诱发眼震电图诊断脑损伤大鼠脑干功能损害的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     随着电子和生物信息工程技术不断发展,通过BAEP、SEP、MRI等在内的多种方法能够了解脑干做为生命中枢的各项功能及结构变化,但将其作为床旁诊断及动态监测方法尚存在一定的局限性。因此,临床医生迫切需要一种无创、准确、简单、可靠、且能为诊断治疗提供有价值信息的实时床旁监测手段。本研究通过动物实验探讨一种操作简易无创,可客观、准确、特异地对脑干功能损害进行定位的方法,为其将来应用于临床奠定基础。
     目的
     1建立不同剂量胶原酶诱导大鼠一侧基底节区脑出血模型,观察其不同时间点颅内压力、自发眼震及冰水诱发眼震电图的变化及脑干组织病理改变三者之间的相互关系,探讨应用眼震电图动态监测脑干功能的可行性。
     2观察不同剂量胶原酶诱导大鼠一侧基底节区脑出血模型脑干不同层面神经核团及内侧纵束的变化及其与颅内压的关系,探讨一侧基底节区脑出血后自发和冰水诱发眼震异常的病理基础。
     3比较自发眼震和冰水诱发眼震电图在大鼠不同层面脑干离断损伤模型与大鼠一侧基底节区脑出血模型的异同性,进一步验证脑干损害是一侧基底节区脑出血后自发眼震和冰水诱发眼震异常的病理基础,为眼震电图作为判定脑出血后脑干损伤的手段提供佐证。
     4观察脑干内眼动相关核团和不同阶段内侧纵束分别被损毁和刺激后自发眼震和冰水诱发眼震电图的变化,进一步阐明一侧基底节区脑出血引起冰水诱发眼震异常和自发眼震的可能病理机制,为眼震电图用于判定脑出血后脑干损伤提供证据。
     方法
     第一部分:冰水诱发眼震电图对大鼠一侧基底节区脑出血模型中脑干损害的判定
     1 Rosenberg法建立脑出血模型:大鼠分为5组,假手术组、生理盐水对照组、0.3UⅦ型胶原酶注入组、0.6UⅦ型胶原酶注入组、0.9UⅦ型胶原酶注入组。
     2电生理记录:RM6240C多道生理记录仪记录各组大鼠术后12h、24h、48h、72h、5d及7d时颅内压、自发眼震和冰水诱发眼震。
     3 HE染色观察脑干组织病理改变。
     4 Pearson法分析颅内压变化、脑干不同层面组织病理学变化及冰水诱发眼震电图的潜伏期(Lat)、频率(F)、波幅(Amp)、慢相角速度(SPV)、节律变异指数(CVI)之间的相关性,判别分析法得到冰水诱发眼震电图各参数对不同层面的脑干损伤的判定函数。
     第二部分:大鼠一侧基底节区脑出血后自发和诱发眼震异常的机制
     1一侧基底节区脑出血后脑干神经核团及内侧纵束组织学变化。免疫组化法测定动眼神经核兴奋性和抑制性神经递质受体表达反应脑干损伤分子水平的变化;TUNEL染色测定脑干不同层面的细胞凋亡程度反应脑干损伤细胞水平变化;免疫组化法观察内侧纵束在脑干不同阶段的MBP表达情况反应脑干损伤髓鞘变化。
     2大鼠不同脑干层面离断模型后自发眼震和冰水诱发眼震电图变化。在不破坏小脑的前提下,采用经小脑延髓脉络膜裂入路充分暴露脑干,分别机械性离断不同的脑干层面:中脑四叠体上;中脑四叠体下;脑桥上段;脑桥中下段。RM6240C多道生理记录仪监测呼吸和血压变化,同时记录自发眼震和冰水诱发眼震电图。术中给予实验大鼠呼吸支持。
     3大鼠脑干不同核团及脑干内侧纵束不同阶段电凝破坏及电刺激后自发眼震和冰水诱发眼震电图变化。分别电凝损毁和电刺激一侧动眼神经核、脑桥旁正中网状核和前庭神经核;分别电凝损毁脑干不同阶段的内侧纵束:中脑四叠体;中脑四叠体上+中脑四叠体下;中脑四叠体上+中脑四叠体下+脑桥上段;中脑四叠体上+中脑四叠体下+脑桥上段损毁+脑桥中下段。分析比较不同核团受到刺激和破坏后自发眼震及冰水诱发眼震电图各参数的变化;同一核团刺激性病变和破坏性病变眼震电图差异;不同阶段内侧纵束损毁后冰水诱发眼震电图各参数之间的差异。
     结果
     第一部分
     1不同剂量胶原酶注入大鼠一侧基底节区脑出血模型后可以引起不同程度的颅内压水平升高(P<0.01),在造模后48h-72h达到高峰,同期胶原酶注入量越大,颅内压水平越高,组间比较差异显著(P<0.01)。
     2不同剂量胶原酶注入大鼠一侧基底节区脑出血模型后,在不同时间点可记录到多种类型的自发眼震。所有造模组除0.3U胶原酶注入组12h冰水诱发眼震电图各参数与对照组比较无差异(P>0.05)外,其它各造模组在各时间点均存在差异(P<0.01)。同时间点胶原酶注入量越大,潜伏期越长,频率越慢,波幅越小,慢相角速度越慢,节律变异指数越大(P<0.01)。颅内压越高,冰水诱发眼震潜伏期越长,其波幅越小,频率越慢,慢相角速度越慢,节律变异指数越大(P<0.01)。
     3 HE染色显示造模组脑干出现组织坏死改变,神经元肿胀,核固缩深染及神经纤维结构紊乱;部分出现炎性细胞聚集和出血。随着注入胶原酶剂量的增加,颅内压的升高,脑干的病理改变呈现由上向下发展,且范围逐步扩大。
     4判别分析法得到冰水诱发眼震电图中Lat、F、Amp、SPV、CVI五项参数变化对脑干损伤层面定位的正确判断率可达到79.5%。
     第二部分:
     1脑干核团及内侧纵束组织学变化:①所有脑出血造模组各时间点双侧动眼神经核的NMDAR1表达与对照组比较均下降(P<0.01),组间水平差异显著(P<0.01),相应GABA-ARα1表达无变化(P>0.05)。同期注入胶原酶量越多, NMDAR1表达越低。②所有脑出血造模组各时间点脑干内凋亡细胞阳性百分率较对照组增多(P<0.01),12h-24h时主要分布在中脑或脑桥上段;48h-72h各阶段脑干细胞凋亡阳性百分率增高(P<0.01),0.6U及0.9U胶原酶注入组脑桥下段凋亡阳性细胞百分率明显增高(P<0.01)。各造模组组间比较同期胶原酶注入量越大,同部位凋亡阳性细胞百分率越高,比较有显著差异(P<0.05)。提示胶原酶注入量越大,脑干细胞的凋亡出现越早,细胞凋亡百分率越高,波及范围越广泛,呈现自中脑向脑桥下段的发展顺序;③造模组大鼠脑干内髓鞘着色变浅,平均光密度下降(P<0.01),且不均匀,束状结构中断,排列紊乱呈网格状,提示存在髓鞘脱失。中脑段内侧纵束平均光密度值在0.3U、0.6U、0.9U胶原酶注入组分别于造模后72h、24h、12h出现下降,在组内随着时间趋势逐步降低,在48h-72h达到最低值,与对照组比较有差异(P<0.01);0.6U及0.9U组分别于造模后72h、48h出现脑桥上段MBP平均光密度值下降,在组内随着时间趋势逐步降低,在48h-72h达到最低值,与对照组比较有差异(P<0.05)。脑桥下段MBP异常改变仅在0.9U造模组后48h出现(P<0.05),呈现自中脑至脑桥下段内侧纵束全段的MBP表达异常。胶原酶注射剂量越大,脑干的MBP表达异常发生越早,平均光密度值越小提示髓鞘脱失越明显,波及范围越广泛,在脑干内呈现自上而下的发展。④颅内压越高,动眼神经核NMDAR1表达水平越低,中脑、脑桥上段和脑桥下段的细胞凋亡比例越高,内侧纵束MBP表达越低,。
     2不同阶段脑干层面离断后可以出现不同类型的自发眼震,表现形式在中脑四叠上离断为上跳性眼震;中脑四叠体下离断为汇聚性及扭转痉挛性眼震;脑桥上段离断为下跳性眼震;脑桥下段离断为眼球急动和周期性交替眼震。中脑四叠体离断后冰水诱发眼震电图各参数与对照组比较无差异(P>0.05),其它层面离断后冰水实验均未诱发出眼震。
     3①右侧OMN损毁后双侧冰水诱发眼震电图较对照组比较Lat和F无明显差异(P>0.05),Amp下降,SPV下降,CVI升高(P<0.05)。右侧OMN电刺激后冰水诱发眼震电图参数与对照组比较无差异(P>0.05)。②右侧PPRN破坏后左侧冰水诱发眼震电图与对照组比较形式无差异,其Lat延长,F减慢,Amp下降,SPV减慢,CVI增加(P<0.05),右侧冰水未诱发眼震。右侧PPRN电刺激,右侧冰水诱发眼震与对照组比较眼震的形式无差异,Lat不变, F加快,Amp升高,SPV增加,CVI增加(P<0.05)。左耳灌注冰水诱发眼震与对照组比较眼震的形式无差异,潜伏期不变,但频率减慢,波幅下降,慢相角速度减慢,节律变异指数增加(P<0.05)。③右侧VN破坏后右侧冰水诱发眼震与对照组比较眼震的形式无差异,潜伏期不变,频率增快,波幅加大,慢相角速度加快,节律变异指数增加(P<0.05),左侧冰水未诱发出眼震。右侧VN电刺激后左侧冰水诱发眼震与对照组比较眼震的形式无差异,Lat不变,F增快,Amp加大,SPV加快,CVI增加(P<0.05)。右侧冰水诱发眼震潜伏期不变,F减慢,Amp下降,SPV减慢,CVI增加(P<0.05)④在逐层连续电凝损毁不同阶段的MLF冰水诱发实验中,中脑四叠体上损毁后冰水诱发眼震的Lat、F、Amp、SPV及CVI与对照组比较无显著性差异(P>0.05)。随着下面逐层的破坏,冰水诱发眼震潜伏期延长、频率变慢、波幅下降、慢相角速度减慢及节律变异指数增加(P<0.05)。中脑四叠体上+中脑四叠体下损毁后+脑桥上段损毁+脑桥中下段全部损毁组所有动物冰水试验未诱发眼震。
     结论
     大鼠一侧基底节区不同程度脑出血模型在不同时间点出现自发眼震和冰水诱发眼震不同的改变,是因为不同程度颅内压升高引起脑干眼动相关核团及内侧纵束功能损害所致。冰水诱发眼震电图相关参数的特征性改变及自发眼震可作为判定脑干损伤部位及程度的重要依据。
Background
     Currently with the developing of the biological information technology, the means of monitoring brainstem function are improved and are diversified gradually, including BAEP, SEP and MRI and so on. But as bedside diagnostic monitoring tools, they still had some limitations. Therefore, the study will investigate a clinical bedside monitoring method which can be operated non-invasively and simply. It can be used to help the clinician to judge the brainstem function lesion objectively and accurately. The study will construct a foundation for its further clinical application.
