金沙江白鹤滩水电站高边坡岩体力学特性及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以金沙江白鹤滩水电站高边坡的岩体力学特性及长期稳定性为主题,对研究区的工程地质环境条件和岩体结构特征进行了详细调研和描述,对控制性结构面进行了分级和分类;针对玄武岩岩体开展了加载和卸荷三轴力学试验,获得了玄武岩的三轴力学参数,研究了玄武岩在不同应力条件下的变形破坏规律,建议了玄武岩的本构模型;针对层间、层内错动带开展了压缩剪切流变试验,获得了错动带的流变力学参数,研究了错动带在压缩剪切条件下的变形规律,建立了错动带的黏弹性流变模型;最后在研究白鹤滩水电站高边坡赋存的地应力场规律基础之上,通过数值模拟研究了该高边坡在自然和蓄水条件下的变形和长期稳定性。取得了以下研究成果:
     (1)地应力Kaiser效应测试、水压致裂法和应力解除法原位测试成果表明:研究区地应力场较为复杂,两岸岸坡的竖直应力大于自重应力、最大水平应力普遍大于竖直应力,研究区岩体地应力是自重应力与构造应力联合作用的结果,且构造应力起控制作用。
     (2)系统分析了研究区玄武岩的原生建造、构造改造和表生改造形迹,进行了结构面分级、结构面性状分类,建立了相应的分级、分类标准,依据上述标准对研究区的层间、层内错动带、断层、节理裂隙、深部裂缝等结构面进行了分级分类,明确了边坡的控制性结构面。
     (3)采用恒围增轴、恒轴卸围、卸轴卸围、增轴卸围4种应力路径开展了玄武岩岩体三轴力学试验,获得了玄武岩在加载和卸荷条件下的强度参数、弹性模量和泊松比。分析了玄武岩在加载和卸荷模式下的全过程应力应变曲线,分析了卸围速率和应力路径对力学特性和破坏方式的影响,分析了恒围和卸围模式的能量特征,研究表明高卸围速率和卸围模式下玄武岩表现出更为明显张性破裂特征。
     (4)采用Mohr-Coulomb强度准则和Hoek-Brown强度准则对玄武岩进行了评价,在低围压下两个准则均对玄武岩的破坏应力状态和破坏机理均具有较好的适宜性。基于全过程应力应变曲线,建立了玄武岩加载模式下的3段式弹脆塑性模型,卸荷模式下的4段式弹屈脆塑型模型,并建议了相应的本构模型。
     (5)开展了岩块岩屑型和岩屑夹泥型错动带室内无侧限压缩剪切流变试验及相应的残余剪切试验,获得了错动带的长期强度、残余强度等强度参数及剪变模量、黏滞系数等流变参数,并分析了各流变参数的特征和规律,提出了相应的建议值。
     (6)在分析错动带正应变、剪应变变化规律的基础上,建立了对数型经验本构模型,分析了各经验模型参数的规律。经模型辨识确定错动带在压缩剪切流变条件下呈现黏弹性特征,在高、低应力水平下可分别采用Cvisc、Burgers黏弹性流变模型描述。针对低应力水平下的错动带流变试验,采用Burgers模型进行了非线性回归分析,获得了组合流变本构模型参数,分析了模型参数的变化规律。依据模型参数的回归分析成果,获取了研究区不同类型、不同位置错动带的流变参数。
     (7)在地质模型概化的基础上建立了白鹤滩水电站高边坡三维数值模型,选用Flac3D软件采用Mohr-Coulomb模型进行了地应力场模拟,经模型验证获得了应力边界条件,分析了地应力场的分布规律。研究区水平应力分量大致以高程700m为界分为上下两段,上段表现为以自重应力为主、同时表现出驼峰应力向岸坡深部转移的现象,下段表现为以构造应力和自重应力为主。
     (8)选用Flac3D软件对白鹤滩水电站高边坡在自然条件下的流变特性开展了数值模拟研究,分析了岸坡岩体和错动带的应力、塑性区和变形的分布规律。岸坡岩体和错动带的应力一般在流变历时3月后趋于恒定,变形一般在流变历时6月后进入低速率蠕变阶段。左岸岩体变形主要发育于岸坡表部、最大水平位移约为5.15cm,右岸岩体变形主要沿层间错动带C3和C3-1出露部位由表及里逐渐发育、最大水平位移约为-5.20cm,断层F14对岸坡岩体和错动带的变形发育具有显著的约束效应。
     (9)选用Flac3D软件对白鹤滩水电站高边坡在蓄水条件下的流变特性开展了数值模型研究,分析了岸坡岩体、错动带和拱肩槽边坡的应力、塑性区和变形的分布规律。岸坡岩体和错动带的应力一般在3月后趋于恒定,变形一般在6月后进入低速率蠕变阶段。研究区左岸岩体最大变形域位于勘Ⅸ~Ⅹ2线、断层F14下游岸坡表部,最大水平位移约为6.4cm,断层F14对该变形域的发育有一定的约束作用;右岸岩体变形域基本沿层间错动带C3和C3-1出露部位由表及里发育,最大变形域位于断层F20上游、层间错动带C3和C3-1出露部位,最大水平位移约为-6.9cm。在蓄水流变过程中,拱肩槽边坡逐步进行着应力调整和变形协调,在流变历时6月后基本趋于恒定,左岸坝肩边坡岩体水平位移最大值位于拱坝顶部834m高程,右岸坝肩边坡岩体水平位移最大值位于680m高程。
Relying on the project of Jinsha River Baihetan hydropower station, scientific researches were as the topic of the dissertation about rock mass mechanical characteristics and long term stability of the high slope. Based on the field investigation, engineering geological environmental conditions and rock mass structure characteristics were surveyed and described in detail, and controlling discontinuities were graded and classified. Tiaxial mechanical experiments of basalt structures were conducted under loading and unloading. According to the tiaxial mechanical experiments, mechanics parameters of basalt structures were obtained, deformation and failure rules of basalt structures were researched under different stress conditions, and then constitutive models of basalt structures were advised. Rheological behaviors of controlling shear zones were experimented under compressive shear conditions. Based on rheological experiments, Rheological mechanical parameters of shear zones were acquired, deformation rules of shear zones were researched under compressive shear conditions, and then rheological model was analyzed and rheological model parameters were identified. Geostress of the high slope was simulated numerically by Flac3D. Stress field distribution rules were analyzed widely. By Flac3D, deformation and long term stability of the high slope were researched under natural conditions and reservoir operation conditions.
