基于多传感器信息融合的移动机器人位姿计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学、传感器技术、人工智能等学科的发展和机械设计制造水平的不断提高,移动机器人日益向着智能化和自主化的方向发展。机器人实现自主地行走,执行具体的任务,必须具有判断自身位姿的能力。位姿计算或定位问题一直是移动机器人领域的研究热点,受到国内外的广泛关注。
     本论文针对现有移动机器人位姿计算方法存在的问题展开研究,重点对里程计、激光和视觉传感器的信息处理与融合、固定环境中多机器人位姿计算、移动机器人自主位姿计算等内容进行了深入的研究。主要内容包括以下几方面:
     针对机器人位姿计算中,激光测距仪所获得的原始距离图像在景物空间呈现多尺度特性,使得特征提取过程容易出现虚假特征和特征丢失问题。本文提出基于特征估计的多尺度自适应滤波方法,对距离图像进行滤波处理,并根据图像的局部曲率对特征进行分割与辨识,有效减少了虚假特征和特征丢失情况的发生。实验表明,该方法能够提高二维激光距离图像特征提取的成功率,从而增加机器人位姿计算的精度和鲁棒性。
     针对视觉传感器原始采集图像存在畸变和干扰特征,给动态环境中的机器人辨识带来困难的问题。本文首先建立包含径向和切向畸变的广角镜头成像模型,对失真图像进行校正;然后利用颜色分割和形状模板匹配相结合的特征识别算法,提高了机器人辨识的可靠性。同时依靠机器人运动模型预测其在下一时刻的位置,从而减少图像的搜索范围,为基于多摄像机的机器人位姿计算提供了实时性保证。
     针对多传感器信息融合能够提高机器人位姿计算的精度和可靠性问题,本文提出了分布式多传感器信息融合位姿计算方法。通过数据关联技术将传感器测量数据与环境中机器人相匹配,利用分布在各机器人客户端上的双层无嗅卡尔曼滤波器将来自视觉传感器和激光测距传感器的信息与来自码盘的信息相融合,解决了固定环境中多机器人位姿计算问题。该分布式多传感器融合位姿计算方法不受机器人数量的限制,扩展性强。实验表明,本文所述方法具有较高位姿计算精度和较强的稳定性。
     针对现有基于粒子滤波的机器人自主位姿计算方法存在算法效率低、粒子退化等问题,本文利用最小偏度采样无嗅卡尔曼滤波(Minimal Skew UnscentedKalman Filter,MS-UKF)将最新的传感器观测数据融入粒子滤波的采样函数中,使粒子滤波融合算法即使在减少粒子数量的情况下,依然保持较高的计算精度。并在粒子滤波重采样过程中将MS-UKF作为辅助,有效地降低了粒子退化现象。最后在移动机器人上进行了实验,结果表明,本文所述改进算法能够有效提高位姿计算精度和效率。
     本论文有关移动机器人位姿计算的问题研究,将有助于智能移动机器人环境感知、协同控制、自主导航等能力的提高,这将对拓展移动机器人的应用领域,具有积极的理论和实际意义。
With the development of computer science, sensor technology, artificial intelligence and the improvement of manufacture level, the robotics increasingly tends toward intelligent and autonomous. In order to make the robot move in the environment autonomously and do the task, the robot must be capable of calculating its pose. Pose calculation or localization problem is a key researching domain in the mobile robot community and get much attention around the world.