     Purposes
     1 Through constructing the experimental basal ganglia intracerebral hemorrhage model in rats induced by different doses of collagnase, to observe the changes of intracranial pressure, pathological changes of different brainstem segments, spontaneous nystagmus and ice water-induced ENG and the relationships among them. It was achieved that the feasibility of the ENG being applied to monitor the function of brainstem dynamicly.
     2 Through observing the changes of nucleus and the medial longitudinal fasciculi in brainstem and the relationships with ICP, the pathological bases were explored how the spontaneous nystagmus and the abnormal nystagmus induced by ice water test occurred after the experimental basal ganglia intracerebral hemorrhage model in rats induced by different doses of collagnase.
     3 To further verificate brainstem damage being the cause of spontaneous nystagmus and the abnormal ENG ice water-induced after the experimental basal ganglia intracerebral hemorrhage, the similarities and differences of spontaneous nystagmus and ice water-induced ENG were compared between the rat models of which the brainstems were transected at different levels and of the basal ganglia intracerebral hemorrhage. It could provide evidences for ENG being applied to judge the brainstem damage after ICH.
     4 To explore the mechanisms of spontaneous nystagmus and the abnormal ENG ice water-induced caused by brainstem damage, the changes of spontaneous nystagmus and ENG ice water-induced were observed after the brainstem nucleis and the medial longitudinal fasciculus in different stages being destructed and stimulated respectively. It could provide evidences for ENG being applied to judge the brainstem damage after ICH.
     Methods
     Part I: The value which ice water-induced ENG was used being the method to judge the brainstem damage after the experimental basal ganglia intracerebral hemorrhage in rats.
     1 The experimental basal ganglia intracerebral hemorrhage (ICH) was set up according with the Rosenberg’s way. Rats were divided into five groups: sham group, saline control group, 0.3U collagenase injection group, 0.6U collagenase injection group, 0.9U collagenase injection group.
     2 Electrophysiological recording: RM6240C multi-channel physiol- ogical recorder recorded the curve of the intracranial pressure, the spontaneous nystagmus and the ENG ice water-induced at 12h, 24h, 48h, 72h, 5d and 7d after ICH.
     3 Pathological changes of brainstem was observed through HE staining.
     4 Intracranial pressure, pathological changes of the different brainstem segments and ENG ice water-induced including latency (Lat), frequency (F), amplitude (Amp), slow-phase velocity (SPV), circadian variation index (CVI) were given correlation analysis. The function was detectived that the parameters of ENG ice water-induced was applied to judge the different segments of brainstem damage through discriminant analysis.
     Part II: The occurring mechanism of the spontaneous nystagmus and the abnormal ice water-induced ENG after the experimental basal ganglia intracerebral hemorrhage in rats.
     1 The expression levels of NMDAR1 and GABA-ARα1 in oculomotor nucleus (OMN) were detected by immunohistochemistry being responsed to the changes of neuron in the molecular level. TUNEL staining determined the degrees of apoptosis at different brainstem segments being responsed to the changes of neuron in cellular level. Immunohistochemical method measured the MBP expression level of medial longitudinal fasciculus in the brainstem at different layers being responsed to the changes of brainstem myelin.
     2 The changes of spontaneous nystagmus and ENG ice water-induced after the different layers of brainstem were transeced in rats. The brainstem was exposed fully through the enter way of the cerebellomedullary choroidal fissure which the cerebellum was intact. The brainstem was transected at different layers: superior to midbrain quadrigeminal body, inferior to midbrain quadrigeminal body, superior pons, inferior pons. Changes of respiration, blood pressure, spontaneous nystagmus and ENG ice water-induced were also recorded by RM6240C multi-channel physiological recorder.
     3 The changes of spontaneous nystagmus and ENG ice water-induced after the different nucleis and the different stages of the medial longitudinal fasciculus were electric coagulated damaged and electrical stimulated. One lateral oculomotor nucleus, paramedian pontine reticular nucleus and vestibular nucleus were damaged by electrocoagulation and electric stimulated respectively. The different stages of medial longitudinal fasciculus were electrocoagulated at the layer of superior midbrain quadrigeminal body, the layers of superior and inferior midbrain quadrigeminal body, the layers of superior and inferior midbrain quadrigeminal body and superior pons, the layers of superior and inferior midbrain quadrigeminal body, superior pons and inferior pons. Spontaneous nystagmus and parameters of ENG ice water-induced were analyzed and compared among the different nucleis being damaged or stimulated, so as to the different layers of the medial longitudinal fasciculus being damaged.
     Results
     Part I:
     1 The level of ICP was normal in 0.3U collagenase injected group at 12h, rose at 24h and reached the climax at 48h-72h. ICP of 0.6U and 0.9U collagenase injected group were heightened at 12h and reached the peak at 48h-72h (25mmHg). The more the collagenase were injected the ICP were higher at same time.
     2 Different style spontaneous nustagmus were recorded at different period after ICH. There had significant difference between ICH groups and control group in the parameters of ENG ice water-induced at each time (P<0.01), except for 0.3U collagenase injected group at 12h (P>0.05). The more the dosage of collagenase was injected, the sooner the changes of ice water induced nystagmus occured, the longer the latency was, the slower the frequency was, the smaller the amplitude was, the slower the slow-phase velocity was, the greater circadian variation index was (P<0.01).
     3 Pathological changes of brainstem: HE staining showed that the neurons being swelling , the nucleus being condensed and deep-dyed and the neuronal fibers structurel being disordered. The accumulation of inflammatory cells and bleeding also could be seen. The higher dose of collagenase being injected, the higher ICP elevated, the more obviously the pathological changes occurred in brainstem. The developing sequence was from up to down within brainstem.
     4 The accurate rate to judge the brainstem lesion localization with parameters of ENG ice water-induced including Lat, F, Amp, SPV, CVI could reach 79.5% through discriminant analysis.
