核电厂数字化控制系统中人因失误与可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电厂的仪控(Instrumentation and control, I&C)系统由传统的模拟控制发展到数字化控制,使技术系统、人-机界面、规程等影响人因可靠性的情境环境发生变化,改变了操纵员的认知行为模式,出现新的失误机理。传统的人因可靠性分析(Human reliability analysis,HRA)模型和方法难以满足数字化控制系统中操纵员的认知行为失误和可靠性分析的要求。开展数字化控制系统中的HRA技术研究是当前国际上研究的前沿和热点问题。基于当前HRA方法的局限性,本文以数字化控制系统中HRA为研究对象,重点开展以下研究工作:
     (1)核电厂数字化控制系统中的人因失误因果模型。基于Rasmussen的技能、规则、知识(Skill-based、rule-based、knowdge-based, SRK)三级行为模型对操纵员认知行为模型进行扩展,分析核电厂数字化控制系统中操纵员的认知行为和人因失误。通过对数字化控制系统中的情境环境特征分析,识别核电厂数字化控制系统中典型的行为形成因子(Performance shaping factor, PSF)。基于人因事件的分析,进一步识别核电厂普遍存在的主要组织缺陷以及PSF之间的相关关系。通过上述研究,基于系统理论提出从组织因素、情境状态因素、个体因素及人因失误建立人因失误因果概念模型,并分析情境环境因素与个体因素、个体因素与人因失误的影响关系,为人因失误和可靠性分析提供理论基础和指导性框架。
     (2)考虑情境环境因果关系的HRA方法。基于人因失误因果概念模型,建立考虑情境环境因果关系的HRA方法,模拟PSF之间的因果影响关系,克服传统HRA方法中由于PSF分类的非完全独立和非正交性带来重复计算的局限性。采用模糊方法处理HRA模型中节点变量的先验和条件概率,减少专家主观判断带来的不确定性,使人因失误概率(Human error probability, HEP)的量化更符合实际。并且考虑组织管理因素对人因可靠性的影响,构建整合组织管理因素的HRA的模糊贝叶斯网络分析方法,提高人因可靠性分析的质量。并通过贝叶斯网络的诊断推理,识别影响人因失误的主要贡献因子,为人因失误的预防提供决策支持。
     (3)顾及失误恢复的操纵员行为相关性分析方法。相比传统的模拟控制系统,数字化控制系统中操纵员行为之间的相关性更为普遍。识别核电厂数字化控制系统中影响操纵员行为相关性的因素,建立操纵员行为相关性分析的工作模型。提出一种基于模糊逻辑理论识别数字化控制系统中操纵员行为相关性水平的方法,从而考虑失误恢复因子对人因可靠性的影响,进一步完善HRA模型,对HEP进行修正,使结果更符合实际,提高人因可靠性分析的质量。
     (4)整合失误影响的人因失误风险评价/预测方法。对传统只考虑HEP来量化人因失误风险的方法进行改进,综合考虑人因失误概率(HEP)、失误影响概率(Error-effect probability, EEP)、失误后果严重度(Error cosequence severity, ECS),建立一种基于自适应神经-模糊推理系统(ANFIS)的核电厂人因失误风险评价方法,并且在数据获取时考虑因子的相对权重,使评价更为合理,是一种简单、实用、可靠的人因失误风险预测工具。
The instrumentation and control (I&C) system of nuclear power plants is transformed from traditional analog control to digital control, which makes the contextural factors influencing human reliability changed, such as technology systems, human-machine interface, procedure et al, operators’cognitive and action modes also changed, then new human error mechanism emerges. The traditional human reliability analysis models pose problem for digital control systems. Technology of HRA in digital control system turns to be hotspot at present. Aiming at the limitations mentioned above, the paper focus on the HRA in digital control system and the main research work can be conducted as follows:
     (1) The causal model of human error of digital control system for nuclear power plants.
     The operators’cognitive model is expanded on the basis of Rasmussen’s SRK cognitive framework, the cognitive activities and human errors are analyzed in digital control system for NPPs. The typical performance shaping factors (PSFs) of digital control system for NPPs are identified by the analysis of contextual features of digital control system. Based on the analytical results of human factor events, the prevalence of organizational defects and correlation relationships of PSFs are futher identified. Through the studies related above, the causal conceptual model of human error is built from organizational factors, situational factors, individual factors and human errors based on system theory, and the influencing relationships and degree (types) between human errors and individual factors, situational factors and individual factors are analyzed, which provides a theoretical model and guiding framework for human error analysis and HRA.