     This dissertation is focused on the multi-sensor fusion based pose calculation problem for mobile robot. The intention of this dissertation is to describe the research on encoder, laser rangefinder and vision data processing and fusion, multi-robot pose calculating and tracking problem in fixed environment and the mapping based localization problem for autonomous robot. The main contents and contributions of this dissertation include the following aspects:
     In pose calculation of mobile robot, the original range image from Laser rangefinder appears at non-uniform scale or resolution in scenery, which causes false alarms and missed detections. An adaptive smoothing algorithm within a scale space framework is introduced for noisy range image of laser rangefinder in order to extract features. Then the features can be segmented and identified according to the curvature of the range data, which decrease the false alarms and missed detections. Experimental results show that the proposed method is efficient in feature extraction,
     which can improve the accuracy and robustness of robot pose calculation. When mobile robot working in dynamic environment, the original vision image has the disadvantage of distortion and contains disturbing features, which lead to difficulty for robot pose calculation. In order to solve the problem, a flexible camera model contained radial and tangential distortion is established to correct the distorted images. Then this paper uses a recognition algorithm combined color segmentation with recognition method based on a shape template, which effectively reduce misidentification and improve the robustness of robot recognition. Then, a prediction algorithm based on the model of mobile robot is presented. This method can predict pose state of robot in the next frame and reduce the searching area of image, which guarantee the real-time performance for the pose calculation.
     Multi-sensor fusion can improve the accuracy as well as the robustness of the pose calculation for mobile robot. In order to calculate the poses of several robots, a distributed multi-sensor fusion pose calculation method is proposed. The measured data from the vision system and laser rangefinder is matched and correlated with the robots in the environment by data association process, and are combined with the information from encoder by a two layer UKF on robot. The distributed framework takes the advantage of high flexibility, and does not limit to the number of tracking robots. Experimental results show that the proposed method has high accuracy of robot pose measuring and strong stability.
     In order to improve the precision and reduce the sample impoverishment problem of autonomous localization based on Particle Filter, an improved Rao-Blackwellized Particle Filter by incorporating the most recent sensor observation is proposed. The filter uses Minimal Skew Unscented Kalman Filter (MS-UKF) to generate proposal distributions in order to optimize the samples, which can obtain satisfying calculation results with a small sample set. Moreover, we propose an MS-UKF based assistant-proposal distribution during resampling, which keeps the diversity and randomness. A series of experiments are carried out on a mobile robot, and the results show that the method effectively improves the precision and efficiency of robot pose calculation.
     The contribution of the dissertation consists in improving the capability of environment perception, co-operating and autonomous navigation of mobile robot. This is of positive academic significance and practical importance to improve the quality and wide the application field of mobile robot.
引文
[1]宋健.智能控制——超越世纪的目标——国际自动控制联合会第14次代表大会报告[J].中国工程科学.1999,1(1):1-5.
    [2] Nilsson N J. Shakey the robot[R]. California: SRI International AI Center, 1984: 1-24.
    [3]蒋新松.机器人与工业自动化[M].河北教育出版社, 2003.
    [4] Leanard J J, Durrant-Whyte H F. Mobile robot localization by tracking geometric beacons[J]. IEEE Transactions on Robotics and Automation, 1991, 7:376-382.
    [5] Bailey T. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments[D]. University of Sydney, Ph.D. Dissertation, 2002.
    [6] Uhlmann J, Lanzagorta M, Julier S. The NASA mars rover: A testbed for evaluating applications of covariance intersection[C]. Proceedings of the SPIE 13th Annual Symposium in Aerospace/Defence Sensing, Simulation and Controls, Orlando Florida, 1999:140-149.
    [7] Thrun S. A system for volumetric robotic mapping of abandoned mines[C]. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, 2003:4270-4275.
    [8] Williams S, Dissanayake G, Durrant-Whyte H F. Towards terrain-aided navigation for underwater robotics[J]. Advanced Robotics, 2001, 15(5):533-549.
    [9] Grey Walter W. An imitation of life[J]. Scientific American, 1950, 182(5): 42-45.
    [10] Grey Walter W. A machine that learns[J]. Scientific American, 1951, 185(2): 60-63.
    [11] Minsky M. The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind[M]. New York: Simon&Schuster, 2006:100-110.
    [12] Giralt G, Sobek R, Chatila R. A Multi-Level Planning and Navigation System for a Mobile, A First Approach to HILARE[C]. Proceedings of 6th International Joint Conference on Artificial intelligence, 1979, 1(1): 335-337.
    [13] Thorpe C, Coulter R C, et al.. Smart Cars: The CMU Navlab[C]. Proceedings of WORLD MED93, 1993.