     Part II:
     1①The NMDAR1 expression levels in OMN of ICH model groups were less than that of control group (P<0.01) at each time. The more the dosage of the collagenase injected, the lower its expression level was and the expression level of GABA-ARα1 had no difference (P>0.05) compared with that of control group.②The percentage of positive apoptotic cells within the brainstem in all ICH groups were higher than that of the control groups (P<0.01). The apoptotic cells were located in the upper layers of the midbrain or pons at 12h-24h after ICH. Then percentage of positive apoptotic cells at all layers of brainstem increased at 48h-72h (P<0.01). The percentage of positive apoptotic cells at inferior pons were increased in 0.6U and 0.9U collagenase injection groups (P<0.01). Comparing among the ICH groups at the same period, the greater the dose of collagenase being injected, the higher the percentage of apoptotic cells was (P<0.05). The results suggested that the greater the doses of collagenase being injected, the earlier the cell apoptosis of brainstem occured, the higher the percentage of apoptotic cells was and the larger the range of apoptosis was involved. The developing sequence was from the midbrain to inferior pons.③It could be seen that coloring of myelin being shallow which bundle structure was disrupted and the average optical density decreased in all ICH groups (P<0.01). It indicated the presence of demyelination. The average optical density of MBP of medial longitudinal fasciculus in the brainstem declined at 72h, 24h, 12h after 0.3U, 0.6U, 0.9U collagenase being injected respectively. The trend showed degrading over time and dropped to the lowest point at 48h-72h compared with the control group (P<0.01). The average optical density descending of MBP in upper pons appeared in 0.6U and 0.9U group at 72h and 48h respectively. There had significant difference within groups (P<0.01). Abnormal expression of MBP in inferior pons only was showed in 0.9U group at 48h (P<0.05), which showed the abnormal expression of MBP of the whole brainstem MLF from the midbrain to pontine. The higher dose of collagenase being injected, the smaller the average optical density of the MBP was, the more obviously the demyelination occurred. The developing sequence was from up to down within brainstem also. Correlation analysis showed that the higher the intracranial pressure was, the lower level of NMDAR1 in the OMN expressed, the lower level of MBP of MLF expressed and the higher level of cell apoptosis within brainstem was.
     2 Different types of spontaneous nystagmus appeared after the different brainstem segments being transected. The types of spontaneous nystagmus were upbeat nystagmus or torsion spasm nystagmus after the superior midbrain quadrigeminal body being transected. The types of spontaneous nystagmus were downbeat nystagmus after the superior pons being transected. The types of spontaneous nystagmus were eye snap or periodic alternating nystagmus after the inferior pons being transected. All parameters of ENG ice water-induced after midbrain transection had no significant difference compared with the control group (P>0.05). Nystagmus couldn’t be induced by ice water after other brainstem segments being transected.
     3①There was no difference at Lat and F of ENG ice water-induced between the group which the right lateral OMN being damaged and control group (P>0.05), while the Amp and the SPV descended, the CVI increased (P<0.05). The parameters of ENG ice water-induced while the right OMN being stimulated had no difference compared with the control group (P>0.05).②There was no difference in the type of ENG left lateral ice water-induced after the right PPRN being damaged compared with the control group, but the Lat extended, the F and Amp were down, the SPV was slow, the CVI increased (P<0.05). Nystagmus couldn’t be induced by right ice water test. There was no difference in the type of ENG right lateral ice water-induced after the right PPRN being stimulated compared with the control group, same as the Lat, while the F, the Amp, the SPV and the CVI increased (P<0.05). While the left water induced ENG showed the F, the Amp, the SPV decresed and the CVI was greater(P<0.05).③There was no difference in the type of ENG right lateral ice water-induced after the right VN being damaged compared with the control group, same as the Lat, the Amp, the SPV and the CVI increased (P<0.05). Nystagmus couldn’t be induced by left lateral ice water test. There was no difference in the type of ENG left lateral ice water-induced after the right VN being stimulated compared with the control group , same as the Lat, while the F, the Amp, the SPV and the CVI increased (P<0.05).④After the MLF of superior midbrain quadrigeminal body being electric coagulated, the Lat, F, Amp, SPV and the CVI of the ENG ice water-induced were same as those of the control group (P>0.05). Along with the more layers being destructed from superior to inferior, the latency was extened, the frequency and slow phase velocity became slower, the amplitude descended and the CVI increased about the ENG ice water-induced (P<0.05). The nystagmus induced by ice water test disappeared after the whole MLF of brainstem being damaged.
     Conclusions
     Spontaneous nystagmus and nystagmus ice water-induced could occur different changes at different periods after the basal ganglia ICH model in rats. The reasons were the damages of the nucleus and MLF about the eye movements in brainstem caused by the different degree increased ICP. On the contrary, the locations and the degrees of brainstem damage could be judged according with parameters of ENG ice water-induced and spontaneous nystagmus
引文
[1] Caplan L, Gutmann L, Besser R, et al. Brain-stem localization and function [M]. Springer, Heidelberg Press, NewYork. 1993
    [2] Ongerboerde VBW, Cruccu G, Manfredi M, et al. Effects of brainstem lesions on the masseter inhibitory reflex. Functional mechanisms of reflex pathway [J]. Brain. 1990, 113(3):781-792
    [3] Hope HC. Topodiagnostic value of brainstem reflexes [J]. Muscle Nerve. 1994, 17(5):475-484
    [4] Kimura J, Daube J, Burke D, et al. Human reflexes and late responses:Report of an IFCN committee [J]. Electroencephalography and clinical Neurophysiology.1994, 90:393-403
    [5] David LM, Ragnar A. Auditory brainstem response in infant hydrocephalus [J]. Child's Nerv Syst. 1985, 1(2):70-76
    [6] Christianto BL. Measurements of brainstem auditoryevoked potentials in patients with spontaneous intracerebral hemorrhage [J]. J Neurosurg. 1984, 60(3):548-552
    [7] Mjcen S, Nordby HK, Torvik A. Auditory evoked brainstem responses (ABR) in ccoma due to severe head trauma [J]. Acta Otolaryngo.1983, 95(1-4):131-138
    [8] Kilmmchey R, Avila A, Symon L. The use of brainstem auditory evoked potentials during posterior fossa surgery as a monitor of brainstem function [J]. Acta Neurochir Wien. 1986, 82:128-136
    [9] Marmarou A, Shima K, Dunbar J. Contribution of brainstem edema to neurophysiologic deterioration in the cat infusion edema model [J]. Adv Neurol. 1990, 52:351-354
    [10] Capozza M, Iannetti GD, Mostarda M, et al. Three-dimensional mapping of brainstem functional lesions [J]. Medical & Biological Engineering & Computing. 2000, 38(6):633-644
    [11] Sheykholeslami K, Kaga K, Murofushi T, et al. Vestibular function in auditory neuropathy [J]. Acta Otolaryngol. 2000, 120(7):849-854
    [12] Robert William Baloh, Vicente Honrubia. Clinical neurophysiology of the vestibular system [M]. NewYork: Oxford press. 2010:135-140
    [13] Batuecas-Caletrio A, Montes-Jovellar L, Boleas-Aguirre MS, et al. The ice-watercaloric test [J]. Acta Otolaryngol. 2009, 129(12):1414-1419
    [14] Gon?alves DU, Felipe L. Interpretation and use of caloric testing [J]. Rev Bras Otorrinolaringol. 2008, 74(3):440-446
    [15] Toshiaki Yagi. Nystagmus as a sign of labyrinthine disorders-three-dimensional analysis of nystagmus [J]. Clin Exp Otorhinolaryngol. 2008, 1(2):63-74.
    [16] Yagi T, Koizumi Y, Aoyagi M, et al. Three-dimensional analysis of eye movements using four times high-speed video camera [J]. Auris Nasus Larynx. 2005, 32(2):107-112.
    [17] Baba S, Fukumoto A, Aoyagi M, et al. A comparative study on the observation of spontaneous nystagmus with Frenzel glasses and an infrared CCD camera [J]. J Nippon Med Sch. 2004, 71(1):25-29.
    [18] Labovitz DL, Halim A, Boden-Albala B, et al. The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and Hispanics [J]. Neurology. 2005, 65(4):518-522
    [19] Qureshi AI, Tuhrim S, Broderick JP, et al. Spontaneous intracerebral hemorrhage [J]. N Engl J Med. 2001, 344(19):1450-1460
    [20] Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration [J]. Stroke. 1997, 28(3):491-499
    [21] Hussain SI, Cordero-Tumangday C, Goldenberg FD, et al. Brainstem ischemia in acute herniation syndrome [J]. Journal of the Neurological Sciences. 2008, 268(1-2):190-192
    [22] Rosenberg GA, Mun-bryce S, Wesley M, et a1 . Collagenase induced intraccerebral hemorrhage in rats [J]. Stroke. 1990, 21(5):801-807.
    [23] Louis J, Pellegrino A, Cushman AJ. A stereotaxi atlas of the rat brain [M]. Sencond edition. New York and London: Plenum press. 1979.
