复合加载下软土地基桶形基础承载性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桶形基础作为一种新型的海洋平台基础,在近海边际油田开发中有着广阔的应用前景。近海浅滩地区软黏土中桶形基础在竖直荷载、水平荷载和弯矩荷载共同作用下的承载力特性直接关系到桶形基础在工程上的应用和推广。本文针对近海浅滩地区软黏土中桶形基础的复合承载力特性进行研究,主要研究工作有以下几个方面:
     首先建立桶形基础有限元模型,对桶形基础的地基竖向承载性能进行了研究,通过有限元模型计算分析桶形基础地基的竖向破坏模式,阐明了汉森与魏西克地基承载力关系式能够较好地反映单桶基础和四桶基础的地基竖向承载力特性。
     采用Engel假设,按照三维空间问题由极限平衡法推导了单桶基础三维偏心水平承载力的计算公式;根据竖向荷载作用下单桶基础的偏心水平承载力有限元计算结果,引用竖向荷载影响系数,提出了单桶基础复合承载力的计算方法;建立四桶基平台有限元模型,由四桶基平台竖向荷载作用下偏心水平承载力分析计算结果,建立四桶基平台复合承载力与单桶基础复合承载力的关系,确定四桶基平台复合承载力的计算方法。
     根据Anderson等所提出的软黏土循环强度概念,在软黏土循环三轴试验基础上,建立复合加载模式下桶形基础的三维弹塑性拟静力有限元计算模型;以1000次循环振次为例,分析了单桶基础偏心水平循环承载力特性,并考虑竖向承载力对单桶基础偏心水平循环承载力的影响,建立了复合循环荷载作用下单桶基础地基承载力计算方法;建立四桶基平台的复合循环承载力有限元模型,通过计算,建立了四桶基平台复合循环承载性能与单桶基础复合承载性能的关系,从而确定四桶基平台复合循环承载性能的计算方法。
     开展了室内四桶基平台复合循环承载力模型试验,在室内的软黏土模型试验土池进行了不同竖向静荷载与偏心水平循环荷载共同作用下软土中四桶基平台复合承载力的模型试验,对四桶基平台的复合承载力特性进行了研究;依据模型试验结果对四桶基平台数值模拟和理论分析结果进行对比验证,证明四桶基平台计算方法的可行性。
     利用本文提出的计算方法,对滩海某区块可移动式桶基试采油目标平台的桶形基础承载力性能进行计算,平台基础能够满足使用荷载要求。
Bucket foundation is a new technology of ocean platform,which has the broad application prospect in the offshore marginal oilfield development. The capability of horizontal, vertical and under bending moment of the bucket foundation which sitting on offshore shoal area soft clay deeply influence the application and promotion of the project. This paper conducts research on the capacity of bucket foundation, which is applied in soft clay. The main research work has the following several aspects:
     According to finite element model calculations, analysising the failure mode of foundation subjected to vertical load, it is clarified that Hansen and Vesic Foundation bearing capacity relationship can describe the vertical bearing capacity characteristics of single bucket and four fuckets foundation clearly.
     Using Engel assumption, in accordance with Three-dimensional space problems, the Formula of horizontal eccentric bearing capacity is established by the limit equilibrium method. Base on the Finite Element Analysis results of horizontal eccentric bearing capacity calculation and introducing vertical load influence coefficient, established the complex bearing capacity calculation method. Base on the Finite Element Model and results of horizontal eccentric bearing capacity calculation, established the relationship of complex bearing capacity between single bucket and four buckets. Four buckets platform complex bearing capacity calculation method was firstly proposed.
     Based on cyclic triaxial testing and the concept of soft clay cyclic strength which was proposed by Anderson, quasi-static three-dimensional elastic-plastic finite element model subjected to complex load was established. Take 1000 cycle for example, showed the horizontal eccentric circulating bearing capacity characteristics of bucket foundation. Considering the impact of the vertical bearing capacity to the horizontal eccentric circulating bearing capacity, proposed complex circulating bearing capacity calculation method. Base on the finite element model and results of complex circulating bearing capacity calculation, established the relationship of complex circulating bearing capacity between single bucket and four buckets. Four buckets platform complex circulating bearing capacity calculation method was firstly proposed.
