styrene-acrylate composite emulsions, emulsifier-inclu -ded styrene-acrylate emulsions respectively were tested. The results showed that compoundin -g of nano-TiO_2 and reactive emulsifier could improve the coating film water resistance and the scrub resistance. The film water resistance of coating that was prepared by using nano-TiO_2 / emulsifier-free styrene-acrylate composite emulsions was over 126h, and its scrub number was over10000, which indicated that the coating property was improved obviously.
     This study results provide some theoretical and experimental basises for the polymerizati on and application of inorganic nano-particles / emulsifier-free styrene-acrylate composite emulsion.
引文
1.林宣益.乳胶漆[M].北京:化学工业出版社,2004,48-52
    2.张心亚,孙志娟,黄洪等.乳液聚合技术最新研究进展[J].合成材料老化与应用,2006,35(1):38-42
    3.侯有军,任力,罗正汤等.乳液法制备聚合物纳米粒子及其结构表征与应用[J].离子交换与吸附,2001,17(2):178-186
    4.张心亚,瞿金清,蓝仁华等.核壳聚合与核壳结构聚合物乳液[J].现代化工,2002,22(9):58-61
    5.曾德芳,汪勇.无皂乳液聚合的技术进展[J].涂料技术与文摘,2004,25(1):10-11
    6. Goodali A R, Wilkinson M C, Hearn J. Mechanism of emulsion polymerization of styrene in soap-free systems[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1977, 15(9): 2193-2218
    7. Wang Y M, Pan C Y. Study of the mechanism of the emulsifier-free emulsion polymerization of the styrene/4-vinylpyridine system[J]. Colloid Polym Sci 277: 658-665(1999)
    8. Tauer K, Deckwer R, Kuhn I, etal. A comprehensive experimental study of surfactant-free emulsion polymerization of styrene[J]. Colloid Polym Sci 277: 607-626(1999)
    9. Okubo M, Kusano T. Production of polymer microparticles by "dissolution" of submicron-sized water-insoluble ionized carboxylated polymer particles in the presence of various nonionic emulsifiers[J]. Colloid Polym Sci 272: 1521-1525(1994)
    10. Stoffer J O, Bone T. Polymerization in water-in-oil microemulsion systems[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18(8): 2641-2648
    11.董汉鹏,李效玉.乳液互穿网络型丙烯酸酯类热塑性弹性体的研究[J].高等学校化学学报,2004,25(4):774-777
    12.肖继君,赵俊芳,李彦涛等.LIPN聚氨酯/聚丙烯酸酯粒子形态结构的研究[J].河北科技大学学报,2002,23(1):14-18
    13.艾照全,管荣,张洪涛等.水乳型非织造布用粘合剂的研制[J].中国胶粘剂,1996,5(3):10-13
    14.陈晓锋,高彦芳,刘德山.无皂苯丙乳液的合成及性能研究[J].高分子材料科学与工程,2004,20(2):54-56
    15.朱再盛,吕广镛.无皂乳液聚合的研究进展[J].广州化工,2001,29(4):7-12
    16.马千里,宋吉照,胡刚等.单分散交联聚(4-乙烯吡啶/丙烯酸丁酯)无皂正电性共聚乳胶[J].离子交换与吸附,2001,17(1):61-69
    17.张茂根,翁志学,黄志明等.无皂聚合物乳液制备方法及应用[J].涂料工业,1997,(6):35-36
    18.张心亚,孙志娟,黄洪等.无皂乳液聚合技术及应用研究进展[J].中囤胶粘剂,2005,14(4):43-46
    19. Aslamazova T, Bogdanova S. Polymer-monomer and polymer-polymer interactions and their effect on the stability of emulsifier-free acrylate latexes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects 104(1995)147-155
    20. Ali-Reza Mahdavian, Mahdi Abdollahi. Investigation into the effect of carboxylic acid monomer on particle nucleation and growth in emulsifier-free emulsion copolymerization of styrene-butadiene-acrylic acid[J]. Polymer 45(2004)3233-3239