    [14] Baumgartner E. Motion planning technologies for planetary and manipulators[C]. International workshop on motion planning in virtual environments, Toulouse, France 2005.
    [15] Goldberg S B, Maimone M W, Matthies L. Stereo Vision and Rover Navigation Software for Planetary Exploration[C]. Proceedings of the 2002 IEEE Aerospace Conference, Montana, USA, 2002:2025-2036.
    [16] Stefan B W, Ian M. Design of an unmanned underwater vehicle for reef surveying. 2004.
    [17] Lee L O, Matthew R, Kim J-h , et al.. Six DoF Decentralised SLAM[C]. Proceedings of the 2003 Australasian Conference on Robotics & Automation, Brisbane, Australia, 2003:10-16.
    [18]张朋飞,何克忠,欧阳正柱等.多功能室外智能移动机器人实验平台——THMR-V[J].机器人,2002, 24(2): 97-101.
    [19]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J].控制与决策,2002,17(4):385-39.
    [20]卢韶芳,刘大维.自主式移动机器人导航研究现状及其相关技术[J].农业机械学报,2002, 33(2):112-116.
    [21] Cox I, Wilfong G. Autonomous robot vehicle[M]. London: Springer-Verlag, 1990:167-193.
    [22] Fox D, Burgard W, Thrun S. Markov localization for mobile robots in dynamic environments[J]. Journal of Artificial Intelligence Research, 2000, (11):391-427.
    [23] Borenstein J, Feng L. Measurement and correction of systematic odometry errors in mobile robots[J]. IEEE Transactions on Robotics and Automation, 1996, 12(6): 869-880.
    [24] Burgard W, Fox D, Henning D, Schmidt D. Estimating the absolute position of a mobile robot using position probability grids[C]. Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, Oregon, 1996:896-901.
    [25] Cox I J. Blanche-an experiment in guidance and navigation of an autonomous robot vehicle[C]. Proceedings of the IEEE International Conference on Transactions on Robotics and Automation, 1991, 7(2):193-204.
    [26] Xu Z Z, Liang R H, Liu J L. Global localization based on corner point[C]. Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan, 2003,(2):843-847.
    [27]陈磊,梁强.GPS原理及应用简介[J].科技信息(学术研究),2008, 22:188-190.
    [28] Evers H, Kasties G. Differential GPS in a real-time land vehicle environment-satellite based van carrier location system[J]. IEEE Aerospace and Electrical Systems Magazine, 1994, (8):26-32.
    [29] Courtney J, Jain A. Mobile robot localization via classification of mufti-sensor maps[C]. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, 1994: 1672-1678.
    [30] Borenstein J, Feng L. UMBmark-a method for measuring, comparing, and correcting dead-reckoning errors in mobile robots[R]. Technical Report UM-MEAM-94-22, University of Michigan, 1994.
    [31] Barsharom B, Durrant-Whyte H F. Orientation estimate for mobile robots using gyroscopic Information[C]. Proceedings of 1994 IEEE International Conference on Intelligent Robots and Systems (IROS’94), Munchen, Germany, 1994:1867-1874.
    [32] Siegwart R, Nourbakhsh I R. Introduction to Autonomous Mobile Robots[M]. MIT Press, 2004.
    [33]李桂芝.自主移动机器人导航定位技术研究[D].北京:北京科技大学,2005.
    [34]郭剑辉,赵春霞,石杏喜.基于联邦UKF算法的移动机器人自主组合导航[J].计算机工程与应用,2007, 43(32): 59-61.
    [35] Nezhad R H, Moshiri B, Asharif M R. Sensor fusion for ultrasonic and laser arrays in mobile robotics: a comparative study of fuzzy, Dempster and Bayesian approaches[C]. Proceedings of the IEEE international conference on Sensors, Orlando, 2002, (2):1682-1689.
    [36] Cou C, Fraichard T, Bessiere P, Mazer E. Multi-sensor data fusion using Bayesian programming: an automotive application[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, 2002. (1):141-146.
    [37] Rudy N. Robot localization and Kalman filters[D]. Dutch Utrecht Universiy, Master Thesis, 2003.