     Conducted indoor four-bucket foundation platform model test and validated the results of finite element anlysis and formula calculations, Model tests of four-bucke foundation in the stratum are conducted to research its bearing capacity under different vertical static and horizontal eccentric cyclic loads.According to model test condition, the simulation calculations are performed by using the cyclic strength relationship of the stratum and FEM. Calculating results are in agreement with test results, which show that the horizontal eccentric cyclic bearing capacity of the bucket foundation in the soft clay can be evaluated by using FEM based on the cyclic strength relationship and calculation method in the article.
     By the method proposed, calculated the bearing capacity of a bucket foundation platform which is planned to use in offshore shallow water, the results showed that the bearing capacities of foundation meet the requirements
引文
[1]董晓菲,韩增林.中国海洋石油和天然气产业发展战略研究[J].国土与自然资源研究2007.1: 13-14.
    [2]常成,舒先林.中国海洋油气开发的战略分析[J].石油化工技术经济,2007,23(2):1-3.
    [3]张宏祥.软土地基中桶形基础的承载力研究和优化设计[D].吉林:吉林大学,2007.
    [4]武科.滩海吸力式桶形基础承载力特性研究[D].大连:大连理工大学,2007.
    [5] Aas P M, Andersen K H. Skirted foundations for offshore structures, the 9th offshore south East Asia conference, Singapore,1992, 255-282.
    [6]刘振纹.软土地基上桶形基础的稳定性研究[D].天津:天津大学,2002.
    [7] Tjelta T I. Geotechnical aspects of bucket foundations replacing piles for the Europipe 16/11-E jacket, OTC26, 1994, 1:73-82.
    [8] Tjelta T I. Geotechnical Experience from the Installation of the Europipe Jacket with Bucket Foundations, OTC27, 1995, 2:879-908.
    [9] Baerheim M, Hoberg L, Tjelta T I. Development and Structural Design of the Bucket Foundations for the Europipe Jacket, OTC27, 1995, 2: 859~868.
    [10] Bye A, Erbrich C, Earl K, Wright, e1 al. Geotechnical design of bucket foundations. OTC7793, 1995:869-883.
    [11]何炎平,谭家华.筒型基础的发展历史和典型用途[J].中国海洋平台,2002,17(6):10-14.
    [12]刘振纹.大港滩海可移动式桶基试采平台建造新技术与工业示范[R].天津:中国石油集团工程技术研究院,2008.
    [13]王秀勇,肖熙,元和平.负压原理在海洋工程中的应用[J].中国海洋平台,1999,14(5):1-6.
    [14]李德堂,张爱恩,徐常胜.海上负压沉降与液压控制技术的应用[J].中国海洋平台,1998,13(5,6):28-31.
    [15]鲁晓兵,郑哲敏,张金来.海洋平台吸力式基础的研究与进展[J].力学进展,2003,33(1):27-40.
    [16]王志云.软土地基上吸力式沉箱的抗拔承载特性研究[D].大连:大连理工大学,2008.
    [17] Bye A, Erbrich C, Tjelta T I. et al. Geotechnical Design of Bueket Foundations[A]. OTC7793, OTC'27, 1995, 869-883.
    [18] Andersen K H, Dyvik R., Lauritzsen R, et al. Model tests of gravity platforms II: interpretation[J]. Journal ofGeotechnical Engineering, ASCE, 1989, 1 15(11):1550-1568.
    [19] Andersen K H, Dyvik R, Schroder K et al. Field tests of anchors in clay II: predictions and interpretation[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(10):1532-1549.
    [20] Gharbawy S E, Olson R E. Laboratory modeling of suction caisson foundations[A]. Proceedings of the 8th International Offshore and Polar Engineering Conference[C], Montreal, Canada, 1998, 537-542.
    [21] Gharbawy.S E, Islcander M G, Olson R E. Application of suction caisson foundations in the gulf of mexico[A]. Offshore Technology Conference, 8832[C], 1998, 531-538.
    [22] Gharbawy S E, Olson R. The cyclic pullout capacity of suction caisson foundations[A]. Proceedings of the 9th International Offshore and Polar Engineering Conference[C], Brest, France, 1999, 660-663.
