聚铝硅氧烷阻燃剂的制备及其在PC中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的发展,高分子材料在越来越多的领域得以广泛的应用。其中的聚碳酸酯(PC)因具有良好的透明性,较好的机械强度、耐热性能、耐紫外辐射及电绝缘等综合性能,用途更为广泛。随着电子、电气、建筑、汽车等领域对PC需求的日益扩大,对PC的阻燃性能、综合性能以及环境保护的要求也越来越高。因此迫切需要开发无卤高效的阻燃剂或复配阻燃体系对PC实施阻燃处理以满足在相关领域的应用要求。本文采用水解缩合法制备了环保无卤的聚铝硅氧烷阻燃剂,并将其应用于PC的阻燃处理,研究内容主要有以下三个方面:聚铝硅氧烷阻燃剂的制备及其阻燃性能;聚铝硅氧烷阻燃剂对PC物理性能的影响;纳米Si02对PC/聚铝硅氧烷阻燃材料性能的影响。
     以二苯基二甲氧基硅烷(DDS)、二甲基二甲氧基硅烷(DMM)等烷氧基硅烷和异丙醇铝(MSDS)为原料,采用水解缩合法合成了一种新型的聚铝硅氧烷阻燃剂。应用极限氧指数(LOI)法和锥形量热仪分析了聚铝硅氧烷对PC的阻燃作用。聚铝硅氧烷能明显提高PC的LOI,聚铝硅氧烷的结构对其阻燃性能影响较大,侧链中Ph/Me为6:4,R/Si为1.2的聚铝硅氧烷的阻燃效果最好,在PC中添加5%该聚铝硅氧烷可使PC的LOI从25.5%提高到30.4%。同时聚铝硅氧烷可使PC的最大热降解速率降低,800℃残炭率显著提高,PC/聚铝硅氧烷阻燃材料的800℃残炭率大约比纯PC高30-45%,表明聚铝硅氧烷在PC材料中具有降低降解速率,促进成炭的作用,尤其是Si-0链具有支链结构的R/Si=1.2的聚铝硅氧烷,这种促进成炭的作用更加显著。在燃烧过程中,聚铝硅氧烷会迁移到PC表面,与PC的降解产物发生相互作用,产生交联结构,Si和Al积聚在材料表面形成富含Si、Al的绝缘炭层,完全燃烧时阻燃PC形成了均匀、致密的炭层,正是这一富含Si、Al的致密炭层起到了良好绝缘保护层的作用,抑制了材料进一步降解,有效阻碍了可燃性气体的产生及向燃烧区的传递,从而有效地改善了PC的阻燃性能。锥形量热仪测试结果表明,在PC中添加聚铝硅氧烷阻燃剂可以延长PC的点燃时间,有效降低PC燃烧过程中产生的烟、热及CO、CO2等有害气体,显著提高了火灾性能指数,缓和整个燃烧过程,保证热量与外界环境及时传递,减少了火灾的危害。
     聚铝硅氧烷阻燃PC材料(聚铝硅氧烷的添加量为5WT%)的拉伸强度在55.5MPa-58.6MPa之间,与纯PC的拉伸强度55MPa相比有明显提高。PC的弯曲强度、冲击强度分别为86MPa.16KJ/m2,PC/聚铝硅氧烷的弯曲强度在84MPa-89MPa之间,聚铝硅氧烷对PC的弯曲强度影响较小,聚铝硅氧烷阻燃PC材料的冲击强度比PC提高了15-30%。由此可见,聚铝硅氧烷对PC力学性能的影响,总体上,不仅没有降低,反而有所提高。
     为获得阻燃性能和综合性能更加优良的阻燃PC材料,从自制的聚铝硅氧烷阻燃剂中筛选出阻燃性能优良的聚铝硅氧烷阻燃剂与PC、纳米Si02共混制得阻燃PC材料,研究该复合材料的阻燃性能和力学性能的变化。结果表明,纳米Si02对PC/聚铝硅氧烷阻燃材料的LOI影响很小,但Si02可使PC/聚铝硅氧烷的热释放速率降低。随着Si02含量的增加,阻燃PC材料的力学性能先增后降,添加适量的纳米Si02可使PC/聚铝硅氧烷阻燃材料的拉伸强度和冲击强度明显提高。纳米Si02对PC/聚铝硅氧烷的冲击强度的影响更为显著,当Si02含量为1WT%时达到最大值,比不含Si02的PC/聚铝硅氧烷的冲击强度提高了48%。
With the development of modern science and technology, the polymer materials are widely used in various industries. The polycarbonate (PC), as a major kind of polymers has increasingly applications in those industries because of its superior properties such as good transparency, strong mechanical strength, good heat resistance, good anti-ultraviolet radiation and electrical insulation features. With the growing demand for the PC in the filed of electron, electric, building, automobile and so on, the requirements of its flame retardant property, comprehensive performance and environmentally-friendly features become higher and higher. It is highly needed to develop an efficient halogen-free flame retardant for fire-retardant treatment of PC to meet the requirements in the related fields. In this research we use co-hydrolysis condensation to prepare environmentally friendly halogen-free polyaluminosiloxane flame retardants, and apply it to the PC for its fire-retardant treatments. The research focus on the following three aspects:the preparation of the polyaluminosiloxane and the measuring of its flame retardant properties; the impacts on PC physical properties when the polyaluminosiloxane is added into the PC; the effects of the nano-SiO2on properties of the PC/polyaluminosiloxane.
