含磷有机金属化合物的合成及其对聚乙烯的阻燃作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们在阻燃有机高分子材料领域的绿色环保的追求及阻燃法规的日益苛刻,开发新型无卤阻燃剂及传统无卤阻燃剂的协同复配已成为大势所趋。本论文针对化学膨胀阻燃剂及金属离子在阻燃有机高分子材料中出现的优缺点,设计并合成了含磷和氮的化学膨胀阻燃剂,并将金属离子以配位键或共价键的形式结合上去,考察了不同的有机官能团及不同金属离子对有机高分子材料阻燃效果及阻燃机理的影响。
     首先,采用邻苯二胺、水杨醛及亚磷酸二乙酯合成了含有磷氮元素的TEPAPM,并将Zn(Ⅱ)与此配体螯合得到了Zn-TEPAPM化合物。分别采用红外及核磁表征了其分子结构。在氮气中的热失重分析表明Zn-TEPAPM具有良好的自身催化成炭能力,热稳定性适于阻燃聚乙烯。随着Zn-TEPAPM的加入,不仅使聚乙烯的热稳定性和极限氧指数有一定程度的提高,还使聚乙烯的热释放速率、一氧化碳释放量和总放热量显著降低。当添加1wt%的Zn-TEPAPM于聚乙烯时,在锥形量热测试中热释放速率峰值比纯聚乙烯树脂的峰值降低了34%。
     其次在合成TEPAPM基础上,采用乙二胺、苯甲醛(或3-甲醛吡啶)和亚磷酸二乙酯合成了两种膦酸酯EIBPE及EIPPE,并用浓盐酸将其水解分别得到EIBPA及EIPPA.利用有机膦酸与过渡金属离子反应活性高的特点将EIBPA及EIPPA与Zn(Ⅱ)反应得到EIBPA-Zn和EIPPA-Zn.热失重分析表明EIBPA-Zn及EIPPA-Zn的热稳定性要分别远高于EIBPA及EIPPA,且EIPPA-Zn的残炭量要大于EIBPA-Zn.在阻燃聚乙烯中发现的EIPPA-Zn易于催化树脂基体成炭,具有较好的阻燃效果。当添加量为25wt%时,热释放速率的峰值比纯树脂的峰值降低了70%,残炭量达到了59wt%。含这两个化合物的聚乙烯样品在氧指数测试中也取得了较好的阻燃效果。
     第三,采用哌嗪、甲醛和亚磷酸合成了具有双膦酸官能团的有机膦酸化合物PPMPA,并将其与Zn(Ⅱ)在160℃下水热反应2d得到PPMPA-Zn.热失重测试中表明PPMPA-Zn具有较高的热稳定性,起始热分解温度达到了354℃。同时发现PPMPA-Zn在燃烧中具有体积膨胀效应。在阻燃聚乙烯中发现在仅添加5wt%的PPMPA-Zn时,样品在锥形量热测试中就已经形成良好的物理阻隔层,大幅度降低了热释放速率的峰值。当PPMPA-Zn的添加量达到25wt%时,已经形成完整且非常致密的物理阻隔层,热释放峰值比纯树脂的峰值降低了63%,炭层具有较高的强度。虽然在锥形量热测试中PPMPA-Zn可以达到很好的效果,但是由于PPMPA-Zn在热分解之后的产物的极性较强,与熔融的HDPE-MA树脂的极性相差较大,因此在氧指数测试中易产生炭层滑落的现象而导致氧指数不高。
     第四,采用吗啡啉、甲醛和亚磷酸合成了具有单膦酸官能团的MMPA。 MMPA与过渡金属离子Zn(Ⅱ)和稀土金属离子Ce(Ⅲ)通过水热反应分别得到了层状的MMPA-Zn和纤维状的MMPA-Ce化合物。在锥形量热测试中,当MMPA-Zn的添加量增加至25wt%时,热释放峰值与纯树脂的峰值相比降低了47%,残炭量达到32.2wt%。由于残炭的表面形貌较粗糙,形成的物理阻隔层不够致密,所以热释放速率的峰值降低程度不如添加EIPPA-Zn和PPMPA-Zn的聚乙烯样品。纤维状的MMPA-Ce在阻燃聚乙烯时,发现添加为5wt%或25wt%于HDPE树脂中,热释放峰值相差较小,与纯树脂相比降低了约30%,这是因为MMPA-Ce在燃烧后剩下的磷酸铈化合物具有很高的熔点而导致炭层表面未形成较为完整致密的物理阻隔层。
     最后,有机金属膦酸盐EIBPA-Zn、EIPPA-Zn、PPMPA-Zn、MMPA-Zn及MMPA-Ce对PE树脂的拉伸强度和杨氏模量均有不同程度的提高,主要归结于有机金属膦酸盐的晶体结构是由内层的P-O-M和外层的有机官能团构成。
The increased application of flammable polymeric materials in everyday life led to increased fire hazards and so flame retardants are very often incorporated into them to limit their flammability. Intumescent flame-retardant (IFR) additives containing phosphorus and nitrogen, which are halogen-free and more environmentally friendly, have been developed for imparting flame retardancy to polymeric materials. However, conventional IFRs also have some disadvantages, such as high loading fractions at the expense of the apparent decrease of the mechanical properties of the flame retardant polymers. So, the compounds containing transition metal element have been utilized for reducing the flammability of polymers due to these compounds can act both in the vapor phase, the condensed phase and at the gas/solid interface through a chemical and/or physical mechanism to reduce the flammability.