    [24] Hair JF, Tatham RL, Anderson RE, et al. Multivariate data analysis [M]. New Jersey: Prentice Hall press.1984
    [25] George Seber. Multivariate observations [M]. New York: Wiley press. 1984
    [26] Howell DA. Upper brainstem compression and foraminal impaction with intracranial space-occupying lesions and brain swelling [J]. Arch Neurol. 1961, 4(5):572-579
    [27] Wjdics EF, Miller GM. MR imaging of progressive downward herniation of thediencephalon [J]. Neurology. 1997, 48(5):1456-1459
    [28] Jamels L. Transtentorial brain herniation in the monkey: Analysis brainstem auditory and somatosensory evoked potentials [J]. Neurosurgery, 1990, 26(1):26-31
    [29] Wijdicks EFM. Acute brainstem displacement without herniation and posterior cerebral artery injury [J]. J Neurol Neurosurg Psychiatry. 2008, 79(7):744-751
    [30] Kawahara N,Sasaki M,Mii K, et al. Sequential changes of auditory brain stem responses in relation to intracranial and cerebral perfusion pressure and initiation of secondary brain stem damage [J]. Acta Neurochir (Wien). 1989, 100(3-4):142-149
    [31] Seigo Nagao. Acute intracranial hyeprtension and brainstem blood flow: An experiment study [J]. J Neurosurg.1984, 30(3):566-571
    [32] Kobrak F, Uber kalorische Schwach- und Kurzreize und hierbei in Frage kommende Gesetzm ?ssigkeiten. Beitr Anat Physiol Pathol Ther Ohr Nase Hals , 1923, 19:321-325.
    [33] Brrany R. Untersuchungen fiber den vom Vestibularapparat des Ohres reflektorisch ausgeDstcn rhythmischen Nystagmus und seine Begleiterscheinungen. Mschr. Olarenheilk. 1906, 40:193-297
    [34] Mehra YN. Eletronystagmography: A study of caloric tests in normal subjects [J]. J Laryngol Otol. 1964, 78:520-529
    [35] Riesco MacClure JS. Caloric tests: methods and interpretation [J]. Ann Otol Rhinol Laryngol. 1964, 73:829-837
    [36] Van Den Broek P, Huygen LM, Mens LHM, et al. Vestibular function in Cochlear implant patients [J]. Acta Otolaryngol. 1993, 113(3):263-265
    [37] Takemori S, Aiba R, Shizawa R. Visual suppression of caloric nystagmus in brain-stem lesions [R]. Ann NY Acad Sc. 1981, 374 (Vestibular and Oculomotor Physiology: International Meeting of the Barany Society):846-854
    [38] Rosenberg M, Sharpe J, Hoyt WF. Absent vestibulo-ocular reflexes and acute supratentorial lesions[J]. J Neurol Neurosurg Psychiatry. 1975, 38(1):6-10
    [39] Kaaber EG, Zilstorff K. Vestibular function in benign intracranial hypertension [J]. Clin Otolaryngol. 1978, 3(2):183-188.
    [40] Geocadin RG, Buitrago MM, Torbey MT, et al. Neurologic prognosis and withdrawal of life support after resuscitation from cardiac arrest [J]. Neurology.2006, 67:105-108
    [41] Wijdicks EFM, Hijdra A, Young GB, et al. Practice Parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review) [J]. Neurology. 2006, 67:203-210
    [42] Bland KI, Büchler MW, et al. General surgery. Brain Death(Part 3): Coma and Altered Mental Status in the Surgical Critical Care Setting [M]. 2nd edition. London: Springer press. 2009:195-210
    [43] Baron L, Shemie SD, Teitelbaum J, et al. Brief review: History, concept and controversies in the neurological determination of death [J]. Canadian Journal of Anesthesia / Journal canadien d'anesthésie. 2006, 53(6):602-608
    [44] Jasper R Daube, Devon I Rubin. Clinical physiology [M]. Third edition. NewYork: Oford Press. 2009:305-310
    [45] Kaga K, Nagai T, Takamori A, et al. Auditory short, middle, and long latency responses in acutely comatose patients [J]. The Laryngoscope. 1985, 95(3):321-325
    [46] Stone JL, Calderon-Arnulphi M, Watson KS, et al. Brainstem auditory evoked potentials-a review and modified studies in healthy subjects [J]. Journal of Clinical Neurophysiology. 2009, 26(3):167-175
    [47] Mogens Kj?r. The value of brain stem auditory, visual and somatosensory evoked potentials and blink reflexes in the diagnosis of multiple sclerosis [J]. Acta Neurologica Scandinavica. 1980, 62(4):220-236.
    [48] Kang X, Xiong W, Koenig M, et al. Long-term assessment of post-cardiac-arrest neurological outcomes with somatosensory evoked potential in rats [J]. Conf Proc IEEE Eng Med Biol Soc. 2009, 1:2196-2199.
    [49] Nathanson M, Bergman PS, Anderson PJ. Significance of oculocephalic and caloric responses in the unconcious patient [J]. Neurology. 1957, 7(12):829-832
    [50] Poulsen J, Zilstroff K. Prognostic value of the caloric-vestibular test in the unconcious patient with cranial trauma [J]. Acta Neurol Scand. 1972, (suppl) 36:1-56.
    [51] Fisher CM. The neurological examination of the comatose patient [J]. Acta Neurol Scand. 1969, (suppl) 36:1-56
    [52] Toshiaki Yagi. Nystagmus as a Sign of Labyrinthine Disorders-Three-Dimensional Analysis of Nystagmus [J].Clin ExpOtorhinolaryngol. 2008, 1(2):63-74.
    [53] Marx JJ, Mika-Gruettner A, Thoemke F, et al. Electrophysiological brainstem testing in the diagnosis of reversible brainstem ischemia [J]. J Neurol. 2002, 249:1041-1047
    [54] Marx J, Thoemke F, Fitzek S, et al. A new method to investigate brain stem structural functional correlations using digital post-processing MRI reliability in ischemic internuclear ophthalmoplegia [J]. European Journal of Neurology. 2001, 8 (5):489-493
    [55] Henn V. Brain stem localization and function: Electronystagmography (the answers one might get) [M]. Heidelberg: Springer press.1993. 93-111
    [56] Capozza M, Lannetti GD, Iostarda M, et al. Three-dimensional mapping of brainstem functional lesions [J]. Medical & Biological Engineering & Computing. 2000, 38(6):633-649
    [57] Frederiksen JL, Larsson HBW, OlesenI J, et al. MRI, VEP, SEP and biothesiometry suggest monosymptomatic acute optic neuritis to be a first manifestation of multiple sclerosis [J]. Acta Neurologica Scandinavica. 2009, 83(5):343-350
    [58] Thurtell MJ, Mohamed A, Lüders HO, et al. Evidence for three-dimensional cortical control of gaze from epileptic patients[J]. J Neurol Neurosurg Psychiatry. 2009, 80(6):683-685
    [59] Struijk JJ, Kanters JK, Andersen MP, et al. Classification of the long-QT syndrome based on discriminant analysis of T wave morphology [J]. Med Bio Eng Comput. 2006, 44:534-549
    [60]陈希镇,曹慧珍.判别分析和SPSS的使用[J].科学技术与工程. 2008, 8(13):3567-3574
    [61] Wexler DB. The carloic test in electronystagmorgraphy [J]. Entechnology. 1989, 68(11):886
    [62] Luxon L. Comparison of assessment of caloric nystagmus by observation of duration and by electronystagmographic measurement of slow-phase velocity [J]. Br J Audiol. 1995, 29(2):107-115
    [63] Mulch G, Leonady B, Petermann W. Which are parameters of choice for evaluation of nystagmus [J]. Arch Ortohinoyngol. 1978, 221(1):23-25
    [64] Mishra SC, Sandana K, Dave, et al. Diagnostic significance of vestibular tests inpost fossa tumefaction [J]. India Journal of Otolaryngology. 1978, 30(2):65-67
    [65] Rosenfeld M. Untersuchungen fiber den calorischen nystagmus bei gehirnkranken mitstrung des bewugtseins [J]. Z Ges Neurol Psychiatr. 1910, 3:271-280
    [66] Fisher CM. The neurological examination of the comatose patient [J]. Acta Neurol Scan. 1969, 45 (Suppl36):1-56