     Novel polyaluminosiloxane flame retardants were synthesized through co-hydrolysis condensation reaction using diphenyldimethoxysilicone (PTMS), dimethyldimethoxysilane (DMPS) and aluminum isopropoxide as the raw materials. The flame retardant action of polyaluminosiloxane on PC was analyzed by limiting oxygen index (LOI) method and the cone calorimeter. The presence of the polyaluminosiloxane can significantly improve LOI of PC and the structure of polyaluminosiloxane affects its flame retardancy greaterly. It is found that when the Ph/Me ratio is6:4, and the R/Si is1:2in the branched chain, the polyaluminosiloxane reaches its highest flame retardancy. Adding5%of this polyaluminosiloxane into the PC, the LOI of the PC increased from25.5%to30.4%. The presence of the polyaluminosiloxane in the PC can reduce PC's maximum thermal degradation rate, and increase its800℃carbon residue significantly. The800℃carbon residue of PC/polyaluminosiloxane system is30-45%higher than that of the pure PC, showing that the polyaluminosiloxane in PC reduced the degradation rate of the blends, and promoted the formation of the carbon layers, especially for the polyaluminosiloxane with1.2Si-O ratio in its branched chain. In the combustion process, polyaluminosiloxane will migrate to the PC surface, and PC degradation product interaction occurs, causing crosslinking structure. Si and Al accumulate in the material surface and form insulation carbon layer which is rich in Si、Al. When it is complete combustion, flame retardant PC forms a uniform, dense carbon layer, which acts as good insulating protection layer effects to inhibite material further degradation, effectively prevent the flammable gas produced and transfer to the combustion zone. Thereby it effectively improves the flame retardancy of PC. The cone calorimeter test results show that adding polyaluminosiloxane flame retardant in PC can prolong PC ignition time, effectively reduce smoke, heat and CO, CO2and other harmful gases generating in the burning process. Besides, it significantly improves the fire performance index, mitigates the whole combustion process, ensure the timely transmission of heat to the external environment, and reduce fire hazard.