     Firstly, we designed and synthesized a novel Zn (II) chelate, i.e. Zn tetraethyl (1,2-phenylenebis(azanediyl)) bis (2-hydroxylphenylmethylene) diphosphonate (Zn-TEPAPM), on the basis of zinc acetate,1,2-diamine benzene,2-hydroxybenzaldehyde and diethyl phosphonate. The chemical structure of Zn-TEPAPM was characterized by IR,1H-NMR,13C-NMR and31P-NMR. The results of thermal analysis showed that Zn-TEPAPM had excellent char-forming ability and the thermal stability match well the processing temperature of PE. Incorporation of1wt%Zn-TEPAPM leads to a reduction of32%for the peak heat release rate in the cone calorimeter test. Moreover, Zn-TEPAPM was demonstrated to be a very effective synergist of ammonium polyphosphate (APP).
     Secondly, based on the above results, we used raw material of benzaldehyde or3-pyridinecarboxaldehyde, diethylamine and diethyl phosphonate to synthesized2,2'-(ethylenedi-imino) bis (benzylphosphonic-acid)(EIBPA) and2,2'-(ethylenedi-imino) bis (3-pirydylphosphonic-acid)(EIPPA). And then, the EIBPA-Zn and EIPPA-Zn were prepared as a microcrystalline powder by the reaction of Zn(OOCCH3)2·2H2O with EIBPA and EIPPA in the refluxed ethanol solution. The results of thermal analysis showed that EIBPA-Zn and EIPPA-Zn had excellent thermal stability and char-forming ability, especially for EIPPA-Zn which had higher char-forming ability than EIBPA-Zn. Incorporation of EIPPA-Zn in PE not only resulted in the improved LOI values, but markedly reduced the heat release rate (the PHRR value reduced by70%ompared with pure PE resin), total heat release and mass loss rate of PE and the char residue as much for59wt%.
     Thirdly, we synthesized a zinc N,N-piperazinebis(methylenephosphonic acid)(PPMPA-Zn), on the basis of zinc acetate, piperazine, phosphorous acid, and formaldehyde. The chemical structure of PPMPA-Zn was characterized by IR and powdery X-Ray diffraction. The results of thermal analysis showed that PPMPA-Zn had excellent thermal stability, char-forming ability, and the initial thermal decomposition temperature reach to354℃. Incorporating5wt%PPMPA-Zn in PE resin, the PHRR value reduced to38%relative to pure PE resin and the char residue is much more intact. When loading25wt%PPMPA-Zn, the PHRR value reduced to63%relative to pure PE resin and the char residual mass reach to70.7wt%. Although adding PPMPA-Zn in PE resin can get a better result of flame retardancy in cone calorimeter test, it can not get good result in LOI test due to the residue of PPMPA-Zn has higher polarity than melt PE resin so result to the char residue move off from the burning surface.
     Subsequently, we synthesized a zinc morpholinomethylphosphonic acid (MMPA-Zn) and MMPA-Ce, on the basis of zinc acetate, cerium nitrate, morpholine, phosphorous acid, and formaldehyde. And the chemical structure of MMPA-Zn and MMPA-Ce was characterized by IR and powdery X-Ray diffraction. Incorporating25wt%MMPA-Zn in PE resin, the PHRR value reduced to47%relative to pure PE resin and char residual mass reach to32.2wt%in the test of cone calorimeter. Because of the surface char residue was not compact enough, the PHRR value was not greatly reduced as incorporating EPPA-Zn and PPMPA-Zn compounds in PE resin. Incorporation of5wt%or25wt%fiber like MMPA-Zn in PE resin, there was not much difference in PHRR values and reduced about30%compared with pure PE resin. Due to the melt temperature of the residual MMPA-Ce was more higher than combusting temperature, so the char residue was composed by large amount of small gram.
     Finally, incorporation of organic metal phosphonates of EIBPA-Zn, EIPPA-Zn, MMPA-Zn and MMPA-Ce in PE resin, the tensile stress and Young's modulus improve at a various degree due to the crystalline structure of organic metal phosphonates composed by inner inorganic group of P-O-M and outside organic group.
引文
[1]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术.化学工业出版社.北京2005,1-5.
    [2]Nelson G L. Chemistry 1978, 51,22-27. Fire and Polymers:An Overview. Fire and Polymers ⅡChapter 1,1-26.
    [3]王永强.阻燃材料及应用技术[M].北京化学工业出版社,2003.
    [4]Gresham W F, Naylor M A. Support for four-in-hand tie 1956, US Pat.2 733 447.
    [5]Wolfe James F, Arnold F E. Rigid-rod polymers.1. Synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisoxazole units in the main chain. Macromolecules, 1981,14,909-915.
    [6]Choe E W, and Kim S N. Synthesis, spinning, and fiber mechanical properties of poly(p-phenylenebenzobisoxazole). Macromolecules,1981.14,920-924.
    [7]Lyon R E, Balaguru P N, Foden A, Sorathia U, Davidovits J, and Davidovics M. Fire-resistant Aluminosilicate Composites. Fire Mater,1997,21,67-73.
    [8]Cheng T W and Chiu J P. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng,2003,16,205-210.
    [9]Allcock H R, Kugel R L. Synthesis of high polymeric alkoxy-and aryloxyphosphonitriles. J Am Chem Soc,1965,87,4216-4217.
    [10]Arnold F E. Material Technology for Air Force Applications. Res Soc Symp Proc,1989,134, 75-82.
    [11]Chen H B, Zhang Y, Chen L, Shao Z B, Liu Y, and Wang Y Z. Novel Inherently Flame-Retardant Poly(trimethylene Terephthalate) Copolyester with the Phosphorus-Containing Linking Pendent Group. Ind Eng Chem Res,2010,49,7052-7059.
    [12]Tai Q, Hu Y. Yuen R K K, Song L and Lu H. Synthesis, structure-property relationships of polyphosphoramides with high char residues. JMater Chem,2011,21,6621-6627.