    [38] Su S, Li S. Neural Network Based Fusion of Global and Local Information in Predicting Time Series[C]. Proceedings of the International Conference On Systems, Man and Cybernetics, Washington D.C, 2003. (5):4445-4450.
    [39] Cohen O, Edan Y. Adaptive fuzzy logic algorithm for grid map based sensor fusion[C]. Proceedings of the IEEE International conference on Intelligent Vehicles Symposium, Parma, Italy, 2004:625-630.
    [40]余静,游志胜.自动目标识别与跟踪技术研究综述[J].计算机应用研究, 2005, 1:12-15.
    [41]王璐,崔益安,苏虹等.移动机器人的运动目标实时检测与跟踪[J].计算机工程与应用,2005, 41(15): 30-33.
    [42] Wolfram D S, Dieter B, Armin F, et al.. People tracking with a mobile robot using sample-based joint probabilistic data association filters[J]. International Journal of Robotics Research, 2003, 22(2): 99-116.
    [43] Schulz D, Burgard W, Fox D, Cremers A. Tracking multiple moving targets with a mobile robot using particle filters and statistical data association[C]. Proceedings of the IEEE International Conference on Robotics and Automation. Seoul, 2001:1665-1670.
    [44]李辉,沈莹,张安.交互式多模型目标跟踪的研究现状及发展趋势[J].火力与指挥控,2006,31(1): 865-868.
    [45] Durrant-Whyte H F. Where am I? A tutorial on mobile vehicle localization[J]. Industrial Robot, 1994. 21(2): 11-16.
    [46] Thrun S, Fox D, Burgard W. A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots[J]. Machine Learnins, 1998, (31):1-25.
    [47] Durrant-Whyte H F, Majumder S, Thrum S, et al.. A Bayesian algorithm for simultaneous localization and map building[C]. Proceedings of the 10th International Symposium of Robotics Research (ISRR'O1), Lorne, Australia, 2001:3118-3123.
    [48] Spero D J, Jarvis R A. A review of robotic SLAM[R]. Technical Report: Monash University, MECSE-4-2007, 2007.
    [49] Eduardo N. Simultaneous Localization and Mapping 2002 Summer School 2002 [March 20]. http: //prism2. mem.drexel.edu/ ~billgreen/ slam/ papers/ nebotSSS02.pdf.
    [50] Csorba M. Simultaneous localization and map building [D]. University of Oxford, Ph.D. thesis, 1997.
    [51] Durrant-whyte H F, Bailey T. Simultaneous Localization and Mapping (SLAM): Part I The Essential Algorithms[J]. Robotics and Automation Magazine, 2006, 13(2): 99-110.
    [52] Bailey T, Durrant-Whyte H F. Simultaneous Localisation and Mapping (SLAM): Part II State of the Art[J]. Robotics and Automation Magazine, 2006, 13(3): 108-117.
    [53] Thrun S, Burgard W, Fox D. Probabilistic Robotics[M]. Cambridge: MIT Press. 2005.
    [54] Dissanayake G, Newman P, Clark S, Durrant-whyte H F. A solution to the simultaneous localization and map building(SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3):229-241.
    [55] Newman P. On the structure and solution of the simultaneous localisation and map building problem[D]. The University of Sydney, Ph.D. Dissertation, 1999.
    [56] Paz L M, Tardos J D, Neira J. Divide and conquer: EKF SLAM in O ( n )[J]. IEEE Transactions on Robotics, 2008, 24(5): 1107-1120.
    [57] Guivant J E. Efficient Simultaneous Localization and Mapping in Large Environments [D]. The University of Sydney, Ph.D. Dissertation, 2002.
    [58] Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems[C]. Proceeding of the SPIE, Bellingham, WA, USA, 1997: 182-193.
    [59] Thrun S, Koller D. Simultaneous Mapping and Localization with Sparse Extended Information Filters: Theory and Initial Results[R]. USA: Carnegie Mellon University, 2002.
    [60] Walter M R, Eustice M R, Leonard J J. Exactly sparse extended information filters for feature-based SLAM[J]. Int. Journal of Robotics Research, April 2007, 26(4): 335-359.