     The tensile strength of the polyaluminosiloxane flame retardant PC (5WT%polyaluminosiloxane) is55.5-58.6MPa, while the tensile strength of the pure PC is55MPa. The presence of the polyaluminosiloxane improved the tensile strength of the PC. The flexural strength and impact strength of the pure PC are86MPa and16KJ/m2respectively, and the flexural strength of the PC/polyaluminosiloxane system is84MPa-89MPa. The effect of polyaluminosiloxane on the flexural strength of the PC is slight. The impact strength of the polyaluminumsiloxane retardant PC is15%to30%higher then that of the pure PC. Thus, on the whole, the effect of the polyaluminosiloxane on mechanical properties of the PC is not reduced but increased.
     In order to obtain flame retardant PC materials with more excellent flame retardant performance and comprehensive performance, a high performance flame retardant was screened out from the prepared polyaluminumsiloxanes. The polyaluminumsiloxane was then mixed with SiO2nanoparticles and PC to prepare the PC blends. The flame retardancy and the mechanical properties of these blends were investigated. The results show that the presence of the SiO2nanoparticles in the PC/polyaluminosiloxane has a little effect on its LOI value. However, the presence of the SiO2can reduce the heat release rate, and then reduces the fire hazard of the PC/polyaluminosiloxane. When increasing the SiO2content, the mechanical properties of flame-retardant PC material is firstly increased and then drop, adding an appropriate amount of nano-SiO2can improve obviously the tensile strength and impact strength of PC/polyaluminosiloxane flame retardant material. The nano-SiO2has a more significant influence on the impact strength of the PC/polyaluminumsiloxane. When the content of SiO2is1WT%, the influence reaches to the maximum value, and the impact strength is increased by48%than PC/polyaluminosiloxane without SiO2.
引文
[1]欧育湘,李听.本质阻燃高聚物[J].高分子材料科学与工程:2000.16(006):]-4.
    [2]赵泽明.世界各国的火灾成本统训一一来自世界火灾统计中心的调查报告[J].消防技术与产品信息.2005.005):47-50.
    [3]李斌.重庆市人员密集公共建筑防火安全设计评价初探.重庆大学,2009年重庆大学硕士学位论文
    [4]李社锋.火场可燃物热解着火特性研究.浙江大学,2006年,浙江大学硕士学位论文
    [5]闵峰.新型含硅阻燃剂的合成及其对PC/ABS阻燃作用的研究.上海交通大学,2008年,上海交通大学硕士论文
    [6]KARTER JR M. Fire loss in the United States 2008 [J]. Quincy. MA:National Fire Protection Association.2009,
    [7]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005:15-23.
    [8]LU S, HAMERTON 1. Recent developments in the chemistry of halogen-free flame retardant polymers [J]. Progress in Polymer Science,2002,27(8):1661-712.
    [9]欧育湘,陈宇,王筱梅.阻燃高分子材料[J].北京:国防工业出版社.2001,
    [10]吴丹DOPO衍生物类膨胀型阻燃剂的合成及其在PC/ABS中的应用研究.上海交通大学,2007年,上海交通大学硕士论文
    [11]lnnes J.,lnnes A. Compounding metal hydrate flame retardants[J]. Plastics, Additives and Compounding,2002,4 (4):22-26.
    [12]鲁建.膨胀型阻燃剂的合成及其应用.四川大学,2002,四川大学硕士论文
    [13]Zhang Y.,Yang J.H.,Peng Z.L., et al. Effect of Silicone Oil on the Mechanical Properties of Highly Filled HDPE Composites.[J]. Polymers and Polymer Composites,2000,8 (7):471-476.
    [14]潘杰.氢氧化镁的制备及阻燃性能研究.青岛科技大学,2010年,青岛科技大学硕士学位论文
    [15]朱磊,张翔.改性氢氧化镁阻燃剂对聚丙烯的性能影响研究[J].消防技术与产品信息,2009,(7):41-43.
    [16]Iji M.Serizawa S. Silicone derivatives as new flame retardants for aromatic t hermoplastics used in electronic devices[J]. Polymers for Advanced Technologies,1998,9(1011):593-600.