    [13]Derouet D, Morvan F, and Brosse J C. Chemical modification of epoxy resins by dialkyl(or aryl) phosphates:Evaluation of fire behavior and thermal stability. J Appl Polym Sci,1996,62, 1855-1868.
    [14]Buckingham M R, Lindsay A J, Stevenson D E, Muller G, Morel E, Coates B and Henry Y. Synthesis and formulation of novel phosphorylated flame retardant curatives for thermoset resins. Polym Degrad Stab,1996,54,311-315.
    [15]Tamai S, Yamashita W and Yamaguchi A. Preparation and properties of processable polyimides having bulky pendent ether groups. J Polym Sci, Part A:Polym Chem,1998,36, 971-978.
    [16]Liu Y L, Hsiue G H, Lan Y S and Chiu C W. Flame-retardant polyurethanes from phosphorus-containing isocyanates. J Polym Scl,Part A:Polym Chem,1997,35,1769-1780.
    [17]Lu S Y and Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci,2002,27,1661-1712.
    [18]Levchik S V. Camino G, Luda M P, Costa L, Muller G and Costes B. Mechanism of thermal decomposition. Polym Degrad Stab,1998,60,169-183.
    [19]Wu B,Wang Y Z, Wang X L, Yang K K, Jin Y D, Zhao H. Kinetics of thermal oxidative degradation of phosphorus-containing flame retardant copolyesters. Polym Degrad Stab, 2002,76,401-409.
    [20]Brium G H, Jansen R F. Production of 2-carboxyethyl(phenyl)phosphinic acid.1978. US Pat. 4081463.
    [21]Hazen J R. Process for production of 3-(hydroxyphenyl-phosphinyl)propanoic acid.1988. US Pat.4769182.
    [22]Asrar J. Berger P A, Hurlbut J. Synthesis and characterization of a fire-retardant polyester: Copolymers of ethylene terephthalate and 2-carboxyethyl (phenylphosphinic) acid. Polym Sci Polym Chem,1999,37,311-318.
    [23]Martin C, Lligadas G, Ronda J C, Galia M, Cadiz V. Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products. J Polym Sci Polym Chem,2006,44, 6332-6344.
    [24]Bourbigot S and Duquesne S. Fire retardant polymers:recent developments and opportunities. J Mater Chem,2007,17,2283-2300.
    [25]欧育湘,李建军编.阻燃剂——性能、制造及应用.化学工业出版社.北京2006.pp.23-24.
    [26]王建祺编.无卤阻燃聚合物基础与应用.科学出版社.北京2005.pp.1-2.
    [27]Tramn H, Clar C, Kuhnel P, Schuff W. Fireproofing of wood. US patent 2106938,1938.
    [28]Vandersall H L. Intumescent coating systems, their development and chemistry. J Fire Flammability,1971,2,97-140.
    [29]Camino G, Costa L, Martinasso G.Intumescent fire-retardant systems. Polym Degrad Stab, 1989,23,359-376.
    [30]Bourbigot S, Le Bras M, Duquesne S, and Rochery M. Recent advances for intumescent polymers. Macromol Sci Eng,2004,289,499-511.
    [31]Bras M Le, Bourbigot S, Delporte C, Siat C, and Tallec Y L. Mechanism of the formation of carbonaceous protective material during the thermo-oxidative treatment of the additives. Fire Mater,1996,20,191-202.
    [32]Bourbigot S, Duquesne S, and Leroy J M. Modeling of heat transfer of a polypropylene-based intumescent system during combustion. J Fire Sci,1999,17,42-56.
    [33]Liu Y and Wang Q. Catalytic action of phospho-tungstic acid in the synthesis of melamine salts of pentaerythritol phosphate and their synergistic effects in flame retarded polypropylene. Polym Degrad Stab,2006,91,2513-2519.
    [34]Halpen Y. Niswander R H. Process for preparing pentaerythritol phosphate. US Pat, 4454064.
    [35]高富业,欧育湘.新型磷—氮阻燃剂三(5,5-二几基-1,3-二氧-2-磷杂环己烷-2-氧甲基)胺的合成.精细化工,1998,15,35-37.
    [36]杨兴钰,宦双燕,徐平勇.N,N-对苯二胺基-二苄基-α-氨基-1,3,2-二氧磷杂环膦酸酯的合成及表征.华中师范大学学报(自然科学版),2002,36,191-195.
    [37]鲍治宇董延茂编.膨胀型阻燃技术及其应用.哈尔滨工业大学出版社.哈尔滨2005,P230.
    [38]宋平安.膨胀阻燃、纳米阻燃及其协同阻燃聚丙烯的研究.浙江大学博士学位论文2009.
    [39]马海云.膨胀阻燃及纳米阻燃ABS树脂的研究.浙江大学博士学位论文2007.
    [40]Wang D Y, Liu Y, Ge X G, Wang Y Z, Stec A, Biswas B, Hull T. R, Price D. Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polym Degrad Stab,2008,93,1024-1030.
    [41]Morgan A B. A review of transition metal-based flame retardants:transition metal oxide/salts, and complexes. In Fire and Polymers V;Wilkie. C., el al.; ACS Symposium Series; American Chemical Society:Washington, DC,2009.312-328.
    [42]Zanetti M, Camino G, Canavese D, etc. Fire retardant halogen-antimony-clay synergism in polypropylene layered silicate nanocomposites. Chem Mater,2002,14,189-193.
    [43]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术.化学工业出版社.北京2005, P 50.
    [44]Lewin M. Synergism and catalysis in flame retardancy of polymers. Polym Adv Technol2001, 12,215-222.
    [45]Nodera A, Kanai T. Thermal decomposition behavior and flame retardancy of polycarbonate containing organic metal salts:Effect of salt composition. J Appl Polym Sci,2004,94, 2131-2139.