     (2) The HRA method considering the contextual causal relationships.
     Based on the established human error causal conceptual model, the HRA method considering the contextual causal relationships is built to simulate causal relationships between PSFs. It overcomes the shortcomings that double counting of the effects of PSFs on human reliability because of the dependent and nonorthogonal of PSFs in the traditional HRA methods. The prior probability and conditional probability of node variables in HRA model are obtained by fuzzy method in order to reduce uncertainties due to the expert's subjective judgments, which makes the quantification of human error probability (HEP) more realistic. Furthermore considering the effects of organizational and management factors on human reliability, the fuzzy Bayesian network method of HRA integrating organizational and management factors is established, the quality of HRA is improved. By the diagnostic reasoning of Bayesian network, the main contributing factors causing human error are identified, which provides decision-making support for the prevention of human errors.
     (3) The method of dependency of operators’activities considering error recovery.
     Compared with the traditional analog control system, the dependency of operators’activities is more prevalent in digital control system. Based on the analysis of the characteristics of human factors in digital control system, the influencing factors on the dependency of operators’activities are identified, and the work model for analysing the dependency of operators’activities is established. A fuzzy logic-based approach for analysing the dependency of operators’activities is proposed to assess the dependency level of operators’activities. Namely, it considers the effects of error recovery factors on human reliability to futher improve HRA model and revise the HEP, which makes the results more practical and improves the quality of HRA.
     (4) The technique of human error risk assessment integrating error effects.
     The traditional technique of human error risk which only considering HEP to quantify human error risk is modified. Human Error Probability (HEP), Error-Effect Probability (EEP) and Error Consequence Severity (ECS) are integrated to develop an adaptive network-fuzzy inference system (ANFIS)-based approach for assessing human error risk. Furthermore considering the relative weight to obtain data used to model, which makes the evaluation more reasonable. It is a simple, practical and reliable risk prediction tool of human errors in short.
引文
[1]张力,王以群,黄曙东.人因事故纵深防御系统模型[J].中国安全科学学报, 2002, 12(1) : 34-37
    [2]国家发展和改革委员会.核电中长期发展规划(2005-2020年)[OL]. http://www.china.com.cn/news/txt/2007-11/05/content_9173908_2.htm, 2007.10
    [3] IAEA. Human Reliability Analysis in Probability Safety Assessment for Nuclear Power Plants. Safety Series No.50-P-10, 1995
    [4] Kirwan B. The Validation Of Three Human Reliability Quantification Techniques-THERP, HEART And JHEDI: Part 1-Technique Descriptions And Validations Issues[J]. Applied Ergonomics, 1996, 27(6): 359-373
    [5]郑明光,张琴舜,徐济鋆,等.核电厂先进主控制室的发展概况与自主设计研究的内容和目标[J].核科学与工程, 2000, 20(4): 297-303
    [6] Committee on Application of Digital Instrumentation and Control Systems to Nuclear Power Plant Operations and Safety, National Research Council. Digital Instrumentation and Control Systems in Nuclear Power Plants: Safety and Reliability Issues[M]. Washington D.C:The National Academies Press, 1997
    [7] O’Hara J.M, Brown W.S., Lewis P. M. et al. The effects of interface management tasks on crew performance and safety in complex, computer-based systems: detailed analysis[R]. Washington D.C: U.S. NRC, 2002
    [8] Rasmussen J. Information Processing and Human Machine Interaction: An Approach to Cognitive Engineering[M].Amsterdam:North-Holland,1986
    [9] Reason J. Human Error[M]. New York: Cambridge University Press, 1990