     After systematic research, the dissertation has made the following achievements.
     (1) Results of indoor and in-situ test have shown that the research area's geostress is more complicated. The vertical stress is more than the gravity stress. The maximum horizontal stress is generally greater than vertical stress. Geostress is controlled by the gravitational stress and the tectonic stress, and the tectonic stress is dominated.
     (2) The research area's geologic evidences was analyzed systematically in terms of original construction, tectonic reworking supergene modification. Discontinuities' grading and classification criteria were established. On the basis of the grading and classification criteria, shear zones and faults and joint fissures and deep fractures were graded and classified. Then controlling discontinuities of high slope were identified.
     (3) Tiaxial mechanical experiments of basalt mass structures were carried out. Based on tiaxial mechanical experiments, mechanics parameters of basalt structures were obtained, which consist of strength parameters and elastic modulus and Poisson's ratio. The stress-strain full curves of basalt mass structures were analyzed under loading and unloading. Effects on mechanical properties and failure modes were analyzed from unloading lateral stress rate and stress path. Energy characteristics of basalt mass structures were analyzed under loading and unloading. Results have shown that basalts show more obvious brittleness under unloading.
     (4) Basalt mass structures were assessed by Mohr-Coulomb strength criterion and Hoek-Brown strength criterion. Under low lateral stress, the above strength criterions are suitable for basalt mass structures in terms of failure stress state and failure mechanism. On the basis of the stress-strain full curves, constitutive models of basalt mass structures were advised. Basalt mass structures show elastic-brittle-plastic characteristics under loading. Basalt mass structures show elastic-yield-brittle-plastic characteristics under unloading.
     (5) Compressive shear rheological experiments of shear zones were implemented, which aimed at the types of rock with debris and debris with clay. Then residual shear experiments of shear zones were carried out as well. According to the rheological experiments, rheological mechanics parameters of shear zones were procured, which consists of long term strength and residual strength and shear modulus and viscosity coefficient. Characteristics and rules of rheological mechanics parameters were researched. Then suggested rheological parameters of shear zones were obtained.
     (6) Based on strain rules of shear zones, a logarithmically experience constitutive model was set up, and then model parameters' rules were analyzed. By model identification, shear zones show viscoelastic characteristics under compressive shear stress conditions. Under high stress condition, shear zones could be described by Cvisc model. Under low stress condition, shear zones could be described by Burgers model. Most rheological experiments were carried out under low stress condition, and then shear zones were regression analyzed by Burgers model. After model parameters were obtained, their evolutional rules were analyzed. On the basis of the regression analysis results, rheological parameters of Baihetan hydropower station were obtained.