    [46]Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Adv Technol,2003,14,3-11.
    [47]Soyama M; Inoue K; Iji M. Flame retardancy of polycarbonate enhanced by adding fly ash. Polym Adv Technol,2007,18,386-391.
    [48]Estevao L R M; Le Bras M; Delobel R; Nascimento R S V. Spent refinery catalyst as a synergistic agent in intumescent formulations:influence of the catalyst's particle size and constituents. Polym. Degrad. Stab.2005,88,444-455.
    [49]王玉忠,王德义,葛欣国.高分子材料的无卤阻燃化.高分子科学前沿与进展Ⅱ—董建 华主编(国家自然科学基金委员会化学科学部组编),科学出版社2009,648-670.
    [50]甄开吉,王国甲,毕颖丽,李荣生,阚秋斌编.催化作用基础.科学出版社,北京,2005,1-8.
    [51]Petersen H A. In:Lewin M, Sello S B, Dekker. Chemical processing of fibers and fabrics. Vol.Ⅱ Functional Finishes, Part A,1884,48-318.
    [52]Antonov A V. Yablokova M Yu. In:Lewin M. Flame retardancy of polymer materials. BCC. 1999,10,241.
    [53]Day M, Cooney D, MacKinnon M. Degradation of contaminated plastics:a kinetic study. Polym Degrad Stab,1995,48,341.
    [54]Ishikawa T, Ueno T, Watanabe Y, Mizuno K, Takeda K. Flame retardancy of polyburylene terephthalate blended with various oxides. J ApplPolym Sci,2008,109,910-917.
    [55]Lewin M, Endo M. In:Lewin M. Flame retardancy of polymer materials. BCC.200, Session IV B:29-45.
    [56]Nie S, Hu Y. Song L, He S, Yang D. Study on a novel and efficient flame retardant synergist-nanoprous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene. Polym Adv Technol,2008, 19,489-495.
    [57]Yang F, Nelson G L.Combination effect of nanoparticles with flame retardants on the flammability of nanocomposites. Polym Degrad Stab,2011,96,270-276.
    [58]Lu H; and Wilkie Charles A. The influence of a-zirconium phosphate on fire performance of EVA and PS composites. Polym Adv Technol,2011, Special Issue:Research Article(DOI: 10.1002/pat.1923).
    [59]Kashiwagi T, Danyus R, Liu M, Zammarano M, Shields J R. Enhancement of char formation of polymer nanocomposites using a catalyst. Polym Degrad Stab,2009,94,2028-2035.
    [60]Tang T, Chen X, Meng X, Chen H, and Ding Y. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed,2005,44,1517-1520.
    [61]Chen X, Ding Y and Tang T. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polym Int 2005,54,904-908.
    [62]Song R, Jiang Z. Yu H, Liu J, Zhang Z, Wang Q and Tang T. Strengthening carbon deposition of polyolefin using combined catalyst as a general method for improving fire retardancy. Macromol Rapid Commun,2008,29,789-793.
    [63]Yu H, Jiang Z, Gilman J W, Kashiwagi T, Liu J, Song R, Tang T. Promoting carbonization of polypropylene during combustion through synergistic catalysis of a trace of halogenated compounds and Ni2O3 for improving flame retardancy. Polymer 2009,50,6252-6258.
    [64]Jiang Z, Song R, Bi W, Lu J, Tang T. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion. Carbon 2007,45,449-458.
    [65]Yu H, Liu J, Wang Z, Jiang Z, and Tang T. Combination of carbon nanotubes with Ni2O3 for simultaneously improving the flame retardancy and mechanical properties of polyethylene. J Phys Chem C,2009,113,13092-13097.
    [66]Sharma S K. Flame Retardancy and smoke suppression of poly(vinyl chloride) using multicomponent systems. Fire Technology,2003,39,247-260.
    [67]Sharma S K, Saxena N K. Surface coating and metal-based organic additives approaches for FRSS PVC cables. JFire Sci,2007,25,447-466.
    [68]Song P, Fang Z, Tong L Jin Y, Lu F. Effects of metal chelates on a novel oligomeric intumescent flame retardant system for polypropylene. J Anal Appl Pyrolysis,2008,82, 286-291.
    [69]Wang D, Liu Y. Ge X, Wang Y, Stec A, Biswas B, Hull T R, Price D. Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polym Degrad Stab,2008:93,1024-1030.
    [70]Xie F, Wang Y, Yang B, Liu Y. A novel intumescent flame-retardant polyethylene system. Macromol Mater Eng 2006,291,247-253.
    [71]Shehata A B, Hassan M A, Darwish N A. Kaolin modified with new resin-iron chelate as flame retardant system for polypropylene. J AppI Polym Sci, 2004,92,3119-3125.
    [72]Hassan M A, Shehata A B. The effect of some polymeric metal chelates on the flammability properties of polypropylene. Polym Degrad Stab,2004,85,733-740.
    [73]Shehata A B. A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide. Polym Degrad Stab,2004,85,577-582.
    [74]Kiliaris P. Papaspyrides C D. Polymer/layered silicate (clay) nanocomposites:An overview of flame retardancy. Prog Polym Sci,2010,35,902-958.
    [75]Lu H, Song L and Hu Y. A review on flame retardant technology in China. Part Ⅱ:flame retardant polymeric nanocomposites and coatings. Polym Adv Technol 2011,22.379-394.
    [76]Quan H, Zhang B, Zhao Q, Yuen R K K, Li R K Y. Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Composites:Part A,2009,40,1506-1513.
    [77]Wang X, Song L,Yang H, Lu H, and Hu Y. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind Eng Chem Res,2011,50,5376-5383
    [78]瞿保钧,陈伟,邱龙臻,丁鹏,崔哲.聚合物/层状双氢氧化物纳米复合材料的研究与展望.自然科学进展,2005,15,272-281.