    [23]初新杰,王显,沈淇等.筒形基础的稳定性试验研究[J].海岸工程,1999, 18(1): 43-47.
    [24]施晓春,龚晓南,俞建霖,陈国祥.桶形基础抗拔力试验研究[J].建筑结构,2003, 33(2): 49-51.
    [25]施晓春,徐日庆,龚晓南,陈国祥,袁中立.桶形基础单筒水平承载力的试验研究[J].岩土工程学报,1999, 21(6): 723-726.
    [26]孙大鹏,袁中立,朱其敏.滩海平台筒型基础模型承载力试验研究[J].石油工程建设,1999, 4(2): 12-18.
    [27]魏世好,冯世伦,严驰.桶形基础水平加载过程中的土压力研究[J].西部探矿工程,2009,1: 1-4.
    [28] Allersma H G B, Kierstein A A, Maes D. Centrifuge modeling on suction piles under cyclic and long term vertical loading. Proceeding 10th international Offshore and Polar Engineering. Conference, Seattle, USA, 2000: 334-341.
    [29] Allersma H G B, Brinkgrever R B J, Simon T. Centrifuge and numerical modeling of horizontally loaded suction piles. International Journal Offshore and Polar Engineering, 2000; 10(3): 223-235.
    [30] Byrne B W, Houlsy G T. Experimental investigations of the cyclic response of suction caissons in sand. OTC12194, 2000. 787-795.
    [31] Clukey E C, Morrison M J. A centrifuge and analytical study to valuate suction caisson for TLP application in the Gulf of Mexico[A]. Proceeding ASCE Conference on foundation[C]. Dallas, TX. 1993: 141-156.
    [32] Morrison M J, Clukey E C. Behavior of suction caissons under static uplift loading conditions[A]. Centrifuge 94[C]. Leung, Lee and Tan(eds). Balkema, Rotterdam. 1994: 823-828.
    [33] Clukey E C, Morrison M J. The response of suction caissons in normally consolidated clays to cyclic TLP loading conditions[A]. Offshore Technology Conference 7796[C]. 1995:909-915.
    [34] Watson P G, Randolph M F. Vertical capacity of caisson foundations in calcareous sediments. In: Jin S C, ed. Proc. 7th Inter. Offshore and Polar Engrg. Conf., Honolulu, USA, 1997. Colorado. ISOPF.1997:784-790.
    [35] Fuglsang L D. Steensen-Bach J O. Breakout resistance of suction piles in clay. In: Ko H Y, Mclean F G, eds. Centrifuge 91, 1991. Balkema, Rotterdam, 1991:153-159.
    [36]鲁晓兵,王义华,张建红,孙国亮,时忠民.水平动载下桶形基础变形的离心机试验研究[J].岩土工程学报,2005,27(7):789-791.
    [37]鲁晓兵,张建红,王淑云,孙国亮,时忠民.水平动载下桶型基础周围土体软化的离心机模拟[J].中国海洋平台,2004,6(19):7-11.
    [38] Randolph M F, House A R, Analysis of Suction Cassion Capacity in Clay, OTC 14236, 2002, 2-12.
    [39] Zdravkovic L, Potts D M, Jardine, R J. A Parametric Study of the Pull-out Capacity of Bucket Foundations in Soft Clay, Geotechnique, 2001, 51(1): l55-67.
    [40] Martin C M. Physical and numerical modeling of offshore foundations under combined loads [D], Wellington Square: The University of Oxford, 1994.
    [41] Murff J D. Limit analysis of multi-footing foundation systems[A]. Proceedings International Conference on Computer Methods and Advances in Geomechanics[C], 1994, 233-244.
    [42] Bransby M F, Randolph M F. The effect of embendment depth of the response of skirted foundations to combined loading[R]. Department of Civil Engineering, The University of Western Australia, 1998.
    [43] Bransby M F, Randolph M F. Combined loading of skirted foundations[J]. Geotechnique, 1998, 48:637-655.
    [44] Deng W, Carter J P. A theoretical study of the vertical uplift capacity of suction caisson. Proceeding of the I 10th International Offshore and Polar Engineering Conference, 2000, 2: 342-349.