    [61] Thrum S, Fox D, Burgard W. Robust Monte Carlo Localization for Mobile Robots [J]. Artificial Intelligence, 2001, 121(1): 99-141.
    [62] Doucet A, Godsill S, Anderieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, (10):197-208.
    [63] Murphy K. Bayesian map learning in dynamic environments[C]. In Advances in Neural Information Processing Systems (NIPS), 1999:1015-1021.
    [64] Montemerlo M, Thrun S. FastSLAM: a factored solution to the simultaneous localization and mapping problem[C]. Proceedings of the Eighteenth National Conference on Artificial Intellieence, Alberta, Canada, 2002: 593-598.
    [65] Montemerlo M , Thrun S, Koller D , et al.. FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges [C]. International Joint Conference on Artifitcial Intelligence. Acapulco, Mexico, 2003:1151-1156.
    [66]余洪山,王耀南.基于粒了滤波器的移动机器人定位和地图创建研究进展[J].机器人, 2007,29(3):281-297.
    [67]朱森良,杨建刚,吴春明.自主式智能系统[M].杭州:浙江大学出版社,2000.
    [68]张明路,丁承君,段萍.移动机器人的研究现状与趋势[J].河北工业大学学报,2004, 33(2):110-115.
    [69]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J].机器人, 2002,24(5): 475-480.
    [70]周光明,贾梦雷,陈宗海.移动机器人未知环境自下探测的一种高效算法[J].上海交通大学学报,2005,39(6):936-940.
    [71]王璐.未知环境中移动机器人视觉环境建模与定位研究[D].中南大学,博士学位论文, 2007.
    [72]林义忠.自主轮式移动机器人信号检测与智能控制[D].西安理工大学,博士学位论文,2005.
    [73]段清娟,王润孝,冯华山,吴旭华.多自主移动机器人系统研究与发展[J].制造业自动化,2004,11(26):26-31.
    [74]蔡自兴,贺汉根,陈红.未知环境中移动机器人导航控制理论与方法[M].科学出版社,2009.
    [75] Brooks R. A robust layered control system for a mobile robot[J]. IEEE Transactions of robotics and Automation.1986, 1(1):1-10.
    [76] Connell J H. SSS: a hybrid architecture applied to robot navigation[C]. Proceedings of IEEE International Conference on Robotics and Automation, 1992, 2:719-724.
    [77] James R, Ivra J, Grady B. The unified modeling language reference manual[M]. Boston: Addison Wesley, 1999.
    [78]徐小良,江乐宇,周乱.有限状态机的一种实现框架[J].工程设计学报, 2003, 10(5):251-255.
    [79]徐则中.移动机器人的同时定位和地图构建[D].浙江大学,博士学位论文,2004.
    [80] Rodrigo R, Samarabandu J. Monocular Vision for Robot Navigation[C]. Proceedings of the IEEE International Conference on Mechatronics & Automation, Canada, 2005, 16(5):707-712.
    [81] Tardos J D. Robust mapping and localization in indoor environments using sonar data [J]. International Journal of Robotics Research, 2002, 21(4): 311-330.
    [82] Xiang Z Y, Liu J L. Initial Localization for Indoor Mobile Robots Using a 2D Laser Range Finder[C]. In Proceeding of SPIE mobile robot XVI, 2002:168-177.
    [83] Arras K O, Tomatis N, Jensen B T, et al.. Multisensor on-the-fly localization: Precision and reliability for applications[J]. Robotics and Autonomous Systems, 2001, 34(2): 131-143.
    [84] Deng Ch, Zhan G T, Yao Q H. Application of wavelet neural network in removing CCD noise of digital images [J]. Opt. Precision Eng., 2008, 26(2):345-351.
    [85] Wang M J, Zhang X G, Han G L, et al.. Elimination of impulse noise by auto-adapted weight filter[J]. Opt. Precision Eng., 2007, 15(5): 779-783.