    [79]Dasari A, Yu Z, Mai Y, Cai G, Song H. Roles of graphite oxide, clay and POSS during the combustion of polyamide 6. Polymer,2009,50,1577-1587.
    [80]Gilman J W, Jackson C L, Morgan A B, Harris R, Manial E, Giannelis E P, Wuthenow M, Hilton D, Phillips S H. Flammability properties of polymer-layered-silicate nanocomposites polypropylnene and polystyrene nanocomposites. Chem Mater,2000,12,1866-1873.
    [81]Kashiwagi T, Harris R H, Zhang X, Briber R M, Cipriano B H, Raghavan S R, Awad W H, Shields J R. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer, 2004,45,881-891.
    [82]Song L, Hu Y. Lin Z H, Xuan S Y. Wang S F, Chen Z Y. Fan W C. Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocompisite. Polym Degrad Stab, 2004,86,535-540.
    [83]Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate). Macromol Mater Eng,2008,293,206-217.
    [84]Braun U, Bahr H, Sturm H and Schartel B. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly (1,4-butylene terephthalate):the influence of metal cation. Polym Adv Technol,2008,19,680-692.
    [85]Giancotti V and Ripamonti A. Isomorphism and polymorphism in Zinc(Ⅱ) and Cobalt(Ⅱ) phosphinate polymers. JChemSOC(A),1969,706-713.
    [86]Natarajan S and Mandal S. Open-framework structures of transition-metal compounds. Angew Chem Int Ed,2008,47,4798-4828.
    [87]Alberti G, Constantino U, Allulli S, Tomassini N. Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R= organic radical):A new class of materials having layered structure of the zirconium phosphate type. JInorgNucl Chem,1978,40,1113-1117.
    [88]Clearfield A. Organically pillared micro- and mesoporous materials. Chem Mater,1998,10, 2801-2810.
    [89]Clearfield A. Metal phosphonate chemistry. Prog Inorg Chem,1998,47,371-510.
    [90]Maeda K. Metal phosphonate open-framework materials. Microporous Mesoporous Mater, 2004,73,47-55.
    [91]Cao D K, Xiao J, Tong J W, Li Y Z, Zheng L M. Metal phosphonates based on bis (benzimidazol-2-ylmethyl) imino methylenephosphonate:From discrete dimer to two-dimensional network containing metallomacrocycles. Inorg Chem,2007,46,428-436.
    [92]Bonavia G, Haushalter R C, Orconnor C J, Sangreorio C. Hydrothermal synthesis and structural characterization of a tubular oxovanadium organophosphonate, (H3O)[(V3O4)(H2O)(PhPO3)3]·xH2O(x= 2.33). JZubieta Chem Commun,1998,2187-2188.
    [93]Miller S R, Lear E, Gonzalez J, Slawin A M Z, Wright P A, Guillou N, Frey G. Synthesis and structure of the framework scandium methylphosphonates ScF(H2O)CH3PO3 and NaSc(CH3PO3)2·0.5H2O. Dalton Trans,2005,3319-3325.
    [94]Ma Y S, Yang Y F, Gao S, Li Y Z, Zheng L M. Layered metal phosphonates containing pyridyl groups:Syntheses and characterization of Mn2(2-C5H4NPO3)2(H2O) and Zn(6-Me-2-C5H4NPO3). J Solid State Chem,2006,179,3017-3023.
    [95]Mao J G, Wang Z, Clearfield A. Crystal structures of two divalent metal diphosphonates with a layered and a 3D network structure. Inorg Chem,2002,41,2334-2340.
    [96]Rovira C. Molecular spin ladders. Chem Eur J,2000,6,1723-1729.
    [97]Chandrasekhar V. Kingsley S A. Dodecanuclear copper(Ⅱ)cage containing phosphonate and pyrazole ligands. Angew Chem Int EdEngl,2000,39,2320-2322.
    [98]Gillaizeau-Gauthie I. Odobel F, Alebbi M, Argazzi R, Costa E, Bignozzi C A, Qu P, Meyer G J. Phosphonate-based bipyridine dyes for stable photovoltaic devices. Inorg Chem,2001, 40,6073-6079.
    [99]Ma Y S, Li H, Wang J J, Bao S S, Can R, Li Y. Ma J, Zheng L M. Three-dimensional Lanthanide(Ⅲ)-Copper(Ⅱ) compounds based on an unsymmetrical 2-pyridylphosphonate ligand:An experimental and theoretical study. Chem Eur J,2007,13,4759-4769.
    [100]Liu X G, Bao S S, Li Y Z L, Zheng M. Polymorphism in hornochiral Zinc phosphonates. Inorg Chem,2008,47,5525-5527.
    [101]Bauer E M, Bellitto C, Colapietro M, Ibrahim S A, Mahmoud M R, Portalone G, Righini G. Layered hybrid organic-inorganic Co(Ⅱ) alkylphosphonates. Synthesis, crystal structure and magnetism of the first two members of the series:Co[(CH3PO3)(H2O)] and CO[C2H5PO3)(H2O)]. J Solid State Chem,2006,179,389-397.
    [102]Miller S R, Lear E, Gonzalez J, Slawin A M Z, Wright P A, Guillou N, Frey G. Synthesis and structure of the framework scandium methylphosphonates ScF(H2O)CH3PO3 and NaSc(CH3PO3)2·0.5H2O. Dalton Trans,2005,3319-3325.
    [103]Groves J A, Stephens N F, Wright P A, Lightfoot P. Novel open framework architectures in lanthanide phosphonates. J Solid State Sci 2006,8,397-403.