    [10] Hollnagel E. Cognitive Reliability and Error Analysis Method [M].Oxford(UK): Elsevier Science Ltd.,1998
    [11] Rouse W.B., Rouse S.H. Analysis and classification of human error[J]. IEEE Transactions on Systems, Man and Cybernetics, 1983, 13(4): 539-549
    [12]何旭洪,赵炳全,陈豫龙.核电厂操纵员认知行为失误分析[J].原子能科学技术, 2001, 35(6): 556-560
    [13] Sasou K., Reason J. Team errors: definition and taxonomy[J]. Reliability Engineering and System Safety, 1999,65(1):1-9
    [14] Rouse W.B., Cannon-Bowers J.A., Salas E. The role of mental models in team performance in complex systems[J]. IEEE trans SMC, 1992, 22(6): 1296-1308
    [15] Sasou K., Nagasake A., Yukimachi T. A study on the operating team activity of a nuclear power plant under abnormal operating conditions[J]. Safety Science,1993,16(2): 143-156
    [16] Sasou K., Takano K., Yoshimura S. Modeling of a team’s decision-making process[J]. Safety Science, 1996, 24(1): 13-33
    [17] Shu Y.F., Furuta K., Kondo S. Team performance modeling for HRA in dynamic situations[J]. Reliability Engineering and System Safety, 2002, 78(2): 111-121
    [18] Shen S-H., Smidts C., Mosleh A. A methodology for collection and analysis of human error data based on a cognitive model: IDA[J]. Nuclear Enginneering and Design, 1997, 172(1-2): 157-186
    [19] Chang Y.H.J. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accident(ADS-IDACrew) [D]. Maryland: University of Maryland, 1999
    [20] Reason, J. Managing the risks of organizational accidents[M]. Aldershot: Ashgate Pub Ltd, 1997
    [21] Naval Safety Center. Human Factors Analysis and Classification System-HFACS[R]. Washington DC: Office of Aviation Medicine, 2000
    [22] Rasumussen J. Risk management in a dynamic society: a modeling problem[J]. safety science, 1997, 27(2-3): 183-213
    [23] Leveson N. A new accident model for engineering safety systems[J]. safety science, 2004, 42(4): 237-270
    [24] Mohaghegh Z., Mosleh A. Incorporating organizational factors into probabilistic risk assessment of complex socio-technical systems: Principles and theoretical foundations[J]. Safety science, 2009, 47(8): 1139-1158
    [25] Mohaghegh Z., Kazemi R., Mosleh A. Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization[J]. Reliability Engineering and System Safety, 2009,94(5): 1000-1018
    [26] Swain A.D., Guttmann H.E. A handbook of human reliability analysis with emphasis on nuclear power plant applications[R]. Washington DC: USNRC, USA , 1983
    [27] Swain A.D. Accident sequence evaluation program human reliability analysis procedure[R]. Washington DC: USNRC,1987
    [28] Hannaman G.W., Spurgin A.J., Lukic Y. A model for assessing human cognitive reliability in PRA studies[C]. In: IEEE third conference on human factors in nuclearpower plants, Monterey, CA , USA , 1985
    [29] Hannaman G.W., Worledge D.H. Some development in human reliability analysis approaches and tools[J]. Reliability Enigeering and System Safety, 1988, 22: 235-257
    [30] Embrey D.E. SLIM-MAUD: A Computer-Based Technique for Human Reliability Assessment[J].International Journal of Quality & Reliability Management,1986, 3(1):5-12
    [31] Williams J.C. A data-based method for assessing and reducing human error to improve operational performance[C]. In: Proceedings of the IEEE fourth conference on human factors in nuclear power plants, Monterey, CA , USA ,1988
    [32] Swain A.D. Human Reliability Analysis: Need, Status, Trends and Limitations[J]. Reliability Engineering and System Safety, 1990, 29(3): 301-313
    [33] Dougherty E.M. Human reliability analysis-where shouldst thou turn?[J]. Reliability Engineering and System Safety, 1990, 29(3): 283-299
    [34] Hollnagel E. Reliability analysis and operator modelling[J]. Reliability Engineering and System Safety, 1996, 52(3): 327-337
    [35] Parry G.W. Suggestions for an improved HRA method for use in PSA[J]. Reliability Engineering and System Safety, 1995, 49(1):1-12.