     (7) Based on generalized geological model, the three-dimensional numerical simulation model of high slope was set up by Ansys. Using Mohr-Coulomb model, Geostress was simulated by Flac3D. After model validation, geostress boundary conditions were obtained and geostress distribution rules were analyzed. Horizontal stress of research area is divided into upper and lower segments bounded by700meters elevation. The upper slope's geostress come from gravitational stress, and the lower slope's geostress is comprised of the gravitational stress and the tectonic stress.
     (8) Under natural conditions, the high slope of Baihetan hydropower station was simulated in rheology by Flac3D. Distributive rules of stress and plastic zone and deformation referring to rock mass and shear zones of the high slope were analyzed. Rock mass and shear zones'stresses would be in stable gradually in3months, and their deformation would be in low speed creep stage in6months. Rock mass's maximum deformation of the left bank slope would develop gradually in superficial slope. Maximum deformation of the right bank slope would develop gradually along the shear zones C3and C3-1from outside to inside. Faults F14have obviously restraint effects on deformation of rock mass and shear zones.
     (9) Under reservoir operation conditions, the high slope of Baihetan hydropower station was simulated in rheology by Flac3D. Distributive rules of stress and plastic zone and deformation referring to rock mass and shear zones of the high slope were analyzed. Rock mass and shear zones'stresses would be in stable gradually in3months, and their deformation would be in low speed creep stage in6months. Rock mass's maximum deformation of the left bank slope would develop gradually in superficial slope, which located at prospecting line IX to X2and downstream faults F14. Faults F14have obviously restraint effects on deformation of rock mass and shear zones. Deformation of the right bank slope would develop gradually along the shear zones C3and C3-1from outside to inside. Maximum deformation of the right bank slope would locate at exposed shear zones C3and C3-1upstream faults F20. Under reservoir operation conditions, stress and deformation of the spandrel groove slope would adjust gradually, and would be in stable gradually in6months. Maximum deformation of the left spandrel groove slope would locate at the arch dam top,834meters elevation. Maximum deformation of the right spandrel groove slope would locate at680meters elevation.
引文
[1]黄润秋.论中国西南地区水电开发工程地质问题及其研究对策[J].地质灾害与环境保护,2002,13(1):1-5.
    [2]黄润秋,王士天,张倬元,刘汉超,等.中国西南地壳浅表层动力学过程及其工程环境效应研究[M].成都:四川大学出版社,2001.
    [3]陈祖安.中国水利发电工程(工程地质卷)[M].北京:中国水利出版社,2000.
    [4]黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社,1991.
    [5]中国水电顾问集团华东勘测设计研究院.金沙江白鹤滩水电站可行性研究阶段坝线选择工程地质勘察报告(初步成果)[R].2007,12.
    [6]成都理工大学.金沙江白鹤滩水电站可行性研究阶段坝区高边坡稳定性研究[R].2010,10.
    [7]魏云杰.中国西南水电工程区峨眉山玄武岩岩体结构特性及其工程应用研究[D].成都理工大学博士论文,2007.
    [8]张曙光.金沙江白鹤滩水电站高拱坝建设建设工程地质适宜性研究[D].成都理工大学博十论文,2007.
    [9]魏玉峰.白鹤滩水电站多层位复杂介质坝基岩体结构特征及岩体质量分级研究[D].成都理工大学博士论文,2010.
    [10]兰昌义.白鹤滩水电站坝区层间层内错动带成因及工程性状研究[D].成都理工大学硕十论文,2009.
    [11]高波.金沙江白鹤滩水电站工程边坡稳定性研究[D].成都理工大学硕十论文,2009.
    [12]向明智.金沙江白鹤滩电站工程岩体质量分类[D].成都理工大学硕十论文,2009.
    [13]陈佳.金沙江白鹤滩水电站坝址区地应力特征三维数值模拟研究[D].成都理工大学硕十论文,2009.
    [14]赵云云.白鹤滩水电站高拱坝坝肩岩体稳定性数值模拟研究[D].成都理工大学硕十论文,2010.
    [15]白乐.金沙江白鹤滩水电站坝区岩体深部差异风化机理研究[D].成都理工大学硕十论文,2010.