    [104]Comby S, Scopelliti R, Imbert D, Charbonni ere L, Ziessel R, B"unzli J C G. Dual Emission from Luminescent Nonalanthanide Clusters. Inorg Chem,2006,45,3158-3160.
    [105]Cao D K, Li Y Z, Song Y. Zheng L M. Three-, two-, and one-dimensional metal phosphonates based on [Hydroxy(4-pyridyl)methyl]phosphonate:M{(4-C5H4N)CH(OH) PO3}(H2O) (M=Ni, Cd) and Gd (4-C5H4N)CH(OH)P(OH)O2}3·6H2O. Inorg Chem,2005,44, 3599-3604.
    [106]Gan X M, Bingamin I, Rapko B M, Fox J, Duesler E N, Paine R T. Hydrogen bonded framework structures constructed from 2-(pyridyl N-oxide) methylphosphonic acid ligands and Erbium(Ⅲ). Inorg Chem,2004,43,2443-2448.
    [107]Gan X M, Rapko B M, Fox J, Binyamin I, Pailloux S, Duesler E N, Paine R T. A three-dimensional framework structure constructed from 2-(2-pyridyl-N-oxide) ethylphosphonic acid and Nd(Ⅲ). InorgChem,2006,45,3741-3745.
    [108]Ying S M, Zeng X R, Fang X N, Li X F, Liu D S. Synthesis, crystal structure and fluorescent characterization of a novel lanthanide tetraphosphonate with a layered structure. Inorg Chim Acta,2006,359,1589-1593.
    [109]Sonnauer A, Stock N. High-throughput and microwave investigation of rare earth phosphonatoethanesulfonates—Ln(O3P-C2H4-SO3) (Ln=Ho, Er, Tm, Yb, Lu, Y). J Solid State Chem,2008,181,3065-3070.
    [110]Nash K L, Rogers R D, Ferraro J, Zhang J. Lanthanide complexes with 1-hydroxyethane-1,1-diphosphonic acid:solvent organization and coordination geometry in crystalline and amorphous solids. InorgChem Acta,1998,269,211-223.
    [111]Silvestre J P, Dao N Q, Lee M R. Crystal structure of the gadolinium trihydrogenohydroxy-1 ethane bis(Phosphonate)-1,1" trihydrate. Phosphorus, Sulfur, Silicon, Relat Elem,2001,176,173-183.
    [112]Gan X M, Binyamin I, Pailloux S, Duesler E N, Paine R T. Formation of a layered framework structure based upon 4-methyl-2,6-bis(methylphosphonic acid) phenol. Dalton Trans,2006,32,3912-3197.
    [113]Morizzi J, Hobday M and Rix C. Synthesis and characterisation of some lamellar indium phosphonates. J Mater Chem,1999,9,863-864.
    [114]Cao G, Lynch V M, Swinnea J S, and Mallouk T E. Synthesis and structural characterization of layered calcium and lanthanide phosphonate salts. Inorg Chem,1990,29, 212-217.
    [115]Li H, Zhu G, Ren H, Li Y, Hewitt I J and Qiu S. The synthesis of multiwalled rare-earth phosphate nanomaterials using organophosphates with upconversion properties. Eur J Inorg Chem,2008,2033-2037.
    [116]Viana R I L, Santos de L A V, Neri C R, Serra O A. Photophysical properties of new Terbium (Ⅲ) organophosphonates. JFluoresc,2006,16,455-459.
    [117]Clarke Rachael C, Latham K, Rix C J, and Hobday M. Heterocyclic amine derivatives of Zinc organophosphonates. Chem Mater,2004,16,2463-2470.
    [118]Zhu Y Yu, Sun Z G, Tong F, Liu Z M, Huang C Y. Wang W N, Jiao C Q, Wang C L, Li C and Chen K. Hydrothermal synthesis, crystal structures, and luminescent properties of a series of new lanthanide oxalatophosphonates with a layer architecture. Dalton Trans,2011, 40,5584-5590.
    [1]王建祺.无卤阻燃聚合物基础与应用.科学出版社.北京2005,1-2.
    [2]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术.化学工业出版社.北京2005,93-94.
    [3]王玉忠,王德义,葛欣国.高分子科学前沿与进展(Ⅱ)-高分子材料的无卤阻燃化.科学出版社.北京2009,649-650;
    [4]Lewin M. Synergism and catalysis in flame retardancy of polymers. Polym Advan Technol, 2001,12,215-222.
    [5]Xie F, Wang Y Z, Yang B, Liu Y. A novel intumescent flame-retarant polyethylene system. Macromol Mater Eng,2006,102,5988-5993.
    [6]Irie R, Noda K, Ito Y, Matsumoto N, and Katsuki T. Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetra Lett,1990,7345-7348.
    [7]Shearer J M, Rokita Bioorg S E. Diamine preparation for synthesis of a water soluble Ni(II) salen complex. MedChem Lett,1999,9,501-504.
    [8]Zefirov N S and Matveeva E D. Catalytic Kabachnik-Fields reaction:new horizons for old reaction. ARKIVOC(Special Issue Reviews and Accounts) 2008 (i) 1-17.
    [9]Semenzin D, Etemad G, Albouy D, Diallo O, and Koenig M. Dual radical/polar pudovik reaction:Application field of new activation methods. J OrgChem,1997,62,2414-2422.
    [10]Albouy D, Lasptras M, Etemad G, and Koenig M. Role of base catalysts upon the pudovik reaction:Unexpected synthesis of 1.2-dihydropyridine phosphonate derivatives. Tetra Lett, 1999.40.2311-2314.
    [11]侯丽新,贾虎生,郝玉英,王华,陈柳青,许并社.一种锌希夫碱配合物的表征及发光性能研究.光谱学与光谱分析,2008,14,766--769.