    [45] Andersen K H, Dyvik R, Schroder K. Pull-out capacity analyses of suction anchors for tension leg platforms. International Conference on the Behavior of Offshore Structure, London, 1992, 1(2): 1311-1322.
    [46] Bang S, Cho Y. Ultimate horizontal loading capacity of suction piles[J]. International Journal of Offshore and Polar Engineering, 2002, 12(1):56-63.
    [47]薛万东.浅海筒形基础平台抗拔力与抗倾稳定分析[J].黄渤海海洋,2001, 19(3): 87-92.
    [48]吴梦喜,王梅,楼志刚.吸力式沉箱的水平极限承载力计算[J].中国海洋平台,2001, 16(4): 12-15.
    [49]张伟,周锡扔,余建星.滩海桶形基础极限水平承载力研究[J].海洋技术,2003, 22(4):54-57.
    [50]果会成.浅海桶形基础采油平台承载力计算分析与试验研究[D].天津:天津大学, 2000.
    [51]严驰,李亚坡,袁中立.桶形基础竖向承载力理论计算方法及土性参数的敏感性分析[J].中国海洋平台,2004, 19(1):31-36.
    [52]严驰,李亚坡,袁中立.土性参数对桶形基础竖向地基承载力影响的敏感性分析[J].水运工程,2003(12):12-16.
    [53]范庆来,亲茂田,杨庆.横观各向同性软基上深埋式大圆筒结构水平承载力分析[J].岩石力学与工程学报,2007, 26(1):94-101.
    [54] Andersen K H, Jostad H P. Shear Strength Along Outside Wall of Suction Anchors in Clay After Installation. Proceedings of 12th International Offshore and Polar Engineering Conference, Kitayushu, Japan, ISOPE, 2002, 2: 785-794.
    [55] Deng W, Cater J P. Vertical pullout behavior of suction caisson[R]. Center for Geotechnic Research, The University of Sydney, 1999.
    [56] Clukey E C, Morrison M J. A centrifuge and analytical study to evaluate suction caissons for TLP application in the Gulf of Mexico. Proc. ASCE Conference on Foundations, Dallas, TX. 1993:141-156.
    [57] Sukumaran B, Mccarron W O, Jeanjean P, Abouseeda H. Efficient finite element techniques for limit analysis of suction caisson under lateral loads[J]. Computers and Geotechnics, 1999,24(2):89-107.
    [58] Erbrich C T,Tjelta T L. Installation of Bucket Foundations and Suction Caisson in Sand-Geotechnical Performance. Offshore Technology Conference, 10990, 1999:725-735.
    [59] Ayman Eltaher, Yatendra Rajapaksa, Kuan-Tao Chang. Industry Trends for Design of Anchoring Systems for Deepwater Offshore Structures. Offshore Technology Conference, 15265, 2003.
    [60] Chairat Supachawarote, Mark Randolph, Susan Gourvenec. Inclined Pull-out Capacity of Suction Caissons. Proceedings of The 14th International Offshore and Polar Engineering Confenence. 2004:500-512.
    [61]杨家岭,王书法,等.捅形基础采油平台三维有限儿稳定性计算分析[J].岩土力学,2002 23(5):640-644.
    [62] Cao J, Audibert M F. Validation of the use of finite element method for suction cassion design. In: Gourvenec, Cassidy, eds. International Symposium Frontiers in Offshore Geotechnics:ISFOG, 2005:333-339.
    [63]张建红,李风.水平荷载作用下捅型基础三维极限分析[J].中国造船增刊,2006, 47: 318-322.
    [64] Rahman M S, Wang J, Deng W, Cater J P. A neural rr}twork model for the uplift capacity of suction caisson[J]. Computers and Geotechnics, 2001,28: 269-287.
    [65] Andersen K H, et al. Cyclic and Static Laboratory Tests on Drammen Clay, ASCE.,1980,106(GT5):499-529.
    [66] Andersen K H, et al. Bearing Capacity For Foundations With Cyclic Loads[J], Journal of Geotechnical Engineering,1988,114(5):540-555.
    [67] Andersen K H, et al. Cyclic Soil Data for Design of Gravity Structures, ASCE, 1988,114(GT5):517-539.
    [68] Yasuhara K. Postcyclic undrained strength for cohesive soils[J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(11):1961-1979.