    [16]王瑜.白鹤滩水电站基于深裂缝J110成因的块体稳定性评价[D].成都理工大学硕十论文,2010.
    [17]王旺盛.金沙江白鹤滩水电站坝肩抗力体抗滑稳定性研究[D].成都理工大学硕十论文,2009.
    [18]李杰豪.金沙江白鹤滩水电站拱肩槽边坡稳定性研究[D].成都理工大学硕士论文,2010.
    [19]娄国川.金沙江白鹤滩水电站引水进口边坡稳定性研究[D].成都理工大学硕十论文,2010.
    [20]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [21]周小平,张永兴.卸荷岩体本构理论及其应用[M].北京:科学出版社,2007.
    [22]李建林,哈秋舲.节理岩体拉剪断裂与强度研究[J].岩石力学与工程学报,1998,17(3):259-266.
    [23]S.O. Lau Josep, N.A. Chandler. Innovative laboratory testing[J]. International Journal of Rock Mechanics and Mining Science,2004,41(8):1427-1445.
    [24]哈秋舲.加载岩体力学与卸载岩体力学[J].岩土工程工程学报,1998,20(1):114.
    [25]胡海浪,李建林,王小虎.卸荷岩体力学研究现状及其发展[J].西北水电,2007,(2):9-12.
    [26]邓 钦,李建林,张志刚.卸荷岩体力学的研究与发展[J].黑龙江水专学报,2003,33(2):27-29.
    [27]J.C. Jaeger. Brittle Fracture of Rocks[C]//Proceedings of the Eighth Symposium on Rock Mechanics. Baltimore:Port City Press,1967,3-57.
    [28]S.R. Swanson, etal. An Observation of Loading Path Independence of Fracture Rock[M]. Int. J. Rock Mech. Min Sel,1971,8(3):271-281.
    [29]S. L. Crouch. A note on Post-Failure Stress-Strain Path Dependened in Norite[J]. Int. J. Rock Mech. Min. Sic.,1972,9(2):197-204.
    [30]陈颙,姚孝新,耿乃光.应力路径、岩石的强度和体积膨胀[J].中国科学,1979,11:1093-1100.
    [31]许东俊,耿乃光.岩体变形和破坏的各种应力途径[J].岩土力学,1986,7(2):17-25.
    [32]陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩十力学,1982,3(1):27-44.
    [33]吴玉山,李纪鼎.大理岩卸载特性的研究[J].岩土力学,1984,5(1):29-36.
    [34]T. Shimamoto. Confining pressure reduction experiments[J]. International Journal of Rock Mechanics and Mining Science,1985,22(4):227-236.
    [35]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [36]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩十力学,1997,18(2):13-16.
    [37]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    [38]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报,1998,26(3):330-334.
    [39]徐林生,王兰生.岩爆形成机理研究[J].重庆大学学报(自然科学版),2001,24(2):115-117.
    [40]王在泉,华安增,王谦源.加、卸载条件下岩石变形及三轴强度研究[J].河海大学学报,2001,29(S1):10-12.
    [41]徐松林,吴文,王广印,等.大理岩等围压三轴压缩试验全过程研究(Ⅰ):三轴压缩全过程和峰前、峰后卸围压全过程试验[J].岩石力学与工程学报,2001,20(6):763-767.
    [42]徐松林,吴文,王广印,等.大理岩等围压三轴压缩试验全过程研究(Ⅱ):剪切断裂能分析[J].岩石力学与工程学报,2002,21(1):65-69.
    [43]沈军辉.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031.
    [44]代革联,李新虎.岩石加卸荷破坏机理CT实时分析[J].工程地质学报,2004,12(1):104-108.
    [45]张黎明,王在泉,宋全锋,等.粉砂岩卸荷破坏全过程的试验研究[J].岩石力学与工程学报,2005,24(S1):5043-5047.
    [46]高春玉,徐进,何鹏.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [47]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11):2205-2213.
    [48]俞茂宏,M.Yoshimine,强洪夫.强度理论的发展和展望[J].工程力学,2004,21(6):1-19.
    [49]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [50]俞茂宏.强度理论百年总结[J].力学进展,2004,34(1):529-560.
    [51]S.A.F. Murrell. The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures[J]. Geophys. J.,1965,10:231-282.
    [52]J. Handin, H. C. Heard, J.N. Magouirk. Effects of the intermediate principal stress on the failure of limestone, dolomite, and glass at different temperatures and strain rates[J]. J. Geophys. Res., 1967(72):611-640.