    [12]Moamen S R, Ibrahim M E. Hassan K I, Samir E G. Synthesis and spectroscopic studies of some transition metal complexes of a novel Schiff base ligands derived from 5-phenylazo-salicyladehyde and o-amino benzoic acid. Spectrochimica Acta Part A,2006,65, 1208-1220.
    [13]Benbow A W, Cullis C F, and Laver H S. Effects of metal chelates on the oxidation of polyolefins at high temperatures. Polymer 1978,19,824-828.
    [14]Ramani P R R, and Gerald S. Mechanisms of antioxidant action antioxidant behaviour of nickel complex U.V. stabilisers. EurPolym J,1976,12,825-830.
    [15]Holcik J, Kosik M, Benbow A W, and Cullis C F. The oxidative thermal degradation of polypropylene and the influence of transitional metal chelates. Eur Polym J,1978,14, 769-772.
    [16]Soliman A A, Linert W. Investigations on new transition metal chelates of the 3-methoxy-salicylidene-2-aminothiophenol Schiff base. Thermochimica Acta 1999,338, 67-75.
    [17]Gorghiu L M, Jipa S, Zaharescu T, Setnescu R. Mihalcea I. The effect of metals on thermal degradation of polyethylenes. Polym Degrad Stab,2004,84,7-11.
    [18]Bowbigot S, Le B M, Delobeltd R, Breant P, Tremillon J M.4A zeolite synergistic agent in new flame retardant intumescent formulations of polyethylenic polymers-studv of the effect of the constituent mokomers. Polym Degrad Stab,1996,54,275-287.
    [19]Lewin M, Emdo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds.Polym Adv Technol,2003,14,3-11.
    [20]Ma H, Tong L, Xu Z, Fang Z, Jin Y. Lu F. A novel intumescent flame retardant:Synthesis and application in ABS copolymer. Polym DegradStab,2007,92,720-726.
    [21]徐平勇.N,N'-对苯二胺基二苄基膦酸酯及其部分金属配合物的合成和阻燃性能的研究华中师范大学硕士学位论文.2000.
    [1]刘茜,邹碧群,覃雯,义祥辉,张业.双席夫碱衍生物的合成及其对过渡金属离子识别的研究.化学试烈2011,33,740-742.
    [2]Joanna G, Pawel K, Henryk K, Piotr M, Valeria M. Nurchi T P. N,N-Ethylenediaminobis(benzylphosphonic acids) as a potent class of chelators for metal ions. Jnorg ChimActa,2009,362,707-713.
    [3]王成国,朱波.聚丙烯腈基碳纤维,科学出版社,2011,298-299.
    [4]Bestaoui N, bakhmutova-Albert E V, Rodriguez A V. Llavona R, Clearfield A. Ab-initio powder structure determination of dichloro[1,2-ethanediylbis(iminomethylene) bis(phosphonato)] trizinc dehydrate. Eur J Inorg Chem,2005,829-836.
    [5]Shi Z, Li G, Wang L, Gao L, Chen X, Hua J and Feng S. Two novel three-dimensional metal-organic frameworks from secondary building units of Zn8(OH)(O2C-)12 and Zn2(OH)(O2C-)3:[Zn2(OH)(btc)]2(4,4'-bipy) and Zn2(OH)(btc)(pipe).Crystal Growth & Design,2004,4,25-27.
    [6]Mutin P H, Guerrero G, Vioux A. Organic-inorganic hybrid materials based on organophosphorus coupling molecules:from metal phosphonates to surface modification of oxides. C R. Chimie,2003,6,1153-1164.
    [7]Cheetham A K, FeArey G, and Loiseau T. Open-framework inorganic materials. Angew Chem Int Ed,1999,38,3268-3292.
    [8]Natarajan S, and Mandal S. Open-framework structures of transition-metal compounds. Angew Chem Int Ed,2008,47,4798-4828.
    [9]Clearfield A. Organically pillared micro- and mesoporous materials. Chem Mater,1998,10, 2801-2810.
    [10]Clearfield A. Metal-phosphonate chemistry. Prog Jnorg Chem,1998,47,371-510.
    [11]Maeda K. Metal phosphonate open-framework materials. Microporous Mesoporous Mater 2004,73,47-55.
    [12]Cao D, Xiao J, Tong J, Li Y, Zheng L. Metal phosphonates based on bis(benzimidazol-2-ylmethyl)imino methylenephosphonate:From discrete dimer to two-dimensional network containing metallomacrocycles. Inorg Chem,2007,46,428-436.
    [13]Bonavia G, Zubieta J, Haushalter R C., O'Connor C J and Zubieta C S. Hydrothermal synthesis and structural characterization of a tubular oxovanadium organophosphonate, (H30)[(V304)(H20)(PhP03)3]·xH2O(x= 2.33). Chem Commun,1998,2187-2188.
    [13]Cao D K, Liu M J, Huang J, Bao S S, and Zheng L M. Cobalt and manganese diphosphonates with one-, two-, and three-dimensional structures and field-induced magnetic transitions. Inorg Chem,2011,50,2278-2287.
    [14]Murugavel R and Shanmugan S. Assembling metal phosphonates in the presence of monodentate-terminal and bidentate-bridging pyridine ligands. Use of non-covalent and covalent-coordinate interactions to build polymeric metal-phosphonate architectures. Dalton Trans,2008,39,5358-5367.
    [15]DeHaan J D. Kirk's Fire Investigation,3rd Edition, Brady/Prentice Hall, Englewood Cliffs, NJ,1991, p18.
    [1]Moedritzer K, and Irani R. The direct synthesis of α-aminomethylphosphonic acids. mannich-type reactions with orthophosphorous acid. JOrgChem,1966,31,1603-1607.