    [86] Madhavan R, Durrant-whyte H F. Natural landmark-based autonomous vehicle navigation[J]. Robotics and Autonomous Systems, 2004, 46: 79-95.
    [87] Tang F, Adams M, Ibanez-guzman J, et al.. Pose Invariant, Robust Feature Extraction From Range Data With a Modified Scale Space Approach[C]. Proceedings of the International Conference on Robotics and Automation, 2004:3173- 3179.
    [88] Zhang S, Xie L, Adams M, et al.. Geometrical feature extraction using 2D range scanners [C]. Proceedings of the 5th International Conference on Control and Automation, 2003:901-905.
    [89] Feng X W, He Y Y, Huang W X, et al.. Natural Landmarks Extraction Method from Range Image for Mobile Robot[C]. 2nd International Congress on Image and Signal Processing, 2009:1-5.
    [90] Hummel R A, Kimia B, Zucker S W. Deblurring Gaussian blur[J]. Computer Vision, Graphics, and Image Processing, 1987, 38: 66-80.
    [91] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
    [92] Saint-marc P, Chen J S, Medioni G. Adaptive smoothing: A general tool for early vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991(64): 514-529.
    [93] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004: 401- 422.
    [94] Adams M, Fan T, Wijesoma W S, et al.. Convergent Smoothing and Segmentation of Noisy Range Data in Multiscale Space[J]. IEEE Transactions on Robotics, 2008, 24(3):746-753.
    [95] Gonzalez R C, Woods R E. Digital Image Processing, Second Edition[M]. Beijing: Electronic and Industrial Press, 2002.
    [96] Nguyen V, Martinelli A, Tomatis N, et al.. A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA, 2005: 1929 - 1934.
    [97] Feng X W, Guo SH, Li X H, et al.. Robust mobile robot localization by tracking natural landmarks [C]. Artificial Intelligence and Computational Intelligence. Berlin, German: Springer, 2009: 278-287.
    [98] Agam D, Dinstein I. Geometric separation of partially overlapping nonrigid objects applied to automatic chromosome classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 11(9): 1212-1222.
    [99] Liu H, Srinath D. Partial shape classification using contour matching in distance transformation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 11(12): 1072-1079.
    [100] Nash J C. Compact numerical methods for computers: linear algebra and function minimization[M], Adam Hilger Ltd., 1979.
    [101]张志勇,王琼,蒲亮等.一种使用的CCD摄像机标定方法[J].红外与激光工程, 2006,35(10):408-413.
    [102] Thomas G, Karsten B, Antje W. Feature-based camera model identification works in Practice: Results of a comprehensive evalutation study[C]. 11th International Workshop on Information Hiding, Darmstadt, Germany: Springer-Verlag, 2009: 262-276.
    [103]王婷婷,王朝辉.机器人足球视觉系统图像畸变的几何校正[J].贵州工业大学学报(自然科学版), 2007, 36(1):56-59.
    [104] Kannala J, Sami S B. A Generic Camera Model and Calibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses[J]. Pattern Analysis and Machine Intelligence, 2006, 28(8):1335-1340.
    [105]马颂德.计算机视觉[M].科学出版社, 2003.
    [106] Tsai R Y.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses[J]. IEEE Journal of Robotics and Automation,1987,3(4):323-344.
    [107] Zhang Z. A Flexible New Technique for Camera Calibration[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 11(22).
    [108]龙玉虎,周孝宽.数字图像最佳插值算法研究[J].中国空间科学技术, 2005,(3): 14-18.
    [109] (美)马尔(Marr,D.)著,姚国正等译.视觉计算机理论[M].北京:科学出版社.1988.
    [110] Omar J, Khurram S, Mubarak S. A Hierarchical Approach to Robust Background Subtraction using Color and Gradient Information[C]. Proceedings of the Workshop on Motion and Video Computing, Washington. DC, USA, 2002:22-27.
    [111] Gupt S, Ma O, Martin R F K. Detection and classification for vehicles[J]. IEEE Transaction on Intelligent Detection and Transportation Systems, 2002, 3(1):37-47.