    [53]K. Mogi. Effect of the intermediate principal stress on rock failure[J]. J. Geophys. Res.,1967, (72):5117-5131.
    [54]K. Mogi. Effect of the triaxial stress system on the failure of dolomite and limestone[J]. Tectonophysics,1971,11:111-127.
    [55]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    [56]陈惠发.土木工程材料的本构方程[M].武汉:华中科技大学出版社,2001.
    [57]E. Hoek, E.T. Brown. Empirical strength criterion for rock masses[J]. J Geotech Engng Div ASCE,1980,106(9):1013-1035.
    [58]E. Hoek, E.T. Brown. Practical estimates rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165-1186.
    [59]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [60]周维垣,杨若琼,剡公瑞.岩体边坡非连续非线性卸荷及流变分析[J].岩石力学与工程学报,1997,16(3):210-216.
    [61]孙英学.工程岩体卸荷模型的研究与应用[J].岩土工程技术,2001,4:241-243.
    [62]赵明阶,许锡宾,徐蓉.岩石在三轴加卸荷过程中的一种本构模型研究[J].岩石力学与工程学报,2002,21(5):623-631.
    [63]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报,2003,25(3):336-338.
    [64]周小平,哈秋聆,张永兴,等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3245.
    [65]刘恩龙,沈珠江.岩土材料不同应力路径下脆性变化的二元介质模拟[J].岩土力学,2006,27(2):261-267.
    [66]黄达.大型地下洞室开挖围岩卸荷变形机理及其稳定性研究[D].成都:成都理工大学,2007.
    [67]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [68]E.C.Bingham. Rheology of material [M]. U.S. Bur. Of Standards Bull.,1916.
    [69]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993.
    [70]M.Reiner. Lectures on Theoretical Rheology [J]. Creep of Rocks,1972,29(7):36-41.
    [71]C. Jaeger. Rock mechanics and engineering[M]. Cambridge University Press,1972.
    [72]Z. Sobotkal. Rheology of materials and engineering structures[M]. Cambridge University Press,1985.
    [73]傅冰骏.陈宗基院十生平[J].岩石力学与工程动态,2002,(3):1-9.
    [74]孙钧,章旭昌.软弱断层流变对地下洞室围岩力学效应的粘弹塑形分析[J].岩土工程学报,1987,9(6):16-26.
    [75]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报,1991,19(4):395-401.
    [76]陈有亮,孙钧.岩石的流变断裂特性[J].岩石力学与工程学报,1996,15(4):323-327.
    [77]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [78]孙操,孙曙光.岩体结构面流变特性研究进展[J].山西建筑,2009,35(18):81-82.
    [79]D.T. Griggs. Creep of rocks[J]. Journal of Geol.1939,47:225-251.
    [80]P. E. Senseny. Specimen size and history effects on creep of rock salt[C]. Int Proc of the lth Conference on the Mechanical Behavior of salt,1981:369-379.
    [81]G. Vouille, S.M. Tijani and F. De. Grenier. Experimental determination of the reological behavior of Tersanne rock salt[C]. Int Proc of the 1th Conference on the Mechanical Behavior of salt,1981: 408-420.
    [82]B. Ladanyi. In situ determination of creep properties of rock salt[C]. Proc of 5th Cong of ISRM, 1983.
    [83]H. Ito. Creep of rock based on long-term experiments[C]. Proc of 4th Cong of ISRM,1983.
    [84]H. Ito, S. Sasajima. A ten year creep experiment on small rock specimens[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1987,24(2):113-121.
    [85]H. Ito. The phenomenon and examples of rock creep[C]//Hudson JA., etal. Comprehensive Rock Engineering, vol.3. Oxford:Pergamon Press, Oxford,1993:693-708.
    [86]J.H. Curran, A.M. Crawford. A comparative study of creep in rock and its discontinuities[J]. Proc of the 21 st US National Rock Mechanics Symposium, Rolla, Missouri.1980:596-603.
    [87]R K. Bowden. Time-dependent behavior of joints in shale. M A Sc Thesis[M]. University of Toronto, Ontario,1984.
    [88]W. Korzeniowski. Rheological model of hard rock pillar[J]. Rock Mechanics and Rock Engineering,1991,24:155-166.
    [89]S. Okubo, Y. Nishimatsu and K. Fukui. Complete creep curves under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991, 28(1):77-82.
    [90]E. Maranini, M. Brignoli. Creep behavior of a weak rock experimental characterization [J]. Int J Rock Mech Min Sci,1993,36(1):127-138.