    [36] Str?ter O. Bubb H. Assessment of human reliability based on evaluation of plant experience: requirements and implementation[J]. Reliability Engineering and System safety, 1999, 63(2): 199-219
    [37] Str?ter O. Evaluation of human reliability on the basis of operational experience[D]. K?ln, Germany: GRS, 2000
    [38] USNRC. Technical basis and implementation guidelines for a technique for human event analysis (ATHEANA) [R]. Washington, DC: USNRC, 2000
    [39] Kim J., Jung W., Son Y. The MDTA-based method for assessing diagnosis failures and their risk impacts in nuclear power plants[J]. Reliability Engineering and System Safety, 2007, 93(2): 337-349
    [40] Boring R.L. Dynamic Human Reliability Analysis: Benefits and Challenges of Simulating Human Performance[C].In: Proceedings of the European Safety and Reliability Conference(ESREL), Stavanger, Norway, 2007
    [41] Chang Y.H.J, Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents—part 1: Overview of the IDAC model[J]. Reliability Engineering and System Safety, 2007, 92(8): 997-1013
    [42] Kim M.C., Seong P.H. An analytic model for situation assessment of nuclear powerplant operators based on Bayesian inference[J]. Reliability Engineering and System Safety, 2006, 91(3): 270-282
    [43] Woods D.D., Roth E.M., Pople H. Cognitive Environment Simulation: an artifical intelligence system for human performance assessment[R]. Washington DC: U.S.NRC, 1987
    [44] Cacciabue P.C., Decortis F., Drozdowicz B., et al. COSIMO: A Cognitive Simulation Model of Human Decision Making and Behavior in Accident Management of Complex Plants[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 1992, 22(5): 1058-1074
    [45] Dang V.N. Modeling operator cognition for accident sequence analysis: development of an operator-plant simulation[D]. Cambridge Massachusetts: Massachusetts Institute of Technology, 1996
    [46] Smidts C., Shen S.H., Mosleh A. The IDA cognitive model for the analysis of nuclear power plant operator response under accidentconditions. Part 1: Problem solving and decision making model[J]. Reliability Engineering and System Safety, 1997, 55(1): 51–71
    [47]何旭洪,黄祥瑞.工业系统中人的可靠性分析:原理、方法和应用[M].北京:清华大学出版社, 2007
    [48] Chang Y.H.J., Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents—part 2. IDAC performance in?uencing factors model[J]. Reliability Engineering and System Safety, 2007, 92(8): 1014-1040
    [49] Chang Y.H.J., Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents—part 3. IDAC operator response model[J]. Reliability Engineering and System Safety, 2007, 92(8): 1041-1060
    [50] Chang Y.H.J., Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents—part 4. IDAC causal model of operator problem-solving response[J]. Reliability Engineering and System Safety, 2007, 92(8): 1061-1075
    [51] Chang Y.H.J., Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents—part 5. Dynamic probabilistic simulation of IDAC model[J]. Reliability Engineering and System Safety, 2007, 92(8): 1076-1101
    [52] Corker K., Pisanich G., Bunzo M. A cognitive system model for human/automation dynamics in airspace management [OL]. http://caffeine.arc.nasa.gov/midas/Corker_et_ al _97. html, 1997
    [53] Shukri T.M. Implementation of Cognitive Human Reliability Model in Dynamic Probabilistic Risk Assessment of a Nuclear Power Plant(ADS-IDA)[D]. Maryland : University of Maryland, 1997
    [54] Zio E. Reliability engineering: Old problems and new challenges[J]. Reliability Engineering and System Safety, 2009, 94(2): 125-141
    [55] Yu, F.J., Hwang, S.L., Huang, Y.H. Task analysis for industrial work process from aspects of human reliability and system safety[J]. Risk Analysis, 1999, 19(3): 401-415
    [56] Gertman D.I., Hallbert B.P., et al. Review of Findings for Human Error Contribution to Risk in Operating Events[R]. Washington, DC: USNRC, 2001
    [57] Lee, Y.S., Kim, Y., Kim, S.H., et al. Analysis of human error and organizational deficiency in events considering risk significance[J]. Nuclear Engineering and Design, 2004, 230 (1–3): 61-67
    [58] Kim, I.S. Human reliability analysis in the man–machine interface design review[J]. Annals of Nuclear Energy, 2001, 28(11): 1069-1081
    [59] Mosleh A., Chang, Y.H. Model-based human reliability analysis: prospects and requirements[J]. Reliability Engineering and System Safety, 2004, 83(2): 241–253
    [60] Hannaman G.W., Spurgin, A.J., Lukic, Y.D. Human Cognitive Reliability Model for PRA Analysis[R]. Palo Alto, California: Electric Power Research Institute, Nuclear Utility Service Corp., 1984
    [61] Jung W., Kim J., Ha J., et al. Comparative Evaluation of Three Cognitive Error Analysis Methods Through an Application to Accident Management Tasks in NPPs[J]. Journal of the Korean Nuclear Society, 1999, 31(6): 8-22
    [62] Kirwan B. The development of a nuclear chemical plant human reliability management approach: HRMS and JHEDI[J]. Reliability Engineering and System Safety, 1997, 56(2): 107-133
    [63] Marie-odile B. A case study of a human error in a dynamic environment[J]. Interacting with Computers, 1999, 11(5): 525-534
    [64] Hollnagel E. The phenotype of erroneous actions[J]. International Journal of Man-Machine Studies, 1993, 39(1): 1-32
    [65] Day M.C., Joyce S.J. -computer system design[J]. Advances in computers, 1993, 36(2): 333-430
    [66] Sarter N.N., Woods D.D. How in the world did I ever get into that mode?: mode error and awareness in supervisory control[J]. Human Factors , 1995,37(1): 5–19
    [67] Ha J.S., Seong P.H. A human-machine interface evaluation method: A difficulty evaluation method in information searching(DEMIS)[J]. Reliability Engineering and System Safety, 2009, 94(10): 1557-1567.