    [17]杨连成.反应型有机磷阻燃剂的合成与阻燃性能研究.大连理工大学,2009年.大连理工大学硕士学位论文
    [18]Levchik S V. Weil E D. Overview of recent developments in the flame retardancy of polycarbonates[J]. Polymer International 2005.54 (7):981-998.
    [19]王泉增.2,4,6-三溴苯酚丙烯酸酯的合成及应用研究.北京理工大学,2000年,北京理工大学硕士毕业论文
    [20]Lee K. Kim J, Bae J. et al. Studies on the thermal stabilization enhancement of ABS; synergistic effect by triphenyl phosphate and epoxy resin mixtures[J]. Polymer 2002:43 (8):2249-2253.
    [21]贾修伟,刘治国.硅系阻燃剂研究进展[J].化工进展,2003.22(008):818-822.
    [22]徐晓楠.溴化环氧树脂协同三氧化二锑阻燃PBT的性能研究[J].塑料科技,2009,37(7):33-36.
    [23]Ogunbayo O.A.Jensen K.T..Michelangeli F. The interaction of the brominated flame retardant:Tetrabromobisphenol A with phospholipid membranes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes.2007.1768 (6): 1559-1566.
    [24]欧育湘,彭治汉,连旦军.一种新型热稳定六溴环十二烷阻燃剂[J].塑料科技,1999,27(1):8-12.
    [25]李响,钱立军,孙凌刚,et al.几种高分子聚合型阻燃剂概述[J].阻燃材料与技术,2003,(06):5-8.
    [26]郑辉.MP及MCA膨胀阻燃剂的合成与应用研究.中国地质大学(武汉),2008年,中国地质大学(武汉)硕士学位论文.
    [27]仲含芳.含磷聚硅氧烷的合成及其在PC/ABS中的应用.上海交通大学,2008,上海交通大学博士论文.
    [28]Feng J, Hao J W, Du J X. et al. Flame retardancy and thermal properties of solid bisphenol A bis(diphenyl phosphate) combined with montmorillonite in polycarbonate[J]. Polymer Degradation and Stability,2010,95 (10):2041-2048.
    [29]刘志远Ca/Mg/Al类水滑石的合成及其在PVC中的应用.中南大学,2007年,中南大学硕士学位论文.
    [30]Zhong H F. Wei P. Jiang P K. et al. Thermal degradation behaviors and flame retardancy of PC/ABS with novel silicon-containing flame retardant[J]. Fire and Materials.2007.31 (6):411-423.
    [31]王泉增.2.4,6-三溴苯酚丙烯酸酯的合成及应用研究.北京理工大学,2000年北京理工大学硕士学位论文.
    [32]宋健,周文君,吕群等.聚硼硅氧烷阻燃PC/ABS合金的制备与其阻燃性能[J].中国塑料,2010,24(8):28-31.
    [33]Bozi J.,Czegeny Z.,Meszaros E., et al. Thermal decomposition of flame retarded polycarbonates[J]. Journal of Analytical and Applied Pyrolysis.2007.79 (1-2): 337-345.
    [34]Wang Q..Shi W. Photopolymerization and thermal behaviors of acrylated benzenephosphonates/epoxy acrylate as flame retardant resins[J]. European Polymer Journal 2006.42 (10):2261-2269.
    [35]欧育湘等.某些满足特殊应用要求的环保型阻燃剂[J].《塑料助剂》,2005,49(]):7-]].
    [36]赫丽华,刘平桂,宋江选.聚硅氧烷/聚己内酯/环氧树脂复合体系的制备及表面性能[J].复合材料学报,2009,26(3):60-66.
    [37]Zhong H..Wu D..Wei P.. et al. Synthesis, characteristic of a novel additive-type flame retardant containing silicon and its application in PC/ABS alloy[J]. Journal of Materials Science,2007,42 (24):10106-10112.