    21.王继英,张荣珍,仇满德等.无皂苯丙四元共聚乳液的合成及性能研究[J].河北大学学报(自然科学版),2004,24(2):153-155
    22.殷武,孔志元,朱柯等.丙烯酸树脂无皂乳液的研究[J].涂料工业,2002(8):1-3
    23.任添斌,张洪涛.反应型表面活性剂的类型与应用[J].日用化学工业,2000,30(3):25-28
    24.Guyot A, Tauer K. Reactive Surfactants in Emulsion Polymerization[J]. Advances in Polymer Science, 1994, 111: 43-65
    25.陈德铨,王坚,王晨.新型反应性乳化剂[J].精细化工,2001,18(8):435-442
    26.张洪涛,任天斌.可聚合乳化剂的类型及乳液聚合[J].粘接,1999,20(2):26-28
    27.彭顺金,张贵军,方华.反应性乳化剂及其乳液聚合[J].涂料工业,1999,(5):36-39
    28. Tuncel A, Serpen E. Emulsion copolymerization of styrene and methacrylic acid in the presence of a polyethylene oxide based-polymerizable stabilizer with a shorter chain length[J]. Colloid Polym Sci 279: 240-251(2001)
    29.刘宇君,程中虎.丙酮存在下St-BA-HEA体系的无皂乳液聚合[J].合成橡胶工业,2001,24(4):219-221
    30. Masayoshi Okubo, Akira Yamada, Susumn Shihao, etal. Studies on suspension and emulsion (XLVI): Emulsifier-free emulsion polymerization of styrene in acetone-water[J]. Journal of Applicd Polymer Science, 1981, 26(5): 1675-1679
    31.刘宇君,段晋星,俞开钰.甲醇存在下St-BA-HEA体系的无皂乳液聚合研究[J].化学工业与工程,2001,18(5):249-265
    32.李晓燕,马越,吴志明等.挥发性乳化物在无皂乳液聚合中的应用[J].农机化研究,2005,(4):216-219
    33.何丽莉,白石江.无皂乳液聚合研究发展近况[J].辽宁师专学报,1999,1(2):98-100
    34.李刚辉,沈一丁,任庆海.无皂乳液聚合的稳定方法和应用进展[J].化工进展,2005,24(5):489-492
    35. Kai Kang, Chengyou Kan, Yi Du, etal. Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization[J]. European Polymer Journal 41(2005)439-445
    36. Akihiko Kondo, Hiroko Kamura, Ko Higashitani. Development and application of thermosensitive magnetic immunomicrospheres for antibody purification[J]. Applied Microbiology And Biotechnology, 1994, 41(1): 99-105
    37.吴建一,陶洪滨,陈洁.无皂丙烯酸酯乳液涂料的研究[J].化学与粘合,2001(3):110-114
    38.常玉,梁剑锋.防水涂料用无皂乳液的制备[J].涂料工业.2004,34(8):21-24
    39.朱爱萍,周永科,韦亚兵.以硅铝氧烷溶胶为种子的VAc无皂乳液聚合研究[J].高分子材料科学与工程,2000,16(5):35-37
    40.王金刚,张书香,孙昌梅等.高固含量无皂乳液的制备及应用研究进展[J].济南大学学报(自然科学版).2001,15(4):348-351
    41.孙亦周,王颖,姚雄健.无皂乳液聚合原理及其制备[J].航天工艺,2001,(2):24-27
    42.王玉霞,张芳,王艳君等.无皂乳液聚合的进展[J].化学工业与工程,2003,20(1):15-19
    43.胡忠良,马承银,黄可龙等.无皂乳液聚合的理论研究及其制备方法[J].安徽化工,2001,4:46-48
    44.郭林晖,马承银,陈红梅.无皂乳液聚合的理论研究、制备方法及应用[J].化学世界,2003,(1):49-52
    45.韩朝阳,龚兴宇,范晓东等.无皂型乳液聚合研究进展[J].涂料工业,2002(9):28-30
    46. Rosen M J. Gemini: a new generation of surfactants[J]. Chemistry and Technology, 1993, 23(3): 30-33
    47.张洪涛,任天斌.可聚合乳化剂的类型及乳液聚合(续)[J].粘接,1999,20(3):33-35
    48.陈金莲,瞿金清,陈焕钦.木器涂料用环保型苯丙微乳液的研制[J].涂料工业,2004,34(3):38-41
    49.黄宏志,沈玲,熊娉婷等.反应性乳化剂对丙烯酸酯胶粘剂性能的影响[J].中国胶粘剂,2006,15(7):17-19
    50.李芬,徐国财.纳米粉体存在下的乳液聚合[J].胶体与聚合物,2004,22(1):32-35
    51.许秋颖,王鹏,张巨生等.纳米TiO_2复合有机抗菌涂膜的制备及性能表征[J].涂料工业,2004,34(5):18-21