    [112] McCarthy C, Barnes N. Performance of optical flow techniques for indoor navigation with a mobile robot[C]. Proceeding of the International Conference on Robotics&Automation, New Orleans, USA: IEEE, 2004: 5093-5098.
    [113]杨怿菲.一种基于图像特征的图像分类方法[J].现代电子技术, 2009,(14):81-86.
    [114]朱胜利. Mean Shift及相关算法在视频跟踪中的研究[D].浙江大学,博士学位论文, 2006.
    [115] Bruce J, Veloso M. Fast and accurate vision-based pattern detection and identification[C]. Proceedings of International Conference on Robotics and Automation, Taipei, Taiwan,2003:1277-1282.
    [116]冈萨雷斯.数字图像处理[M].北京:电子工业出版社, 2007: 224-233.
    [117] Shapiro L G, Stockman G C. Computer Vision[M].机械工业出版社,2005.
    [118]左文明.连通区域提取算法研究[J].计算机应用与软件, 2006, 23(1):97-98.
    [119]赵保华,曹爱红,李吉功等.基于局部颜色空间转换的快速识别算法[J].微计算计信息, 2006, 22(6):260-262.
    [120]李庆瀛,褚金圭,李荣华等.基于卡尔曼滤波的移动机器人运动目标跟踪[J].传感器与微系统, 2008, 27(11):66-70.
    [121]吴德会.动态指数平滑预测方法及其应用[J].系统管理学报,2008, 17(2):151-155.
    [122] Bar-Shalom Y, Fortmann T E. Tracking and Data Association[M]. Boston, MA: Academic, 1988.
    [123] Davey S J. Simultaneous Localization and Map Building Using the Probabilistic Multi-Hypothesis Tracker[J]. IEEE Transactions on Robotics, 2007, 23(2):271-280
    [124] Wijesoma W S, Perera L D L, Adams M D. Toward Multidimensional Assignment Data Association in Robot Localization and Mapping[J]. IEEE Transactions on Robotics, 2006, 22(2):350-365.
    [125] Zhang S, Xie L, Adams M. An Efficient Data Association Approach to Simultaneous Localization and Map Building[J]. The International Journal of Robotics Research, 2005, 24(1): 49-60.
    [126] Kwok N M, Fang G. Data Association in Bearing-Only SLAM using a Cost Function-based Approach[C]. 2007 IEEE International Conference on Robotics and Automation, 2007: 4108-4113.
    [127]韩崇昭,朱洪艳,段战胜等.多源信息融合[M].北京:清华大学出版社, 2006.
    [128] Singer R A, Sea R G. A new filter for optimal trackingin dense multitarget environments[C]. Proceedings of the 9th Allerton Conference Circuit and System Theory. Urbana-Champaign, USA, 1971:201-211.
    [129] Neira J, Tardos J D. Data association in stochastic mapping using the joint compatibility test[J]. IEEE Transactions on Robotics and Automation. 2001, 17(6):890-897.
    [130]林尧瑞,马少平.人工智能导论[M].北京:清华大学出版社, 1989.
    [131] Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Transaction of the ASME-Journal of Basic Engineering, 1960: 35-45.
    [132] Julier S J. The scaled unscented transformation[C]. Proceedings of the American Control Conference, Anchorage, AK, 2002:4555-4559
    [133] Julier S J. The spherical simplex unscented transformation[C]. 2003 American Control Conference. Denver, Colorado, 2003, 3:2430-2434.
    [134] Kais M, Morin S, Fortelle A, Laugier C. Geometrical model to drive vision systems with error propagation[C]. Control, Automation, Robotics and Vision Conference, Kunming, 2004, 1:143-148.
    [135] Abbas T, Arif M, Ahmed W. Measurement and Correction of Systematic Odometry Errors Caused by Kinematics Imperfections in Mobile Robots[C]. SICE-ICASE2006. International Joint Conference,Busan, Korea, 2006:2073-2078.
    [136] Mirats Tur J M. Onto computing the uncertainty for the odometry pose estimate of a mobile信息, 2006, 22(6):260-262.