    [68] Woods,D., Roth E., Stubler W., et al. Navigating through large display networks in dynamic control applications[C]. In: Proceedings of the Human Factors Society 34th Annual Meeting. Santa Monica, USA, 1990
    [69] Thompson C.M., Cooper S.E., Bley D.C.,, et al. The application of ATHEANA: a technique for human error analysis[C]. In: IEEE Sixth Annual Human Factors Meeting, Orlando, Florida, 1997:13-17
    [70] Lee S.J., Kim M.C., Seong P.H. An analytical approach to quantitative effect estimation of operation advisory system based on human cognitive process using the Bayesian belief network[J]. Reliability Engineering and System Safety, 2008, 93(4): 567-577
    [71] Shorrkck S.,Kirwan B. Development and application of a human error identification tool for air traffic control[J]. Applied Ergonomics, 2002, 33(4): 319-336
    [72] O’Hara J.M., Higgins J.C., Stubler W.F., et al. Computer-based procedure systems: technical basis and human factors review guidance[R]. Washington DC: US Nuclear Regulatory Commission, 2000
    [73] Randall J.M., Isabelle E.S., Julius J.P. Training cognitive skills for severe accident management. Human factors and power plants[C]. In:Conference record for 1992 IEEE fifth conference, Monterey, CA, 1992
    [74] John M.O., James C.G., Joel K. Advanced information systems design: technical basis and human factors review guidance[R]. Washington, DC: U.S. NRC, 2002
    [75] Kontogiannis T. A framework for the analysis of cognitive reliability in complex systems: a recovery centred approach[J]. Reliability Engineering and System Safety, 1997, 58(3): 233-248
    [76] Vicente K.J., Mumaw R.J., Roth E.M. Operator monitoring in a complex dynamic work environment: a qualitative cognitive model based on field observations[J]. Theoretical Issues in Ergonomics Science, 2004, 5(5): 359-384
    [77] Endsley M.R. Toward a theory of situation awareness in dynamic systems[J]. Human factors, 1995, 37(1): 32-64
    [78] Kaber D.B., Endsley M.R. Team Situation Awareness for Process Control Safety and Performance[J]. Process Safety Progress, 1998,17(1):43-48
    [79] Endsley M.R. Theoretical underpinnings of situation awareness: a critical review[A]. In: Endsley M.R., Garland D.J. editors. Situation awareness analysis and measurement[C]. Mahwah, NJ: LEA, 2000
    [80]张力,赵明. WANO人因事件统计及分析[J].核动力工程, 2005,26(3):291-296
    [81]张力,邹衍华,黄卫刚.核电站运行事件人误因素交互作用分析[J].核动力工程, 2010, 31(6): 41-46
    [82] Dougherty E. Context and human reliability analysis[J]. Reliability Engineering and System Safety, 1993, 41(1): 25-47
    [83] Boring R.L. Human reliability analysis in cognitive engineering and system design, in Frontiers of Engineering[R]. Reports on Leading-Edge Engineering from the 2008 Symposium, National Academy of Engineering, Washington, DC, 2009:103-110
    [84]徐小琳,郭人俊.数字化仪表控制系统及其在核电站中的应用[J].高技术通讯, 1997, (1): 59-63
    [85] Dusic M. Safety Issues for Digital Upgrades in Operating NPPs[C].In: IEEE sixth annual human factors meeting, New York, 1997, 4:1-6
    [86] Lee S.J., Seong P.H. Experimental investigation into the effect of decision support systems on operator performance[J]. Journal of Nuclear Science and Technology, 2009, 46(12): 1178-1187
    [87] Parasuraman R., Riley V. A. Humans and automation: Use, misuse,disuse, abuse[J]. Human Factors, 1997, 39(2): 230-253
    [88] Woods D. D. Decomposing automation: Apparent simplicity, real, complexity[A]. Parasuraman R., Mouloua M. Eds, Automation and Human Performance: Theory and Applications[C]. Mahwah, NJ: Erlbaum, 1996: 1–16
    [89] Parasuraman R., Sheridan T.B., Wickens C.D. A model for types and levels of human interaction with automation[J]. IEEE transactions on systems, man, and cybernetics——Part A: systems and humans, 2000, 30(3): 286-297
    [90] Kaber D.B., Endsley M.R. The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task[J]. Theoretical Issues in Ergonomics Science, 2004,5(2):113-153