    [69] Matsui T. Cyclic stress-strain history and shear characteristics of clays[J]. Geotechnicai engineering, ASCE, 1980, 106(10):1101-1120.
    [70]周建,龚晓南.循环荷载作用下饱和软勃土应变软化研究[J].土木工程学报,2000, 33(5):75-78.
    [71] Wang J H, Li C, Moran K. Cyclic undrained behavior of soft clays and cyclic bearing capacity of a single bucket foundation[A]. Proceedings of 15th International Offshore and Polar Engineering Conference[C], Seoul, Korea, 2005, 2:377-383.
    [72]李驰.软土地基桶形基础循环承载力研究[D].天津:天津大学, 2006.
    [73]刘振纹,王建华,袁中立,陈国样.负压桶形基础地基竖向承载力研究[J].中国海洋平台,2001, 16(2):1-6.
    [74]刘海笑,王世水.改进的等效线性化计算模型及在结构海床耦合系统动力分析中的应用[J].中国港湾建设,2006, (1):12-15.
    [75] Wang Y Z, Zhu Z Y, Zhou Z R. Dynamic response analysis for embedded large-cylinder breakwaters under wave excitation[J]. China Ocean Engineering, 2004, 18(4):585-594.
    [76]闫澍旺,杨吕民,范期锦,谢世楞.波浪荷载作用下防波堤地基软化特性的试验研究[J].港工技术,2006, 2:44-47.
    [77]闫澍旺,邱长林,孙宝仓,章为民.波浪作用下海底软黏土力学性状的离心机模型试验研究[J].水利学报, 1998, 9:66-70.
    [78]栾茂田,齐剑锋,聂影.循环应力下饱和黏土剪切变形特性试验研究[J].海洋工程,2007, 25(1):43-49.
    [79]庄茁,张帆,岑松. ABAQUS非线性有限元分析与实例[M].北京:科学出版社, 2005.
    [80] Hibbit, Karlson and Sorrenson(HKS). ABAQUS user’s manual 6.3[M]. Pawtucket, RI, USA. 2002.
    [81] Vesic, A, S., Analysis of ultimate loads of shallow foundations of the soil mechanics and foundations division,1973,99(Sm1):45~73.
    [82]周景星等.基础工程[M],北京:清华大学出版社,1996.
    [83] Hesar M, KBR. Geotechnical design of the Barracuda and Caratinga Suction anchors[A]. OTC15137. 2003. 1-9.
    [84]杨桂通.弹塑性力学[M],北京:人民教育出版社,1980.
    [85]严驰,李亚坡,袁中立.土性参数对桶形基础竖向地基承载力影响的敏感性分析[J]水运工程, 2002, 12(12): 12-16.
    [86]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1980.
    [87]唐业清等译.桩结构物的计算方法和计算实例[M].北京:中国铁道出版社,1984.
    [88]汤斌,陈晓平.群桩效应有限元分析[J].岩土力学,2005,26(2):299-302.
    [89] JGJ94-94.建筑桩基技术规范[S].
    [90]刘波.水平荷载作用下群桩的受力机理研究[D].西安:西安建筑科技大学,2004.
    [91]顾小芸,海洋工程地质的回顾与展望[J],工程地质学报,2000,8(1): 40~45.
    [92]王建华,要明伦.软粘土不排水循环特性的弹塑性模拟[J].岩土工程学报,1996,18(3):11-18.
    [93] Bonin J P et al. Foundation Analysis of Marine Gravity Structures Submitted to Cyclic Loading, Offshore Technology Conference,1976, 2475:571-579.
    [94]李驰,王建华.软土地基单桶基础循环承载力研究[J].岩土工程学报,2005,27(9): 1040-1044.
    [95]姚志光,秦延龙,王建峰.滩海可移动式靠船采油平台在水平循环荷载作用下承载力试验研究和有限元分析[J].石油工程建设(已录用).
    [96]王金昌,陈页开. ABAQUS在土木工程中的应用[M].浙江:浙江大学出版社,2006.
    [97]刘振纹,王建华,秦崇仁,袁中立,陈国祥.负压桶形基础地基水平承载力研究[J].岩土工程学报,2000,22(6): 691-695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700