    52. Jung-Eun Lee, Jin-Woong Kim, Jung-Bae Jun, etal. Polymer/Ag composite microspheres produced by water-in-oil-in-water emulsion polymerization and their application for a preservative[J]. Colloid Polym Sci(2004)282: 295-299
    53.张径,杨玉昆.在无机SiO_2纳米粒子存在下的苯丙乳液共聚合[J].高等学校化学学报,2002,23(3):481-485
    54.吴人洁.复合材料[M].天津:天津大学出版社,2000,276
    55.张超灿,孙江勤,李曦等.溶胶-凝胶法制备PMMA/SiO_2透明纳米复合材料的研究[J].玻璃钢/复合材料,2000,(4):18-20
    56. Ging-Ho Hsiue, Jem-Kun Chen, Ying-Ling Liu. Synthesis and characterization of nanocomposite of polyoimide-silica hybrid from nonaqueous sol-gel process[J]. Journal of Applied Polymer Science, 2000, 76(11): 1609-1618
    57. Jin-Woong Kim, Jong-Won Shim, Ji-Hyun Bae, etal. Titanium dioxide/poly(methyl methacrylate) composite microspheres prepared by in situ suspension polymerization and their ability to protect against UV rays[J]. Colloid Polym Sci(2002)280: 584—588
    58. Mingjiao Yang, Yi Dan. Preparation and characterization of poly(methyl methacrylate)/titanium oxide composite particles[J]. Colloid Polym Sci(2005)284: 243-250
    59. Jang Won Seo, Byung Kyu Kim, Preparations and Properties of Waterborne Polyurethane/Nanosilica Composites[J]. Polymer Bulletin, 2005, 54: 1-145
    60.欧立春,杨锋,庄严等.在位分散聚合聚甲基丙酸甲酯/二氧化硅纳米复合材料研究[J].高分子学报,1997,1(2):199-204
    61. NI Gang, YANG Wu, BO Lili, etal. Preparation of polystyrene/SiO_2 nanocomposites by surface-initiated nitroxide-mediated radical poly-merization[J]. Chinese Science Bulletin 2006, 51(13): 1644-1647
    62. Mikio Konno, Koichi Shimizu, Kunio Arai, etal. Soapless emulsion polymerization of methyl methacrylate in water in the presence of barium sulfate[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25(1): 223-230
    63. Erjun Tang, Guoxiang Cheng, Xingshou Pang, etal. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shiclding property[J]. Colloid Polym Sci(2006) 284: 422—428
    64.陈晓锋,温兆银,张向锋等.乳液聚合法制备P(St/BA)-KAl(OH)_2CO_3纳米复合物[J].化学学报,2004,62:1055-1059
    65.张径,杨玉昆.插层法:悬浮聚合制PMMA/蒙脱土纳米复合材料[J].高分子学报,2001,(1):79-83
    66. Hisham Essawy, Ahmed Badran, Ahmed Youssef, etal. Synthesis of poly(methyl methacrylate)/montmorillonite nanocomposites via in situ intercalative suspension and emulsion polymerization[J]. Polymer Bulletin 53, 9-17(2004)
    67. Syed Qutubuddin, Xiao-an Fu, Yousuf Tajuddin. Synthesis of polystyrene-clay nanocomposites via emulsion polymerization using a reactive surfactant[J]. Polymer Bulletin. 2002, 48(2): 143-149
    68. Myoung Whan Noh, Dong Choo Lee. Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization[J]. Polymer Bulletin 42, 619—626(1999)
    69.王旭,黄锐,濮阳楠.聚合物基纳米复合材料的研究进展[J].塑料,2000,29(4):25-37
    70.朱云峰.无机纳米粒子/水性树脂复合物的研制与应用[D].山东青岛:山东科技大学,2005
    71.王书忠,马毅璇,胡福增等.无机纳米粒子/丁苯胶乳复合技术的研究[J].功能高分子学报,2002,15(4):437-441
    72.高俊刚,李源勋.高分子材料[M].北京:化学工业出版社,2002,405-406

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700