    [2]Groves J A, Wright P A, Lightfoot P. The pH-controlled hydrothermal synthesis and crystal structures of two zinc N, N'-piperazinebis(methylenephosphonate) frameworks. Dalton Trans 2005,11,2007-2010.
    [3]Shi Z, Li G, Wang L, Gao L, Chen X, Hua J and Feng S. Two novel three-dimensional metal-organic frameworks from secondary building units of Zn8(OH)(O2C-)12 and Zn2(OH)(O2C-)3:[Zn2(OH)(btc)]2 (4,4'-bipy) and Zn2(OH)(btc)(pipe).Crystal Growth & Design,2004,4,25-27.
    [4]Chao K J, Chang T C, Ho S Y. Intercalation and oxidative polymerization of aniline in zirconium phosphates. J Mater Chem,1993,3,427-428
    [5]Jian F, Carla S, Ross A, and Brian E H. New zinc phosphates decorated by imidazole-containing ligands. Inorg Chem,2005,44,552-558.
    [6]Rao C N R, Natarajan S, and Neeraj S. Exploration of a simple universal route to the myriad of open-framework metal phosphates. J Am Chem Soc,2000,122,2810-2817.
    [7]Cao D K, Liu M J, Huang J, Bao S S, and Zheng L M. Cobalt and manganese diphosphonates with one-, two-, and three-dimensional structures and field-induced magnetic transitions. Inorg Chem,2011,50,2278-2287.
    [8]Ramaswamy M, and Swaminathan S. Assembling metal phosphonates in the presence of monodentate-terminal and bidentate-bridging pyridine ligands. Use of non-covalent and covalent-coordinate interactions to build polymeric metal-phosphonate architectures Dalton Trans,2008,39,5358-5367.
    [9]Serge B, and Sophie D. Fire retardant polymers:recent developments and pportunities. J Mater Chem,2007,17,2283-2300.
    [10]Nie S, Song L, Bao C, Qian X, Guo Y, Hong N and Hu Y. Synergistic effects of ferric pyrophosphate (FePP) in intumescent flame-retardant polypropylene. Polym Adv Technol, 2011,22,870-876.
    [11]周公度.化学词典.化学工业出版社.北京2004,439.
    [12]Ma H, Tong L, Xu Z, Fang Z, Jin Y, Lu F. A novel intumescent flame retardant:Synthesis and application in ABS copolymer. PolymDegrad and Stab 2007,92,720-726.
    [13]Rao A M, Richter E, Bandow S, Chase B, Eklund P C, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS. Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science 1997,275,187-191.
    [1]Baltser A E, Shukan I V, and Barskova E N. Synthesis of (Pyrrolidin-1-yl-and Morpholinoalkyl)phosphonic Acids. Russian J Org Chem,2009,45,1273-1274.
    [2]Zhu Y, Li J, Sun Z, Zhang J, Zhao Y. Zhang N, Liu L, Lu X.Synthesis, characterizations, and crystal structure of a novel layered phosphonate:Zn2Cl[O3PCH2N(CH2CH2)2O] [O3PCH2NH(CH2CH2)2O]. Inorg Chem Comm,2009,12,38-40.
    [3]Zhang Y, Hu H, Clearfield A. The crystal structures of two lanthanide phosphites and the geometry of metal phosphite complexes. InorgChem Acta,1992,193,35-42.
    [4]Scott K J, Zhang Y. Clearfield A. The synthesis and characterization of lanthanum phosphite phenylphosphonate mixed derivatives. Polyhedron,1994,8,1291-1300.
    [5]Poojary D M, Zhang B, Cabeza A, Aranda M A G, Bruque S, Clearfield A. Synthesis and crystal structures of two metal phosphonates, M(HO3PC6Hs)2(M=Ba, Pb). J Mater-Chem, 1996,6,639-644.
    [6]Gan X M, Binyamin I, Rapko B M, Fox J, Duesler E N, Paine R T. Hydrogen Bonded Framework Structures Constructed from 2-(Pyridyl N-oxide) Methylphosphonic Acid Ligands and Erbium(Ⅲ). Inorg Chem,2004,43,2443-2448.
    [7]Sonnauer A, Stock N. High-throughput and microwave investigation of rare earth phosphonatoethanesulfonates—Ln(O3P-C2H4-SO3) (Ln1/4Ho,Er,Tm,Yb,Lu,Y). J Solid State Chem,2008,181,3065-3070.
    [8]Viana R I L, Ana VS L, Cl'audio R N O A S. Photophysical properties of new terbium (Ⅲ) organophosphonates. JFluoresc,2006,16,455-459.
    [9]Mao J. Structures and luminescent properties of lanthanide phosphonates. Coord Chem Reviews,2007,251,1493-1520.
    [10]Morizzi J, Hobday M and Rix C. Synthesis and characterisation of some lamellar indium phosphonates. J Mater Chem,1999,9,863-864.
    [11]Glowiak T, Huskowska E, Legendziewicz J. Preparation and X-ray crystal structure determination of an octahedral polymeric lutetium compound with ciliatine; {Lu(PO3HCH2CH2NH3)3(ClO4)3·3D2O}n.Polyhedron,1991,10,179-185.
    [12]Yu H, Liu J, Wang Z, Jiang Z, and Tang T. Combination of carbon nanotubes with Ni2O3 for simultaneously improving the flame retardancy and mechanical properties of polyethylene. J Phys ChemC,2009,113,13092-13097.
    [13]Schartel B, Hull T R. Development of fire-retarded materials-interpretation of cone calorimeter data. Fire Mater,2007,31:327-354.
    [14]盐川二郎编,霍羽伸,喻忠厚译.稀土的最新应用技术.化学工业出版社.北京1993.8.1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700