    [91]Enrico Maranini, Tsutomu yamaguchi. A non-associated viscoplastic model for the behaviour of granite in triaxial compression [J]. Mechanics of Materials,2001,33(5):283-293.
    [92]林伟平.葛洲坝基岩202号泥化夹层强度选取的探讨[J].水利学报,1982,(10):68-72.
    [93]白世伟,吴玉山,等.金川镍矿二矿区不良岩层巷道稳定性研究报告[R].中国科学院武汉岩土力学研究所,1991.
    [94]雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989,(1):1-11.
    [95]徐平,夏熙伦.三峡工程花岗岩蠕变断裂与Ⅰ-Ⅱ型断裂试验研究[J].长江科学院院报,1995,12(3):31-36.
    [96]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,(4):63-67.
    [97]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报,2001,20(S1):1882-1885.
    [98]彭苏萍,王希良,等.“三软”煤层巷道围岩流变特性研究[J].煤炭学报,2001,26(2):149-152.
    [99]沈明荣,朱根桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,23(2):223-226.
    [100]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究[J].岩土学报,2005,26(4):531-537.
    [101]曹运江.含软岩高边坡稳定性的系统工程地质研究——以岷江紫坪铺水利枢纽工程为例[D].成都理工大学博十论文,2006.
    [102]周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    [103]G N. Boukharov, M. W. Chanda, N. G. Boukharov. The three processes of brittle crystalline rock creep[J]. Mining Sciences & Geomechanics Abstracts,1995,32(4):325-335.
    [104]曹树刚,边金,李鹏.岩石蠕变本构关系及改建的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [105]刘光廷,胡昱,陈凤岐.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [106]金丰年.岩石的非线性流变[M].南京:河海大学出版社,1998.
    [107]芮勇勤,徐小荷,马新民,等.露天煤矿边坡中软弱夹层的蠕动变形特性分析[J].东北大学学报,1999,20(6):612-614.
    [108]张向东,李永靖,张树光,等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [109]张倬元,王士天,王兰生,等.工程地质分析原理[M].北京:地质出版社,2008.
    [110]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [111]黄润秋.岩石高边坡发育的动力过程及其稳定性控制[J].岩石力学与工程学报,2008,27(8):1525-1544.
    [112]谷德振.地质构造与工程建设[J].科学通报,1963,8(10):23-28.
    [113]孙玉科.岩质边坡稳定性的工程地质研究[J].地质科学,1965,(4):330-352.
    [114]王思敬.金川露天矿边坡变形机制及过程[J].岩土工程学报,1982,4(3):76-83.
    [115]王兰生,张倬元.斜坡岩体变形破坏的基本地质力学模式[J].水文工程地质论丛,1983.
    [116]黄润秋,张倬元,王十天.黄河拉西瓦水电站高边坡稳定性的系统工程地质研究[M].成都科技大学出版社,1991.
    [117]王兰生.工程地质物理模拟//中国工程地质学[M].北京:科学出版社,2000.
    [118]王兰生.地壳浅表圈层与人类工程[M].北京:地质出版社,2004.
    [119]崔政权.系统工程地质导论[M].北京:水利电力出版社,1992.
    [120]黄润秋,许强.工程地质广义系统科学理论及其工程应用[M].北京:地质出版社,1997.
    [121]秦四清,张倬元,王士天,等.非线性工程地质学导引[M].成都:西南交通大学出版社,1993.
    [122]黄润秋,许强,陶连金,等.地质灾害过程模拟与过程控制研究[M].北京:科学出版社,2002.
    [123]黄润秋,许模,陈剑平,等.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004.
    [124]巨能攀,赵建军,邓辉,等.公路高边坡稳定性评价及支护优化设计[J].岩石力学与工程学报,2009,28(06):1152-1161.
    [125]丁秀丽,徐平,夏熙伦.三峡船闸高边坡岩体开挖卸荷变形及流变分析.长江科学院院报,1995,12(4):37-43.
    [126]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析.岩石力学与工程学报,1996,15(4):312-322.
    [127]徐平,杨挺青,徐春敏,等.三峡船闸高边坡岩体时效特性及长期稳定性分析.岩石力学与工程学报,2002,21(2):163-168.
    [128]邱祥波,廖忠刚,刘宗仁,等.小浪底工程边坡稳定性有限元流变分析.岩土力学,1998,19(3):27-32.