    [91] Andresen G., Collier S., Nilsen S. Experimental studies of potential safety-significant factors in the application of computer-based procedure systems[C]. In: IEEE 7th human factors meeting, Scottsdale Arizona, 2002
    [92] Boring Ronald L., Gertaman David I. Human error and available time inSPAR-H[R].Idaho Falls, Idaho, USA,2004
    [93] Lee J. D., Moray N. Trust, control strategies, and allocation of function in human-machine systems[J]. Ergonomics, 1992, 35(10): 1243–1270
    [94] Stubler W., O’Hara J.M. Human factors challenges for advanced process control[R]. New York: Brookhaven National Laboratory, U.S. NRC, 1996
    [95] Shaw J. Distributed control systems: Cause or cure of operator errors[J]. Reliabiltiy Engineering and System Safety, 1993, 39(3): 263-271
    [96] Kletz T.A. Human problems with computer control in process plants[J]. Journal of Process Control, 1991, 1(2): 111-115
    [97] O’Hara J.M. Stubler B., Kramer J. Human factors considerations in control room modernization: trends and personnel performance issues[C]. In: Proceeding of the 1997 IEEE Sixth Conference on Human Factors and Power Plants, Orlando, FL, USA ,1997
    [98] Wright, P., Reid, F. Written information: some alternatives to prose for expressing the outcomes of complex contingencies[J]. Journal of Applied Psychology, 1973, 57 (2): 160-166
    [99] Lee Y.L., Hwang S.L., Wang E.M.Y. Reducing cognitive workload of a computer-based procedure system[J]. International journal of human-computer studies, 2005, 63(6): 587-606
    [100] Xu Song, Song Fei, Li Zhizhong et al. An ergonomics study of computerized emergency operating procedures: Presentation style, task complexity, and training level [J]. Reliability Engineering and System Safety, 2008, 93(10): 1500–1511
    [101] Niwa Y., Hollnagel E. Integrated computerisation of operating procedures[J]. Nuclear Engineering and Design, 2002, 213(2-3): 289–301
    [102] Degani A. , Wiener E. L. Procedures in Complex Systems: The Airline Cockpit[J]. IEEE Trans. Syst., Man Cybern. A: Systems and Humans, 1997, 27 (3): 302
    [103] Dien Y. Safety and Application of Procedures or‘How Do They Have to Use Operating Procedures in Nuclear Power Plants?’[J]. Safety Science, 1998, 29(3):179-187
    [104] Park J., Jung W., Kim J., et al. Step complexity measure for emergency operating procedures—Determining weighting factors[J]. Nuclear technology, 2003, 143(3): 290-308
    [105] Park J., Jung W., Ha J., et al. The step complexity measure for emergency operating procedures: measure verification[J]. Reliability Engineering and System Safety, 2002,76(1): 45-59
    [106] Roth E., O’Hara J. Integrating digital and conventional Human-System Interfaces: Lessons learned from a control room modernization program[R]. Upton, NY: Brookhaven National Laboratory, 1998
    [107] Park J., Jung W., Ha J. Development of the step complexity measure for emergency operating procedures using entropy concepts[J]. Reliability Engineering and System Safety, 2001, 71(2): 115-130
    [108] Park J., Jung W., Kim J., et al. The step complexity measure for emergency operating procedures-comparing with simulation data[J]. Reliability Engineering and System Safety, 2001, 74(1): 63-74
    [109] Gertman D., Blackman H., Marble J., et al. The SPAR-H Human Reliability Analysis Method[R]. Washington DC: U.S Nuclear Regulatory Commission, 2005
    [110] Sebok, A. Team performance in process control: influences of interface design and staffing levels[J]. Ergonomics, 2000, 43 (8):1210–1236
    [111] Huang F.H., Hwang S.L. Experimental studies of computerized procedures and team size in nuclear power plant operations[J]. Nuclear Engineering and Design, 2009, 239(2): 373-380
    [112] Roth E.M., O'Hara J.M. Exploring the Impact of Advanced Alarms, Displays, and Computerized Procedures on Teams[C]. In: Processdings of the human factors, and ergonomics society, 43rd Annual Meeting, Houston, Texas, 1999