    [38]叶磊.聚烯烃无卤阻燃纳米复合材料及其紫外光交联研究.中国科学技术大学,2010年,中国科学技术大学博士学位论文.
    [39]张翔.溴阻燃剂对人类健康状况的影响.《消防技术与产品信息》,2007年,]3(6):59-65.
    [40]Pawlowski K.H.,Schartel B.,Fichera M.A., et al. Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenolApolycarbonate/acrylonitrile-butadiene-styreneblends[J]. Thermochimica Acta,2010,498 (1-2):92-99.
    [41]Nazare S.,Kandola B.,Horrocks A. Flame-retardant unsaturated polyester resin incorporating nanoclays Paper presented as part of a special issue on nanocomposites and flame retardancy[J]. Polymers for Advanced Technologies, 2006.17 (4):294-303.
    [42]Xiao J.,Hu Y.,Yang L.. et al. Fire retardant synergism between melamine and triphenyl phosphate in poly(butylene terephthalate)[J]. Polymer Degradation and Stability,2006.91 (9):2093-2100.
    [43]Kettrup A, Ohrbaeh K H, Matusehek G, Joaehim A.Thermal analysis-mass speetrometry and thermogravimetric eadsorption on fire retardants.Thermoehin[J].Aeta,1990,]66:4]-52.
    [44]Sai:OToranosuke, Oishi Hiroyuki. Phosphorus-eontaining diimide[J].Jp60-74, 794[85174,794] 09 Sep,]9856pp.
    [45]Halpern Y, Mott M, Niswander R H. Fire retardaney of thermoplastic materials by Intumescence.Ind.Eng.Chem.Prod.Res.Dev,1984,23(2):233-8.
    [46]彭治汉,欧育湘.含澳笼状磷酸酷的合成和热重分析研究.化学通报[J].1998,8:39-42
    [47]Lee K..Kim J.,Bae J.. et al. Studies on the thermal stabilization enhancement of ABS; synergistic effect by triphenyl phosphate and epoxy resin mixtures[J]. Polymer,2002,43 (8):2249-2253.
    [48]Tang H.I.,Lin R.K..Way T.F., et al. A study of thermal stability of polyester containing phenyl phosphonate unit for flame retardant fiber[J]. Polymer Degradation and Stability,1996,54 (2-3):373-377.
    [49]宋健.聚硼硅氧烷阻燃剂的制备及应用.杭州师范大学,2011年,杭州师范大学硕士论文.
    [50]Zhong H.,Wei P.Jiang P., et al. Thermal degradation behaviors and flame retardaney of PC/ABS with novel silicon-containing flame retardant[J]. Fire and Materials,2007,31 (6):411-423.
    [51]Zhong H.,Wu D.,Wei P., et al. Synthesis, characteristic of a novel additive-type flame retardant containing silicon and its application in PC/ABS alloy[J]. Journal of Materials Science,2007,42(24):10106-10112.
    [52]Hu Z.,Chen L.,Zhao B., et al. A novel efficient halogen-free flame retardant system for polycarbonate[J]. Polymer Degradation and Stability,2011,96 (3): 320-327.
    [53]Hu Z.,Chen L.,Zhao B., et al. A novel efficient halogen-free flame retardant system for polycarbonate[J]. Polymer Degradation and Stability,2011,96 (3): 320-327.
    [54]Zhou W.,Yang H.,Zhou J. The thermal degradation of bisphenol:A polycarbonate containing meihylphenyl-silicone additive[J]. Journal of Analytical and Applied Pyrolysis.2007,78 (2):413-4] 8.
    [55]Hayashida K, Tsuge S, Ohtani H. Flame relardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography [J]. Polymer,2003,44(19):5611-5616.
    [56]曲媛,彭治汉,王豪健.一种环状膦酸酯对ABS阻燃及热稳定性的影响[J].合成技术及应用,2009,24(4):50-52+56.