    [129]肖洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析.十木工程学报,2000,33(6):94-98.
    [130]杨天鸿,芮勇勤,李连崇,等.顺层蠕动边坡变形破坏机理及稳定性动态分析工程地质学报,2003,11(2):155-161.
    [131]丁秀丽,付敬,刘建,等.软硬互层边坡岩体的蠕变特性研究及稳定性分析.岩石力学与工程学报,2005,24(19):3410-3418.
    [132]杨根兰,黄润秋.西南某水电站坝肩抗力体长期稳定性分析.工程地质学报,2011,19(4):626-632.
    [133]张强勇,向文,杨文东,等.坝区岩体蠕变参数反演与边坡开挖流变计算分析.武汉大学学报(工学版),2008,41(5):72-76.
    [134]中国地质大学(武汉).金沙江白鹤滩水电站可行性研究阶段坝区地质构造研究[R].2006,12.
    [135]滕吉文.康滇构造带岩石圈物理与动力学[M].北京:科学出版社,1994:18,32-33,82-84,92-93.
    [136]王思敬.坝基岩体工程地质力学分析[M].北京:科学出版社,1990.
    [137]聂德新,杨建宏,等.岩体结构、岩体质量及可利用性研究[M].北京:地质出版社,2008.
    [138]林建英.中国西南三省二叠纪玄武岩系的时空分布及其地质特征[J].科学通报,1985,(12):929-932.
    [139]张云湘,骆耀南,杨崇喜.攀西裂谷[M].北京:地质出版社,1988.
    [140]梅厚钧,徐义刚,许继峰,等.攀西古裂谷内龙帚山玄武岩-碱玄响岩建造[J].地质学报,2003,77(3):341-359.
    [141]成都理工大学.白鹤滩水电站坝址区玄武岩建造研究[R].2009,4.
    [142]中华人民共和国建设部.水力发电工程地质勘察规范(GB50287-2006)[S].北京:中国计划出版社,2008.
    [143]中华人民共和国国家发展和改革委员会.水电水利工程岩石试验规程(DL/T 5368-2007)[S].北京:中国计划出版社,2007.
    [144]中华人民共和国水利部.水利水电工程岩石试验规程(SL264-2001)[S].北京:中国标准出版社,2001.
    [145]中华人民共和国建设部.工程岩体试验方法标准(GB/T50266-99)[S].北京:中国计划出版社,1999.
    [146]林宗元.岩土工程试验监测手册[M].北京:中国建筑工业出版社,2005.
    [147]K. Kovari, A.Tisa. Multiple failure state and strain controlled triaxial tests[J]. Rock Mechanics, 1975,7(1):17-33.
    [148]K. Kovari, A.Tisa, EINSTEIN H H, et al.Suggested methods for determining the strength of rock materials in triaxial compression:revised version[J].Int.J.of Rock Mech.and Min.Sci.and Geomech.Abstr.,1983,20(6):283-290.
    [149]K. Kovari, A.Tisa, H.H.Einstein, J.A.Franklin.测定岩石三轴压缩强度建议方法[J].岩石力学与工程学报,1985,4(1):56-63.
    [150]徐志英.岩石力学[M].北京:中国水利水电出版社,1993.
    [151]苏承东.单一试样确定大理岩和砂岩强度参数的方法[J].岩石力学与工程学报,2004,23(18):3055-3088.
    [152]李宏哲,夏才初,许崇帮,等.基于多级破坏方法确定岩石卸荷强度参数的试验研究[J].岩石力学与工程学报,2008,27(S1):2681-2586.
    [153]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [154]李建林.卸荷岩体力学理论与应用[M].北京:中国建筑工业出版社,1999.
    [155]王启宏.论各向同性材料的泊松比的下限[J].武汉建材学院学报,1982,(1):1-6
    [156]Lakes R S. Foam structures with a negative Poisson's ratio[J]. Science,1987,235:1038.
    [157]汤大明,曾纪全,胡应德,等.关于泊松比的试验和取值讨论[J].岩石力学与工程学报,2001,20(S):1772-1775.
    [158]尤明庆.岩石的力学性质[M].北京:地质出版社,2007.
    [159]史贵才,葛修润,卢允德.大理岩应力脆性跌落系数的试验研究[J].岩石力学与工程学报,2006,25(8):1625-1631.
    [160]孙广忠,孙毅.岩体力学原理[M].北京:科学出版社,2011.
    [161]谢和平,冯夏庭.灾害环境下重大工程安全性的基础研究[M].北京:科学出版社,2008.