    [113] Chung Y.H., Yoon W.C., Min D. A model-based framework for the analysis of team communication in nuclear power plant[J]. Reliablity engineering and system safety, 2009,94(6):1030-1040
    [114] Chung Y.H., Min D., Kim B.R. Observations on emergency operations using computerized procedure system[C]. In: IEEE 7th Human Factors Meeting, Scottsdale Arizona 2002,4:61-65
    [115] Nuclear energy agency committee on the safety of nuclear installations. Identification and assessment of organisational factors related to the safety of NPPs[OL]. http://www.oecd-nea.org/nsd/docs/1998/csni-r98-17-vol1.pdf,1999
    [116] International Nuclear Safety Advisory Group. Safety Culture[M]. Vienna: IAEA Saety Series75-INSAG-4, 1991
    [117]张力.核安全文化的发展与应用[J].核动力工程, 1995, 16(5):443-446
    [118] Kontogiannis T., Leopoulos V., Marmarsa N. A comparison of accident analysistechniques for safety-critical man-machine systems [J]. Industrial Ergonomics, 2000, 25(4): 327-347
    [119]宋明哲.现代风险管理[M].北京:中国纺织出版社, 2003
    [120] ?ien K. A framework for the establishment of organizational risk indicators[J]. Reliability Engineering and System Safety, 2001, 74(2): 147-167
    [121] Mosleh A., Goldfeiz E.B., Shen S. Theω-factor approach for modeling the influence of organizational factors in probabilistic safety assessment[C]. In: Proceedings of the IEEE sixth conference on human factors and power plants, Orlando, FL: IEEE; 1997. p. 9/18–9/23
    [122] Jin Y., Yamashita Y., Nishitani H. Human modeling and simulation for plant operations[J]. Computers and Chemical Engineering, 2004, 28(10): 1967-1980
    [123] Kirwan B. Human error identification techniques for risk assessment of high risk systems-Part 2: towards a frame work approach[J]. Applied Ergonomics, 1998, 29 (5): 299-318
    [124] Kolacakowski A., Forester J., Lois E., et al. Good Practices for Implementing Human Reliability Analysis(HRA)[R]. Washington, DC: U.S. Nuclear Regulatory Commission, 2005
    [125]彭聃龄,张必隐.认知心理学[M].杭州:浙江教育出版社(简体字版), 2006
    [126] Pape A.M., Wiegmann D.A., Shappell S. Air traffic control (ATC) related accidents and incidents: a human factors analysis[C]. In: Proceedings of the 11th International Symposium on Aviation Psychology. Columbus, Ohio, 2001
    [127] Jacobs R., Haber S. Organizational processes and nuclear power plant safety[J]. Reliability Engineering and System Safety, 1994, 45(1-2): 75-83
    [128] Str?ter O., Anlagen G.F. Assessment of cognitive errors and organizational aspects based on evaluation of plant experience[C]. Processed reprint of paper in ANA-Proceedings of the international topicl meeting on probabilistic safety Assessment 1996. Park city, Utah(USA):245-252
    [129] Embrey D.E. Incorporating management and organizational factors into probabilistic safety assessment[J]. Reliability Engineering and System Safety, 1992, 38(1-2): 199-208
    [130] Davoudian K., Wu J.S., Apostolakis G., et al. Incorporating organizational factors into risk assessment through the analysis of work processes[J]. Reliability Engineering and System Safety, 1994, 45(1-2): 85-105
    [131] Davoudian K., Wu J.S., Apostolakis G., et al. The work analysis model (WPAM)[J]. Reliability Engineering and System Safety, 1994, 45(1-2): 107-125
    [132] Pate-Cornell M.E., Murphy D.M. Human and management factors in probabilistic risk analysis: the SAM approach and observations from recent application[J]. Reliability Engineering and System Safety, 1996, 53(2): 115–26
    [133] Murphy D.M., Pate-Cornell M.E. The SAM Framework: Modeling the Effects of Management Factors on Human Behavior in Risk Analysis[J]. Risk Analysis, 1996, 16(4): 501-515
    [134] Groth K., Mosleh A. A data-informed model of performance shaping factors for use in human reliability analysis[D]. Maryland: Center for Risk and Reliability, University of Maryland, College Park, 2009