    [67] Toshiaki Yagi, Shunkichi BaBa. Evaluation of the brainstem founction by the auditory brain stem response and the caloric vestibular reaction in comatose patient [J]. Ach Otorhinolaryngol.1983, 238(1):33-43
    [1] Sheykholeslami K, Kaga K, Murofushi T, et al. Vestibular function in auditory neuropathy [J]. Acta Otolaryngol. 2000, 120(7):849-854
    [2] Baloh RW, Honrubia V. Clinical Neurophysiology of the Vestibular System [M]. 3rd edition. New York: Oxford university press. 2010: 20-29
    [3] Batuecas-Caletrio A, Montes-Jovellar L, Boleas-Aguirre MS, et al. The ice-water caloric test[J]. Acta Otolaryngol. 2009, 129(12):1414-1419
    [4] Paxinos G, Watson C. The rat brain in stereotaxic coordinates [M]. New York: Academic Press,1997
    [5] Dutschmann M, Guthmann A, Herbert H. NMDA receptor subunit NR1-immunoreactivity in the rat pons and brainstem and colocalization with Fos induced by nasal stimulation [J]. Brain Research. 1998, 809(2):221-230
    [6] Wynne B, Harvey AR, Robertson D, et al. Neurotransmitter and neuromodulator systems of the rat inferior colliculus and auditory brainstem studied by in situ hybridization [J]. J Chem Neuroanat. 1995, 9(4):289-300
    [7] Lim R, Alvarez FJ, Walmsley B. GABA mediates presynaptic inhibition at glycinergic synapses in a rat auditory brainstem nucleus [J]. Journal of Physiology. 2000, 525(2):447-459
    [8] Campos ML, Decabo C, Wisden W, et al. Expression of GABAA receptor subunits in rat brainstem auditory pathways: Cochlear nuclei, superior olivary complex and nucleus of the lateral lemniscus [J]. Neuroscience. 2001, 102(3):635-638
    [9] Gary G Matthews. Neurobiology [M]. Second edition. New York:Blackwell science INC. 2001:208-230
    [10] Thurtell MJ. Ocular motor system. Http://ses.library.usyd. edu.au/bitstream /2123/ 1665/3/03chapter.pdf.2007
    [11] Wentzel PR, De Zeeuw CI, Holstege JC, et al. Colocalization of GABA and glycine in the rabbit oculomotor nucleus [J]. Neuroscience Letters. 1993, 164(1-2):25-29
    [12] Spencer RF, Wang SF. Immunohistochemical localization of neurotransmitters utilized by neurons in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) that project to the oculomotor and trochlear nuclei in the cat [J]. J Comp Neurol. 1998, 366(1):134-138
    [13] Qureshi AI, Suri MF, Ostrow PT, et al. Apoptosis as a form of cell earth in intracerebral hemorrhage [J]. Neurosurgery. 2003, 52:1041
    [14] Matsushita K, Meng W, Wang X, et al. Evidence for Apoptosis after intracerebral hemorrhage in rat striatum [J]. J Cereb Blood Flow Metab. 2000, 20:396-404
    [15]杨小锋,龚江标,虞军等.创伤性颅脑损伤后细胞凋亡状态与脑水肿颅内压的相关性研究[J].浙江医学预防杂志. 2005, 17(1):17-18
    [16] Ramesh R, Graham DI, Mcintosh TK. Apoptosis after traumatic brain injury: Apoptosis in central nervous system injury [J]. J Neurotrauma. 2000, 17(10):927-938
    [17] Hutchison JS, Derrane RE, Johnston DL, et al. Neuronal apoptosis inhibitory protein expression after traumatic brain injury in the mouse [J]. J Neurotrauma. 2001, 8(12):1333-1347
    [18] Smith R. The basic protein of CNS myelin: its structure and ligand binding [J]. J Neurochem. 1992, 59(5):1589-1608
    [19] Readhead C, Takasashi N, Shine HD, et al. Role of myelin basic protein in the formation of central nervous system myelin [J]. Ann N Y Acad Sci. 1990, 605:280-285.
    [20] Jones TB, Ankeny DP, Guan Z. Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats [J]. J Neurosci. 2004, 24(15):3752-3761
    [21] Wasserman JK, Schlichter LC. White matter injury in young and aged rats after intracerebral hemorrhage [J]. Exp NeuroL. 2008, 214(2):266-275
    [22] Takashima S, Fukumizu M. Pathology of congenital aqueductal stenosis and posthemorrhagic hydrocephalus [J]. No To Hattatsu. 1994, 26(3):216-221
    [23] Capps MJ, Preciado MC, Paparella MM. Evaluation of the air caloric test as a routine examination procedure [J]. Laryngoscope. 2009, 83(7):1013-1021
    [24] Krantic S, Mechawar N, Reix S, et al. Apoptosis-inducing factor:A matter of neuron life and death [J]. Prog Neurobiol. 2007, 81(3): 179-196
    [25] Lamers KJ, Van Engelen BG, Gabre?ls FJ, et al. Cerebrospinal neuron-specific enolase, S-100 and myelin basic protein in neurological disorders [J]. Acta Neurol Scand. 2009, 92 (3):247-251
    [1] Lighthall JW, Anderson TE, Salzman SK, et al. The neurobiology of cenral nervous system trauma [R]. New York: Oxford University. 1994:3-12
    [2] Meythaler JM, Peduzzi JD, Eleftheriou E, et al. Current concepts: diffuse axonal injury-associated traumatic brain injury [J]. Arch Phys Med Rehabil. 2001, 82(10):1461-1471
    [3] Povlishock JT, Hayes RL, Michel ME, et al. Workshop on animal models of traumatic brain injury [J]. J Neurotrauma. 1994, 11(6):723-732
    [4] Albensi BC, Knoblach SM, Chew BG, et al. Diffusion and high resolution MRI of traumatic brain injury in rats: time course and correlation with histology [J]. Exp Neurol. 2000, 162(1):61-72
    [5]邓平,徐小虎,祝家镇等.机械性脑干损伤动物模型的建立[J].中华实验外科杂志. 2000, 17(2):183
    [6]任天剑,王忠诚,张俊廷等.经小脑延髓脉络膜裂人路暴露脑干的动物模型的实验研究[J].中华神经外科杂志. 2006, 22(1):58-59
    [7] Hüfner K, Stephan, RT, Kalla T, et al. Structural and functional MRIs disclose cerebellar pathologies in idiopathic downbeat nystagmus [J]. Neurology. 2007, 69:1128-1135
    [8] Leigh RJ, Zee DS. The neurology of eyemovments [M]. Third edition.New York: Oxford University . 1999
    [9] Büttner-ennever JA, Anja KE. The human nervours system:Reticular Formation:eye movements, gaze and blinks [M]. USA:Elsevier. 1989. Chapter 16:479-510
    [10] Shaunak E, O'Sullivan S, Kennard C. Eye movements [J]. J Neurol Neurosurg Psychiatry. 1995, (1):15-125
    [11] Andreas S, Leigh RJ. Neurological Disorders: Course and Treatment [M]. Second Edition. Boston:Academic . 2003:125-134
    [12] Straumann D, Haslwanter T. Ocular Motor Disorders [J]. Curr Opin Neurol. 2001, 14(1):5-10
    [13] Lee SC, Lee SH, Lee YK, et al. Transient upbeat nystagmus due to unilateral focal pontine infarction [J]. J Clinical Neurosci. 2009, 16 (4):563-565
    [14] Pierrot-Deseilligny C, Milea D. Vertical nystagmus: Clinical facts and hypotheses [J]. Brain. 2005, 128(6):1237-1246
    [15] Pierrot-Deseilligny C, Milea D, Sirmai J, et al. Upbeat nystagmus due to a small pontine lesion: Evidence for the existence of a crossing ventral tegmental tract [J]. Eur Neurol. 2005, 54(4):186-190
    [16] Jassen JC, Larner AJ, Morris M, et al. Upbeat nystagmus: Clinicoanatomical correlation [J]. J Neurol Neurosurg Psychiatry. 1995, 65(3):380-381
    [17] Dieterich M. The topographic diagnosis of acquired nystagmus in brainstem disorders [J]. Strabismus. 2002, 10(2):137-145
    [18] Brazis PW, Masdeu JC, Biller J. Localization in Clinical Neurology [M]. 4th edition. Philadelphia: Lippincott Williams & Wilkins. 2001
    [19] Sharma S, Sumich PM, Francis IC, et al. Wernicke’s encephalopathy presenting with upbeating nystagmus[J]. J Clin Neurosci. 2002, 9(4):476-478
    [20] Westheimer G, Blair SM. The ocular tilt reaction in brain stem oculomotor routine [J]. Ophthalmol. 1975, 8(3):14833–14839.