    [162]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1739.
    [163]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):0136-0142.
    [164]宋建波,张倬元,于元忠,等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002.
    [165]陈惠发,A.F.萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [166]卢允德,葛修润,蒋宇,等.大理岩常规三轴压缩全过程试验和本构方程的研究[J].岩石力学与工程学报,2004,23(15):2489-2493.
    [167]李建林,王瑞红,蒋昱州,等.砂岩三轴卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(10):2034-2041.
    [168]Owen D R J, Hinton E. Finite Elements in Plasticity:Theory and Practice[M].Swansea:Prineridge Press Limited,1980.
    [169]肖淑芳,杨淑碧.岩体力学[M].北京:地质出版社,1987.
    [170]许东俊.软弱岩体流变特性及长期强度测定法[J].岩土力学,1980,(1):37-50.
    [171]郭志.临界等速流变剪应力的确定方法[J].勘察科学技术,1994,(4):24-26.
    [172]刘晶辉,王山长,杨洪海.软弱岩体流变试验长期强度确定方法[J].勘察科学技术,1996,(5):3-7.
    [173]肖树芳,K·阿基诺夫.泥化夹层的组构及强度蠕变特性[M].长春:吉林科学技术出版社,1991.
    [174]长江流域规划办公室.岩石坝基工程地质[M].北京:水利电力出版社,1982.
    [175]刘特洪,林天键.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [176]A. W. Skempton. Long-term stability of clay slopes[J]. Geotechnique,1964,14(2):77-102.
    [177]周思孟.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社,1998.
    [178]李妥德,张颖均.国内外滑坡土残余强度的研究现状[C]//滑坡文集(第2集).北京:人民铁道出版社,1979.
    [179]李妥德.滑坡滑带土抗剪强度的确定方法[J].山地研究,1984,2(1):25-30.
    [180]周静华.滑带土残余强度测试方法的探讨[J].人民黄河,1992,4(4):45-47.
    [181]JAEGER J.C.. Friction of rock and stability of rock slopes[J]. Geotechnique,1971,21(2):97-134.
    [182]刘润英,赵法锁.滑坡滑面(带)残余强度试验方法的探讨[J].西北地质,1996,17(4):48-51.
    [183]曹纪宾,王勤.法国规范中关于土的残余抗剪强度试验方法及应用[J].中外公路,2009,29(3):301-303.
    [184]李兴国,鄢重新.十的反复剪切及其残余强度[J].工程勘察,1984,(3):55-58.
    [185]任慧芳.浅析滑坡土的残余强度[J].青海地质,1995,(2):70-74.
    [186]喻亦林.工程地质勘察规范与强制性条文实施手册(第1卷)[M].北京:光明日报出版社,2001.
    [187]王松龄,丰明海.滑坡区岩土工程勘察与整治[M].北京:中国铁道出版社,2001.
    [188]中华人民共和国国家标准.水利水电工程地质勘察规范(GB50287-99)[M].北京:中国计划出版社,1999.
    [189]项 伟.粘粒含量对泥化夹层抗剪强度的影响[J].兰州大学学报(自然科学版),1984,20(3):121-125.
    [190]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [191]龚壁卫,郭熙灵.泥化夹层残余强度的非线性问题探讨[J].大坝观测与土工测试,1997,21(5):38-40.
    [192]夏才初.统一流变力学模型及用蠕变试验辨识流变力学模型的方法[C]//盛世岁月论文集.上海:同济大学出版社,2006:505-516.
    [193]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    [194]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2006.
    [195]蒋昱州,徐卫亚,王瑞红,等.拱坝坝肩岩石流变力学特性试验研究及其长期稳定性分析[J].岩石力学与工程学报,2010,29(S2):3699-3709.
    [196]蒋昱州,徐卫亚,王瑞红,等.水电站大型地下洞室长期稳定性数值分析[J].岩土力学,2008,29(S1):052-058.
    [197]于学馥.现代工程岩十力学基础[M].北京:科学出版社,1992.
    [198]Itasca Consulting Group Inc.. FLAC3D user's manual(version3.0)[R]. Minneapolis:Itasca Consulting Group Inc.,2005.
    [199]吴继敏,魏继红,孙少锐.地质工程参数取值与岩体结构模拟应用[M].北京:科学出版社,2009.
    [200]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [201]王兰生,李天斌,赵其华.浅生时效构造与人类工程[M].北京:地质出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700