    [57]Zhong H.,Wei P.Jiang P., et al. Thermal degradation behaviors and flame retardancy of PC/ABS with novel silicon-containing flame retardant[J]. Fire and Materials,2007,31 (6):411-423.
    [58]王海军,陈立新:缪桦.氮系阻燃剂的研究及应用概况[J].热固性树脂,2005,20(4):36-4].
    [59]冯美平,何翼云,郑文颖.氮系阻燃剂的现状与展望[J].精细石油化工,1998,(]):24-28.
    [60]张增光等.聚硅氧烷阻燃剂的研究进展[J].《塑料》,2007年.36(4):85-89.
    [61]Vale R. The synthesis and irradiation of polyborosiloxanes[J]. Journal of the Chemical Society, 1960.2252-2257.
    [62]W H Jung, Y S Choi, J M Moon, et al. Reactive processing of recycled polycarbonate/acrylonitrile butadiene styrene[J]. Environmental science & technology,2009,43(7):2563-2568.
    [63]宋健,周文君,陈科,等.马来酸酐接枝类相容剂对PC/ABS共混体系的影响[J].杭州师范大学学报(自然科学版),2010, 9(2):129-134.
    [64]M Khan, C J Hilado, S Agarwal, et al. Flammability Properties of Virgin and Recycled Polycarbonate (PC) and Acrylonitrile-Butadiene-Styrene (ABS) Recovered from End-of-Life Electronics[J]. Journal of Polymers and the Environment,2007,15(3):188-194.
    [65]H F Zhong, D Wu, P Wei, et al. Synthesis, characteristic of a novel additive-type flame retardant containing silicon and its application in PC/ABS alloy[J]. Journal of Materials Science,2007,42(24):10106-10112.
    [66]B Perret, B Schartel. The effect of different impact modifiers in halogen-free flame retarded polycarbonate blends-I. Pyrolysis[J]. Polymer Degradation and Stability,2009.94(12):2194-2203.
    [67]W J Zhou, H Yang. Flame retarding mechanism of polycarbonate containing methy]pheny]-silicone[J]. Thermochimica Acta.2007.452(1):43-48.
    [68]W J Zhou, H Yang, J Zhou. The thermal degradation of bisphenol:A polycarbonate containing methylphenyl-silicone additive[J]. Journal of Analytical and Applied Pyrolysis,2007,78(2):413-418.
    [69]K H Pawlowski, B Schartel, M A Fichera, et al. Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Thermochimica Acta,2010,498(1-2):92-99.
    [70]陈科,周文君,宋健.聚硅氧烷微粉阻燃剂的制备与应用[J].中国塑料,2009,23(8):87-90.
    [71]曲媛,彭治汉,王豪健.一种环状膦酸酯对ABS阻燃及热稳定性的影响[J].合成技术及应用,2009,24(4):50-52+56.
    [72]Zanetti M..Camino G.Reichert P.. et al. Thermal Behaviour of Poly(propylene) Layered Silicate Nanocomposites[J]. Macromolecular Rapid Communications. 2001,22(3):176-180.
    [73]Lewin M. Some comments on the modes of action of nanocomposites in the flame retardancy of polymers[J]. Fire and Materials.2003.27 (1):1-7.
    [74]Kashiwagi T.,Harris R.H..Zhang X., et al. Flame retardant mechanism of polyamide 6-clay nanocomposites[J]. Polymer.2004,45 (3):881-891.
    [75]Deshpande G, Rezac M E. The effect of pheny] content on the degradation of poly(dimethyldiphenyl)siloxane copolymers [J]. Polymer Degradation and Stability,2001,74(2):363-370.
    [76]Tang Y..Hu Y.Song L., et al. Preparation and combustion properties of flame retarded polypropylene-polyamide-6 a]]oys[J]. Polymer Degradation and Stability,2006,91 (2):234-241.