    [21] Lueck CJ, Hamlyn P, Crawford TJ, et al. A case of ocular tilt reaction and torsional nystagmus due to direct stimulation of the midbrain in man [J]. Brain. 1991, 114(5):2069-2079
    [22] Bhidayasiri R, Plant GT, Leigh JR. A hypothetical scheme for the brainstem control of vertical gaze [J]. Neurology. 2000, 54:1985-1993
    [23] Brandt T, Dieterich M. Brainstem Localization and Function:Preliminary classification of vestibular brain-stem disorders [M]. Berlin and Heidelberg: Springer-Verlag. 1993. 79-91
    [24] Helmchen C, Rambold H, Kempermann U, et al. Localizing value of torsional nystagmus in small midbrain lesions [J]. Neurology. 2002, 59:1956-1964
    [25] Jouvent E, Benisty S, Fenelon G. Convergence nystagmus and vertical gaze palsy of vascular origin [J]. Rev Neurol. 2005, 161(5):593-595
    [26] Pierrot-Deseilligny C, Milea D. Vertical nystagmus: clinica facts and hypotheses [J]. Brain. 2005, 128(6): 1237-1246
    [27] Leigh RJ, Tomsak RL. Drug treatments for eye movement disorders [J]. J Neurol Neurosurg Psychiatry. 2003, 74(1):1-4
    [28] Leigh RJ. Potassium channels, the cerebellum, and treatment for downbeat nystagmus [J]. Neurology. 2003, 61:158-159
    [29] Furman JM, Wall C, Pang DL. Vestibular function in periodic alternating nystagmus [J]. Brain. 1990, 113(5):1425-1439
    [30] Leichentz GR. The profronta cortico-oculomotor projectories in the monkey:A possible explanation for the effects of stimulation effects of stimulation lesion experiments on eye movement [J]. J Neuro Sci. 1981, 49(3):387-396
    [31] Iwatsubo T, Kuzunara S, Kanemitsu A, et al. Corticofugal projection to the motor nuclei of the brainstem and spinal cord in humans [J]. Neurology. 1990, 40:309-319
    [1] Smith LH, Demyer WE. Anatomy of the brainstem [J]. Semi Pediatr Neurol. 2003, 10(4):235-240
    [2] Louis J, Pellegrino A, Cushman AJ. A stereotaxi atlas of the rat brain [M]. Sencond direction. NewYork and London: Plenum.1979
    [3] Ferman L, Collewijn H, Jansen TC, et al. Human gaze stability in horizontal, vertical and torsional direction during voluntary head movements, evaluated with a three-dimensional scleral induction coil technique [J]. Vision Res. 1987, 27(5):811-828
    [4] Leigh RJ, Zee DS. Common clinical methods for measuring eye movements. In The Neurology of Eye Movements [M]. Second edition. Philadelphia: FA Davis Co. 1991. 535
    [5] Breen LA. Neuro-Ophthalmology: Clinical Signs and Symptoms [M].4th edition. Baltimore: Williams & Wilkins. 1997. 504-520
    [6] Horn AK, Büttner-Ennever JA. Premotor neurons for vertical eye-movements in the rostral mesencephalon of monkey and man: the histological identification by parvalbumin immunostaining [J]. J Comp Neurol. 1998, 392(4):413-427
    [7] Horn AK, Bütttner-Ennever JA. Neuroanatomy of the oculomotor system. The reticular formation [J]. Rev Oculomot Res. 1988, 2:119-176
    [8] Suzuki Y, Büttner-Ennever JA, Straumann D, et al. Deficits in torsional and vertical rapid eye movements and shift of Listing’s plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus [J]. Exp Brain Res. 1995, 106(2):215-232
    [9] Büttner-Ennever JA, Horn AK, Scherberger H, et al. Adual motor innervation of extraocular muscles from the abducens, trochlear and oculomotor nuclei of monkey [J]. J Comp Neurol. 2001, 438(4):318-335
    [10] Jean A. Büttner-Ennever. Neuroanatomy of the Oculomotor System [M] USA, Elsevier Science. 1988. 81-118
    [11] Ramat S, Leigh RJ, Zee DS, et al. What clinical disorders tell us about the neural control of saccadic eye movements [J]. Brain. 2007, 130(1):10-35
    [12] Strassman A, Highstein SM, Mccrea RA. Anatomy and physiology of saccadicburst neurons in the alert squirrel monkey. Excitatory burst neuron [J]. J Comp Neurol. 1986, 249(3):337-357
    [13] Horn AK, Büttner-Ennever JA, Suzuki Y, et al. Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining [J]. J Comp Neurol. 1997, 359(2):350-363
    [14] Beitz AJ, Anderson JH. Neurochemistry of the vestibular system [M]. Boca Raton: CRC . 2000. 199-222
    [15] Henn V, Lang W, Hepp K, et al. Experimental gaze palsies in monkeys and their relation to human pathology [J]. Brain. 1984, 107(pt2):619-636
    [16] Cohen B, Komatsuzuki A, Bender MB. Electrooculographic syndrome in monkeys after pontine reticular formation lesions [J]. Arch Neurol Chicago.1968, 18(1):78-92
    [17] Jaeger J, Henn V, Lang W, et al. Vestibular unit activity in monkeys with horizontal gaze palsy. In: Progress in Oculomotor Research [R]. Amsterdam: Elsevier. 1981. 89-95
    [18] Goebel HH, Komatsuzaki A, Bender MB, et al. Lesions of the pontine tegmentum and conjugate gaze paralysis [J]. Arc Neurol Chicago. 1971, 24(5):431-440
    [19] Henn V, Lang W, Hepp K, et al. Experimental gaze palsies in monkeys and their relation to human pathology [J]. Brain. 1984, 107(pt2):619-636
    [20] Barton EJ, Nelson JS, Gandhi NJ, et al. Effects of partial lidocaine inactivation of the paramedian pontine reticular formation on saccades of macaques [J]. J Neurophysiol. 2003, 90(1):372-386
    [21] Deseilligny C, Goasguen J, Chan TF, et al. Pontine metastasis with dissociated bilateral horizontal gaze paralysis [J]. J Neurol Neurosurg Psychiatry. 1988, 47(2):159-164
    [22] Ban JH, Chang J, Im GJ. Proteomic analysis of the rat vestibular nucleus complex following unilateral labyrinthectom [J]. Acta Otolaryngol. 2009, 129(8):846-854
    [23] Yin S, Yu D, Li M, et al. Triples semicircular canal occlusion in guinea pigs with endolymphatic hydrops [J]. Oto Neurotol. 2006, 27 (1): 78-85
    [24] Frohman TC, Galetta R, Fox S, et al. The medial longitudinal fasciculus in ocular motor physiology [J]. Neurology. 2008, 70:57-67
    [25] Ross AT, DeMyer WE. Isolated syndrome of the medial longitudinal fasciculus in man: anatomical confirmation [J]. Arch Neurol. 1966, 15(2):203-205
    [26] Zee DS. Internuclear ophthalmoplegia: pathophysiology and diagnosis [J]. Baillieres Clin Neurol. 1992, 1(2):455-470
    [27] Zee DS, Hain TC, Carl JR. Abduction nystagmus in internuclear ophthalmoplegia [J]. Ann Neurol. 1987, 21(4):383.
    [28] Frohman TC, Frohman EM, O’Suilleabhain P, et al.The accuracy of clinical detection of INO in MS: corroboration with quantitative infrared oculography [J]. Neurology. 2003, 61:848-850
    [1] Crawford JD, Vilis T. Axes of eye rotation and Listing's law during rotations of the head [J]. J Neurophysiol. 1991, 65(3):407-423
    [2] Minor LB. Physiological principles of vestibular function on earth and in space [J]. Otolaryngol Head Neck Surg. 1998, 118(3pt 2):S5-S15
    [3] Schubert MC, Minor LB. Vestibulo-ocular physiology underlying vestibular hypofunction [J]. Phys Ther. 2004, 84(4):373-385
    [4] Santina DC, Potyagaylo V, Migliaccio AA, et al. Orientations of human vestibular labyrinth semicircular canals [A]. In: Proceedings of the 2004 Midwinter Meeting of the Association for Research in Otolaryngology. USA:Daytona Beach. 2004, April 1
    [5] Cremer PD, Halmagyi GM, Aw ST, et al. Semicircular canal plane head impulses detect absent function of individual semicircular canals [J]. Brain. 1998, 121(pt4):699-716
    [6] Smith CA, Lowry OH, Wu ML. The electrolytes of the labyrinthine fluids [J]. Laryngoscope. 1954, 64:141-153
    [7] Goldberg JM, Fernandez C. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey, I: resting discharge and response to constant angular accelerations [J]. J Neurophysiol. 1971, 34:635-660
    [8] Naito Y, Newman A, Lee WS, et al. Projections of the individual vestibular end-organs in the brain stem of the squirrel monkey [J]. Hear Res.1995, 87(1-2):141-155
    [9] Brodal A, Brodal P. Observations on the secondary vestibulocerebellar projections in the macaque monkey [J]. Exp Brain Res. 1985, 58(1):62-74.
    [10] Furuya N, Kawano K, Shimazu H. Functional organization of vestibulofastigial projection in the horizontal semicircular canal system in the cat [J]. Exp Brain Res. 1975, 24(1):75-87.