    [120]李庆瀛,褚金圭,李荣华等.基于卡尔曼滤波的移动机器人运动目标跟踪[J].传感器与微系统, 2008, 27(11):66-70.
    [121]吴德会.动态指数平滑预测方法及其应用[J].系统管理学报,2008, 17(2):151-155.
    [122] Bar-Shalom Y, Fortmann T E. Tracking and Data Association[M]. Boston, MA: Academic, 1988.
    [123] Davey S J. Simultaneous Localization and Map Building Using the Probabilistic Multi-Hypothesis Tracker[J]. IEEE Transactions on Robotics, 2007, 23(2):271-280
    [124] Wijesoma W S, Perera L D L, Adams M D. Toward Multidimensional Assignment Data Association in Robot Localization and Mapping[J]. IEEE Transactions on Robotics, 2006, 22(2):350-365.
    [125] Zhang S, Xie L, Adams M. An Efficient Data Association Approach to Simultaneous Localization and Map Building[J]. The International Journal of Robotics Research, 2005, 24(1): 49-60.
    [126] Kwok N M, Fang G. Data Association in Bearing-Only SLAM using a Cost Function-based Approach[C]. 2007 IEEE International Conference on Robotics and Automation, 2007: 4108-4113.
    [127]韩崇昭,朱洪艳,段战胜等.多源信息融合[M].北京:清华大学出版社, 2006.
    [128] Singer R A, Sea R G. A new filter for optimal trackingin dense multitarget environments[C]. Proceedings of the 9th Allerton Conference Circuit and System Theory. Urbana-Champaign, USA, 1971:201-211.
    [129] Neira J, Tardos J D. Data association in stochastic mapping using the joint compatibility test[J]. IEEE Transactions on Robotics and Automation. 2001, 17(6):890-897.
    [130]林尧瑞,马少平.人工智能导论[M].北京:清华大学出版社, 1989.
    [131] Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Transaction of the ASME-Journal of Basic Engineering, 1960: 35-45.
    [132] Julier S J. The scaled unscented transformation[C]. Proceedings of the American Control Conference, Anchorage, AK, 2002:4555-4559
    [133] Julier S J. The spherical simplex unscented transformation[C]. 2003 American Control Conference. Denver, Colorado, 2003, 3:2430-2434.
    [134] Kais M, Morin S, Fortelle A, Laugier C. Geometrical model to drive vision systems with error propagation[C]. Control, Automation, Robotics and Vision Conference, Kunming, 2004, 1:143-148.
    [135] Abbas T, Arif M, Ahmed W. Measurement and Correction of Systematic Odometry Errors Caused by Kinematics Imperfections in Mobile Robots[C]. SICE-ICASE2006. International Joint Conference,Busan, Korea, 2006:2073-2078.
    [136] Mirats Tur J M. Onto computing the uncertainty for the odometry pose estimate of a mobile
    [154]陈伟.单目视觉移动机器人的定位与建图研究[D].国防科学技术大学,博士学位论文, 2008.
    [155] Biswas R, Limketkai B, Sanner S, et al.. Towards object mapping in non-stationary environments with mobile robots[C]. Proceedings of the 2002 IEEE International Conference on Intelligent Robots and Systems. Lausanne, Switzerland, 2002: 1014-1019.
    [156] Wolf J, Burgard W. Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization[J]. IEEE Transaction on Robotics and Automation, 2005, 21(2): 208-216.
    [157]王卫华,陈卫东和席裕庚.移动机器人地图创建中的不确定传感信息处理[J].自动化学报, 2003. 29(2): 267-274.
    [158]庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究[J].控制与决策, 2005, 20(7):815-810.
    [159]罗荣华,洪炳容.移动机器人同时定位与地图创建研究进展[J].机器人, 2004. 26(2): 182-186.
    [160]杨晶东.移动机器人自主导航关键技术研究[D].哈尔滨工业大学,博士学位论文, 2008.
    [161] Carelli R, Freire O. Corridor navigation and wall-following stable control for sonar-based mobile robots[J]. Robotics and Autonomous System, 2003, 45:235-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700