    [77]傅轶,谭颂斌,赵建青.含硅化合物在阻燃聚碳酸酯材料中的应用进展[J].塑料工业,2007,35(006):1-4.
    [79]罗春晖,瞿金清.陈焕钦.助溶剂驱使溶胶-凝胶化SiO2/聚丙烯酸酯复合涂层[J].复合材料学报,2010,27(3):29-35.
    [80]Levchik S.,Weil E. Overview of recent developments in the flame retardancy of polycarbonates[J]. Polymer International.2005.54 (7):981-998.
    [81]Baysal E..Yalinkilic M.K..Altinok M.. et al. Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture[J]. Construction and Building Materials.2007. 21 (9):1879-1885.
    [82]Pandey S.N.,Gurjar R.M. Effects of flame retardants on the properties of particle boards prepared from cottonseed hulls[J]. Biological Wastes.1987.19 (3): 197-203.
    [83]Di Blasi C..Branca C.Galgano A. Flame retarding of wood by impregnation with boric acid-Pyrolysis products and char oxidation rates[J]. Polymer Degradation and Stability.2007, 92 (5):752-764.
    [84]张月琴.叶旭初.硼系阻燃剂的发展及现状[J].塑料科技:2007,35(009):1]0-113.
    [85]Ramazani S.A.A.,Rahimi A..Frounchi M.. et al. Investigation of flame retardancy and physical-mechanical properties of zinc borate and aluminum hydroxide propylene composites[J]. Materials &
    [86]马志领,胡英超.硼-铝在膨胀型阻燃聚丙烯中的协同作用[J].中国塑料,2009:23(8):91-94.
    [87]Y Huo, Q Fan, N A Dembsey, et al. Improvements on Flame Retardant Properties of PET/Montmorillonite Nanocomposite Caused by Polyborosiloxane[J]. Materials Reswarch Society Symposium Proceedings.2007.1007(12):33.
    [88]Masatoshi 1. Serizawa S. Silicone derivatives as new flame retardants for aromatic thermalplastics used in electronic devices. Polym Adv Technol 1998; 9(10-11):593-600.
    [89]Provatas A. Matisons JG. Silsesquioxanes:Synthesis and applications. Trends Polym Sci 1997;5(10):327-32.
    [90]Marcolli C, Calzaferri G. Monosubstituted octasilsesquioxan [J]. Appl Organomet Chem 1999; 13(4):213-26.
    [91]Schwab JJ. Lichtenhan JD. Polyhedral oligomeric silsesquioxane (POSS) based polymers[J]. Appl Organomet Chem 1998; 12(10-11):707-13.
    [92]Feher FJ.Phillips SH.Reaclions of an incomplele]y condensed silsesquioxane with Ph3PCH2:a new procedure for derivatising silsesquioxanes with important implications for the chemistry or silica surfaces [J].J Organomet Chem 1996; 521(1-21:401-3.
    [93]徐平勇.N.N’-对苯二胺基二苄基膦酸酯及其部分金属配合物的合成和阻燃性能的研究.华中师范大学,2000,华中师范大学硕士论文.
    [94]Zhang C. Laine RM. Silsesquioxanes as synlhetic platforms 2. Epoxy functionalised inorganic-organic hybrid species [J]. Organomet Chem 1996;521(1-2):199-201.
    [95]Sellinger A.Laine RM.Silsesquioxanes as synthelic platforms 3.Photocurable ]iquid epoxides as inorganic/oranic hybrids precursors[J].Chem Maler. ]996;8(8):]592-3.
    [96]Crivello JV.Malik R.Synthesis and pholoinitiated catjonic polymerisation of monomers with silsesquioxane core[J].Polym Sci,Polym Chem 1997:35(3):407-25.
    [97]王德义.含磷共聚酯/无机纳米复合材料的制备、性能与阻燃机理研究.四川大学,2008,四川大学博士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700