    [11] Goldberg JM. Afferent diversity and the organization of central vestibular pathways [J]. Exp Brain Res. 2000, 130(3):277-297
    [12] Lopez I, Honrubia V, Baloh RW. Aging and the human vestibular nucleus [J]. J Vestib Res. 1997, 7(1):77-85
    [13] Park JJ, Tang Y, Lopez I, et al. Unbiased estimation of human vestibular ganglion neurons [J]. Ann N Y Acad Sci. 2001, 942(The vestibular labyrinth in health and disease):475-478
    [14] Richter E. Quantitative study of human Scarpa's ganglion and vestibular sensory epithelia [J]. Acta Otolaryngol.1980, 90(1-6):199-208
    [15] Highstein SM, Goldberg JM, Moschovakis AK, et al. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey, II: correlation with output pathways of secondary neurons [J]. J Neurophysiol. 1987, 58(4):719-738
    [16] Goldberg JM, Highstein SM, Moschovakis AK, et al. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey, I: an electrophysiological analysis [J]. J Neurophysiol. 1987, 58(4):700-718
    [17] Troiani D, Petrosini L, Zannoni B. Relations of single semicircular canals to the pontine reticular formation [J]. Arch Ital Biol. 1976, 114(4): 337-375
    [18] Buttner U, Henn V. Thalamic unit activity in the alert monkey during natural vestibular stimulation [J]. Brain Res. 1976, 103(1):127-132
    [19] Buttner U. Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation [J]. Brain Res. 1978, 153(2):392-397
    [20] Grusser OJ, Pause M, Schreiter U. Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis) [J]. J Physiol. 1990, 430(1):537-557
    [21] Thier P, Erickson RG. Vestibular input to visual-tracking neurons in area MST of awake rhesus monkeys [J]. Ann N Y Acad Sci. 1992, 656(Sensing and controlling motion: vestibular and sensorimotor function):960-963
    [22] Brandt T, Glasauer S, Stephan T, et al. Visual-vestibular and visuovisual cortical interaction: new insights from fMRI and PET [J]. Ann N Y Acad Sci. 2002, 956(Neurobiology of eye movements: from molecules to behavior):230–241
    [23] Dieterich M, Bense S, Stephan T, et al. fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation [J]. Exp Brain Res. 2003, 148:117-127
    [24] Brandt T, Dieterich M. Vestibular syndromes in the roll plane: topographicdiagnosis from brainstem to cortex [J]. Ann Neurol. 1994, 36(3):337-347
    [25] Uchino Y, Hirai N, Suzuki S. Branching pattern and properties of vertical- and horizontal-related excitatory vestibuloocular neurons in the cat [J]. J Neurophysiol. 1982, 48(4):891-903
    [26] Clendaniel RA, Lasker DM, Minor LB. Differential adaptation of the linear and nonlinear components of the horizontal vestibuloocular reflex in squirrel monkeys. J Neurophysiol. 2002, 88:3534-3540
    [27] Halmagyi GM, Curthoys IS. A clinical sign of canal paresis [J]. Arch Neurol. 1988, 459(7):737-739
    [28] Halmagyi GM, Curthoys IS, Cremer PD, et al. The human horizontal vestibulo-ocular reflex in response to high-acceleration stimulation before and after unilateral vestibular neurectomy [J]. Exp Brain Res. 1990, 81:479-490
    [29] Minor LB, Cremer PD, Carey JP, et al. Symptoms and signs in superior canal dehiscence syndrome [J]. Ann N Y Acad Sci. 2001, 942(The vestibular labyrinth in health and disease): 259-273
    [30] Aw ST, Halmagyi GM, Curthoys IS, et al. Unilateral vestibular deafferentation causes permanent impairment of the human vertical vestibulo-ocular reflex in the pitch plane [J]. Exp Brain Res. 1994, 102:121-130
    [31] Foster CA, Foster BD, Spindler J,et al. Functional loss of the horizontal doll’s eye reflex following unilateral vestibular lesions [J]. Laryngoscope. 1994, 104(4):473-478
    [32] Harvey SA, Wood DJ. The oculocephalic response in the evaluation of the dizzy patient [J]. Laryngoscope. 1996, 106(1):6-9
    [33] Harvey SA, Wood DJ, Feroah TR. Relationship of the head impulse test and head-shake nystagmus in reference to caloric testing [J]. Am J Otol. 1997, 18(2):207-213
    [34] Beynon GJ, Jani P, Baguley DM. A clinical evaluation of head impulse testing [J]. Clin Otolaryngol. 1998, 23(2):117-122
    [35] Schubert MC, Tusa RJ, Herdman SJ, et al. Optimizing the ensitivity of the head thrust test for identifying vestibular hypofunction [J]. Phys Ther. 2004, 84(2):151-158
    [36] Watabe H, Hashiba M, Baba S. Voluntary suppression of caloric nystagmus under fixation of imaginary or after-image target [J]. Acta Otolaryngol Suppl.1996, 525:155-157
    [37] Hain TC, Fetter M, Zee DS. Head-shaking nystagmus in patients with unilateral peripheral vestibular lesions [J]. Am J Otolaryngol. 1987, 8(1):36-47
    [38] Honrubia V, Baloh RW, Harris MR, et al. Paroxysmal positional vertigo syndrome. Am J Otol. 1999, 20(4):465-470
    [39] Herdman SJ. Advances in the treatment of vestibular disorders. Phys Ther. 1997, 77(6):602-618
    [40] Longridge NS, Mallinson AI. The dynamic illegible E (DIE) test: a simple technique for assessing the ability of the vestibulo-ocular reflex to overcome vestibular pathology [J]. J Otolaryngol.1987, 16(2):97-103
    [41] Herdman SJ, Tusa RJ, Blatt P, et al. Computerized dynamic visual acuity test in the assessment of vestibular deficits [J]. Am J Otol.1998, 19(6):790-796
    [42] Tian JR, Shubayev I, Demer JL. Dynamic visual acuity during passive and self-generated transient head rotation in normal and unilaterally vestibulopathic humans [J]. Exp Brain Res. 2002, 142(4):486-495
    [43] Ferguson JH, Altrocchi PH, Brin M, et al. Assessment: electronystagmography: report of the therapeutics and technology assessment subcommittee [J]. Neurology. 1996, 46(6):1763-1766
    [44] Fife TD, Tusa RJ, Furman JM, et al. Assessment: vestibular testing techniques in adults and children: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology [J]. Neurology. 2000, 54(7):1431-1441
    [45] Colebatch JG, Halmagyi GM. Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation [J]. Neurology. 1992, 42(8):1635-1636
    [46] Halmagyi GM, Yavor RA, Colebatch JG. Tapping the head activates the vestibular system:a new use for the clinical reflex hammer [J]. Neurology. 1995, 45(10):1927-1929
    [47] Curthoys IS, Dai MJ, Halmagyi GM. Human ocular torsional position before and after unilateral vestibular neurectomy [J]. Exp Brain Res. 1991, 85:218-225
    [48] Hain TC. Caloric test. http://www.dizziness-and-balance.com/practice/ caloric_test.htm Page last modified: January 21, 2008
    [49] Adelman G, Smith BH. Caloric test. Encylopedia of neuroscience [M].Berlin:Heidelberg. 2009. 4214-4215
    [50] Zapala DA, Olsholt KF, Lundy LB. A comparison of water and air caloric responses and their ability to distinguish between patients with normal and impaired ears [J]. Ear Hear.2008, 29(4):585-600
    [51] Rydzewski B. A comparison of water and air stimulated bithermal-caloric test and the usefulness of both methods in otologic surgery [J]. Otoloryngol Pol. 2002, 56(2):231-234
    [52] Zajonk TP, Roland PS. Vertigo and motion sickness. Part I: vestibular anatomy and physiology [J]. Ear Nose Throat J. 2005, 84(9):581-584
    [53] Tomlinson RD, Saunders GE, Schwartz DWF. Analysis of human vestibulo-ocular reflex during active head movements [J]. Acta Otolaryngol. 1980, 90(1-6):184-190
    [54] Farid SA, El-Abd SM, Abou-Elew MH. Monothermal caloric test its value in assessment of vestibular function [J]. International Congress Series 2003:1319-1324
    [55] Bhargava R, Ghosh P. Hot caloric test in patients with peripheral vertigo [J]. IJO&HNS.1995, 47(2): 123-127
    [56] Katsarkas A, Smith H, Galiana H. Caloric and rotational testing: merits, pitfalls and myths [J]. ORL Nova. 2001, 11(2):59-67
    [57] David M, Greer MA, Varelas PN, et al. Variability of brain death determination guidelines in leading US neurologic institutions [J]. Neurology. 2008, 70(4): 284-289
    [58] Wijdicks EF. The diagnosis of brain death [J]. NEJM. 2001, 334:1215-1221
    [59] Calixto Machado. Diagnosis of brain death [J]. Neurology International. 2010, 2(1):34-45
    [60] Jongkees LB. Value of the caloric test of the labyrinth [J]. Arch Otolaryngol 1948, 48(4): 402-417
    [61] Mehra YN. Eletronystagmography: A study of caloric tests in normal subjects [J]. J Laryngol Otol. 1964, 78:520-529.