    [135] Galyean W.J. Orthogonal PSF taxonomy for human reliability analysis[C]. In: Proceedings of the 8th International Conference on Probabilistic Safety Assessment and Management, New Orleans:American Society of Mechanical Engineers, 2006
    [136]俞娉婷,刘振元,陈学广.基于贝叶斯网络的一种事故分析模型[J].中国安全生产科学技术, 2006, 2(4):45-50
    [137] Dey S., Stori J.A. A Bayesian network approach to root cause diagnosis of process variations[J].International Journal of Machine Tools & Manufacture, 2005,45(1): 75-91
    [138]周忠宝,周经伦,孙权.考虑人因的面向对象贝叶斯网络概率安全评估模型[J].核动力工程, 2007, 28(3): 107-112
    [139] Trucco P., Cagno E., Ruggeri F., et al. A Bayesian Belief Network modeling of organizational factors in risk analysis: A case study in maritime transportation[J]. Reliability Engineering and System Safety, 2008, 93(6): 823-834
    [140] PSA顾问组.核电厂第三级概率安全评价(PSA)执行程序顾问组会议报告[J].辐射防护通讯, 1993,(1): 1-28
    [141]戴立操,黄曙东.核电厂概率安全评价(PSA)技术研究[J].安全,2004, (4): 24-26
    [142]张力.概率安全评价中的人因可靠性分析技术[D].长沙:湖南大学, 2004
    [143] Mohaghegh Z. On the theoretical foundations and principles of organizational safety risk analysis[D]. Maryland: University of Maryland, 2007
    [144] Mahadevan S., Zhang R.X., Smith N. Bayesian network for system reliability reassessment[J]. Structural Safety, 2001, 23(3): 231-251
    [145]郑恒,李长城,刘煜.基于贝叶斯网络的路侧安全评价方法[J].公路交通科技, 2008, 25(2): 139-154
    [146] Lee H.C., Seong P.H. A computational model for evaluating the effects of attention, memory, and mental models on situation assessement of nuclear power plant operators[J]. Reliability Engineering and System Safety, 2009,94(11):1796-1805
    [147] Cepin M. Development of a method for consideration of dependence between human failure events[C]. In: Proceedings of ESREL 2006—Safety and Reliability for Managing Risk, Estoril, Portugal, 2006
    [148] Cepin M. DEPEND-HRA—A method for consideration of dependency in human reliability analysis[J]. Reliability Engineering and System Safety, 2008, 93(10): 1452–1460
    [149] Lee S.J., Kim J. Jang S.C., et al. Modeling of a Dependence between Human Operators in Advanced Main Control Rooms[J]. Journal of NUCLEAR SCIENCE and TECHNOLOGY, 2009, 46(5): 424–435
    [150] Zadeh L.A. Fuzzy sets[J]. Information Control, 1965, 8(1): 338–52
    [151]闻新,周露,李东江,等. Matlab模糊逻辑工具箱的分析与应用[M].北京:科学出版社, 2002
    [152] Yadav O.P., Singh N., Chinnam R.B., et al. A fuzzy logic based approach to reliability improvement estimation during product development[J]. Reliability Engineering and System Safety, 2003, 80(1): 63-74
    [153]王士同.模糊推理理论与模糊专家系统[M].上海:上海科学技术文献出版社, 1995
    [154] Guimaraes A.C.F, Lapa C.M.F. Fuzzy inference to risk assessment on nuclear engineering systems[J]. Applied Computing, 2007,7(1):17-28
    [155]黄祥兵,黄兴玲,王京齐.模糊逻辑系统在船舶风险评估中的应用[J].海军工程大学学报, 2006, 18(6):53-57
    [156] Zio E., Baraldi P., Librizzi M., et al. A fuzzy set-based approach for modeling dependence among human errors[J]. Fuzzy sets and systems, 2009, 160(13): 1947-1964
    [157]姚杰,吴兆麟,方祥麟.船舶碰撞危险的自适应神经网络-模糊推理评价方法[J].中国航海, 1998, 44(1): 14-19
    [158]张树平,吴强,毕伟民.基于ANFIS的火灾中人员疏散反应时间的研究[J].建筑科学, 2009, 25(2): 97-100
    [159]陈继光. Matlab与自适应神经网络模糊推理系统[M].济南市:山东省地图出版社, 2002
    [160] Sugeno M., Kang G.T. Structure identification of fuzzy model[J]. Fuzzy Sets and System, 1988, 28(1): 15-33
    [161]张志军. PSA-ANFIS方法及其在矿山岩土工程灾害预测中的应用[D].长沙:中南大学, 2008
    [162] Jang J.S.R. ANFIS: Adaptive-Network-based Fuzzy Inference System[J]. IEEE transactions on systems, man and cybernetics, 1993, 23(3): 665-685
    [163] Wang Y.M., Elhag T.M.S. An adaptive neuro-fuzzy inference system for bridge risk assessment[J]. Expert systems with applications, 2008, 34(4): 3099-3106
    [164] Li P.C., Chen G..H., Dai L.C., et al. Fuzzy Logic-based Approach for Identifying the Risk Importance of Human Error[J]. Safety Science, 2010,48(7): 902-913

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700