    [62] Riesco-MacClure JS. Caloric tests: methods and interpretation [J]. Ann Otol Rhinol Laryngol. 1964, 73:829-837
    [63] Yang J, Grayeli AB, Barylyak R, et al. Functional outcome of retrosigmoid approach in vestibular schwannoma surgery[J]. Otorhinolaryngology. 2008,128(8):881-886
    [64] Kim HA, Hong JH, Lee H, et al. Otolith dysfunction in vestibular neuritis [J]. Neurology. 2008, 70: 449-453
    [65] Sajjadi H, Paparella MM. Meniere's disease. The Lancet. 2008, 372(9636):406-414
    [66] ?elebisoy N, G?k?ay F, Sirin H, et al. Migrainous Vertigo: clinical, oculographic and posturographic findings [J]. Cephelegia. 2008, 28(1):72-77
    [67] Eviatar A, Wassertheil S. The clinical significance of‘directional preponderance’concluded by electronystagmography [J]. The Journal of Laryngology & Otology. 1971, 85:355-367
    [68] McGee M. Electronystagmography in peripheral lesions [J]. Ear Hear.1986, 7:167-175
    [69] Eviatar A, Wassertheil S. The clinical significance of directional preponderance concluded by electronystagmography [J]. J Laryngol Otol. 1971, 85:355-367
    [70] Spector M. Electronystagmographic findings in central nervous system disease [J]. Ann Otol Rhinol Laryngol. 1975, 84:374-378
    [71] Barber H, Hardmand W, Money K. Air caloric stimulation with tympanic membrane perforation [J]. Laryngoscope. 1978, 88:117-26
    [72] Torok N. The hyperactive vestibular response [J]. Acta Otolaryngol. 1970, 70:153-162
    [73] Leen M, Ingeborg D, Wendy D, et al. The effect of age on the sinusoidal harmonic acceleration test, pseudorandom rotation test, velocity step test, caloric test, and vestibular-evoked myogenic potential test [J]. Ear and Hearing. 2010, 3 1(1):84-94
    [74] Tomaz A, Borges FN, Ganan?a CF, et al. Sinais e sintomas associados a altera??es otoneurológicas diagnosticadas ao exame vestibular computadorizado em pacientes com esclerose múltipla [J]. Arq Neuropsiquiatr 2005, 63(3B):837-842
    [75] Simmons FB. Patients with bilateral loss of caloric response. Ann Otol Rhinol Laryngol. 1973, 82:175-178
    [76] Wagner N, Caye-Thomasen P, Laurell G, et al. Cochlear hair cell loss in single-dose versus continuous round window administration of gentamicin [J]. Acta Otolaryngol. 2005, 125(4):340-345
    [77] Rosenberg M, Sharpe J, Hoyt WF. Absent vestibulo-ocular reflexes and acute supratentorial lesions [J]. J Neurol Neurosurg Psychiatry. 1975, 38:6-10
    [78] Kaaber EG, Zilstorff K. Vestibular function in benign intracranial hypertension [J]. Clin Otolaryngol. 1978, 3:183-188
    [79] Monday LA, Lemieux B, St-Vicent H, et al. Clinical and electronystagmographic findings on Friedreich's ataxia[J]. Can J Neurol Sci. 1978, 5:71-73
    [80] Becker JT, Furman JR, Panisset M, et al. Characteristics of the memory loss of a patient with Wernicke-Korsakoff's syndrome without alcoholism [J]. Neuropsychologia.1990, 28(2):171-179
    [81] Fife TD, Tusa RJ, Furman JM, et al. Assessment:Vestibular testing techniques in adults and children [J]. Neurology. 2000, 55:1431-1441
    [82] Brandt T. Bilateral vestibulopathy revisited [J]. Eur J Med Res. 1996, 1(8):361-368
    [83] Gabersek V, Jobert F. Inversion of nystagmus during thermic labyrinthine reactions [J]. Ann Otolaryngol Chir Cervicofac. 1965, 82(10):807-18
    [84] Steenerson Ronald L, Van de Water, Sandra M, et al. Central Vestibular Findings on Electronystagmography [J]. Ear and Hearing.1986, 7(3):176-181
    [85] Baloh RW, Sponner JW. Downbeat nystagmus:a type of central vestibular nystagmus [J]. Neurology. 1981, 31:304-310
    [86] Brandt T. Bilateral vestibulopathy revisited [J]. Eur J Med Res. 1996, 1(8):361-368
    [87] Denise Utsch Gon?alves, Lilian Felipe, Tania Mara Assis Lima. Interpretation and use of caloric testing [J]. Revista Brasileira de Otorrinolaringologia. 2008, 74(3): 154-160
    [88] F Kobrak.über kalorische Schwach und Kurzreize und hierbei in Frage kommende Gesetzm ?ssigkeiten [R]. Beitr Anat Physiol Pathol Ther Ohr Nase Hals. 1923, 19: 321-325
    [89] Linthicum FH, Churchill D. Vestibular test results in acoustic tumor cases [J]. Arch Otolaryngo. 1968, 88(6):604-607
    [90] Linthicum FH, Waldorf R, Luxford WM, et al. Infrared/video ENG recording of eye movements to evaluate the inferior vestibular nerve using the minimal caloric test [J]. Otolaryngol Head Neck Surg. 1998, 98 (3):207-210
    [91] Nelson R. The minimal ice water caloric test [J]. Neurology.1969, 19: 577-585.
    [92] Weinberg J, Sade J. A simple and time saving cold minicaloric test [J]. J Laryngol Otol. 1984, 98:701-705
    [93] Leigh RJ, Zee DS. Common clinical methods for measuring eye movements. In The Neurology of Eye Movements [M]. Second edition. Philadelphia: FA Davis Co. 1991:535
    [94] Greisen O. Pseudocaloric nystagmus [J]. Acta Otolaryngol. 1972, 73(2-6): 341-343
    [95] Schm?l F, Lübben B, Weiberg B, et al. The minimal ice water caloric test compared with established vestibular caloric test procedures [J]. Journal of Vestibular Research. 2005, 15(4): 215-224
    [96] Rosenfeld M. Untersuchungenüber den calorischen Nystagmus bei gehirnkranken mit st?ung des bewubtseins. Z Ges Neurol Psychiatr. 1910, 3:271-280
    [97] Alfandry I Du. Nystagmus provoque dans etats comateux [J]. Rev Otoneuroopthalmol. 1937, 15:161-169
    [98] Blegvand B. Caloric vestibular reaction in unconcious patients [J]. Arch Otolaryngol. 1962, 75(6):36-44
    [99] Fisher CM. The neurological examination of the comatose patient [J]. Acta Neurol Scand(suppl). 1969, 45(S36):5-56
    [100]Nathanson M, Bergman PS, Anderson PJ. Significance of oculocephalic and caloric responses in the unconcious patient [J]. Neurology. 1957, 7:829-832
    [101]Poulsen J, Zilstroff K. Prognostic value of the caloric-vestibular test in the unconcious patient with cranial trauma [J]. Acta Neurol Scand(suppl). 1972, 48(3):282-292
    [102]Klingon GH. Caloric stimulation in localization of brain-stem lesions in a comatose patient [J]. Archives of Neurology and Psychiatry.1952, 68(2):233-235
    [103]McNealy DE, Plum F. Brainstem dysfunction with supratentorial mass lesions [J]. Archives of Neurology. 1962, 7(1):10-32
    [104]Barrios R, Bottinelli MJ. The study of ocular motility in the comatose patient. Journal of Neurological Science. 1966, 3(2):183-206
    [105]Plum F, Posner JB. The Diagnosis of Stupor and Coma [M]. 2nd edition. Davis: Philadelphia. 1972
    [106]Vaernet K. Caloric vestibular reactions in transtentorial herniation of thebrainstem [J]. Neurology (Minneap). 1957, 7(12):833-836
    [107]Needham CW, Bertrand G, Myles S.T. Multiple cranial nerve signs from supratentorial tumors [J]. Journal of Neurosurgery, 1970, 33(2):178-183
    [108]Merwarth HR, Feiring E. Modifications of induced nystagmus by acute cerebral lesions. Preliminary report [J]. Brooklyn Hospital Journal. 1939, 1:99-106
    [109] Rosenberg M, Sharpe J, Hoyt WF. Absent vestibulo-ocular reflexes and acute supratentorial lesions [J]. J Neurol Neurosurg Psychiatry.1975, 38:6-10
    [110]Toshiaki Yagi, Shunkichi BaBa. Evaluation of the brainstem founction by the auditory brain-stem response and the caloric vestibular reaction in comatose patient [J]. Ach Otorhinolaryngol.1983, 238(1): 33-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700