微小型湿空气透平循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿空气透平(HAT)循环是一种高效、洁净的先进动力循环,具有最高发电效率的潜力,在中小功率范围有着广阔的发展空间。随着分布式供能系统的发展,近年来微小型HAT循环受到越来越多的关注,逐步进入工业试验阶段。但迄今为止,通过系统配置提高微小型HAT循环性能的研究还非常有限。针对这一问题,本文通过参数优化,研究了不同系统结构以及与逆Brayton循环(Inverted Brayton Cycle,简称IBC)集成等因素对微小型HAT循环性能的影响,探求提高微小型HAT循环性能的系统配置。最后,结合微小型HAT循环应用领域,在考虑部分负荷、环境温度、运行模式影响的基础上,对以微小型HAT循环为主机的分布式联供系统在典型热(冷)电负荷需求下的应用进行了初步研究。主要工作及结果如下:
     (1)通过对不同水回路结构、不同排烟方式以及采用部分湿化的微小型HAT循坏的参数优化,确定省煤器入口补水的微小型部分空气湿化循环供电效率最高,高于全部空气湿化HAT循环供电效率约0.2个百分点。最佳空气湿化比例在0.46~0.65之间,并随初温升高而上升。与相同初温回热循环相比,最佳压比显著上升,使间冷成为可能。若采用间冷可以提高供电效率2个百分点以上。
     (2)微小型HAT循环和IBC底循环结合而成的复合循环(本文简称BAHAT循环)相当于增加一次间冷。与有间冷微小型HAT循环相比,BAHAT循环供电效率提高0.4~0.6个百分点以上;最佳压比、水回收率和比功都略有提高;后冷器、湿化器和透平高温段工作压力降低2~3倍,对机组寿命和安全运行非常有利。因烟气温度较低引起相对压缩耗功的降低以及压比增加引起透平出力的上升是循环性能改善的主要原因。
     (3)不同排烟方式对HAT循坏性能影响的研究表明,具有合适压比的引风机排烟HAT循环与直接排烟法和烟气回热法HAT循环相比,供电效率提高1到1.5个百分点。原因在于前者充分利用了水回收后烟气温度低的特点,降低了压缩耗功。在引风机出口增加水回收器可以保证水回收率。引风机最佳压比范围在1.5~1.6之间。
     (4)同回热循环相比,由于余热回收利用,HAT循环部分负荷下仍能保持较高的供电效率。随着环境温度的升高,虽然压气机流量下降,但加湿量的增加在一定程度上缓解了透平工质流量的降低。因此,环境温度升高对HAT循环性能影响并不显著。
     (5)HAT循环可以采用回热循环和注水循环模式运行,在更大的范围内提供灵活的热电负荷并保证足够高的排烟温度,满足制冷需要。解决了纯HAT循环余热无法供冷的问题。
     (6)以微小型HAT循环为主机的联供系统在典型建筑物中的应用研究表明,除冬季热电联供外,夏季通过运行模式的改变可实现冷电联供。与以简单循环燃机为主机的联供系统相比,前者在运行费用、一次能源利用效率方面具有优势。
     上述结论,可为微小型HAT循环流程设计以及HAT循环分布式供能系统配置和优化运行提供参考。
Wan Kuifang (Engineering Thermophysics)Directed by Xiao Yunhan and Zhang Shijie
     Humid air turbine (HAT) cycle,an advanced,efficient and clean dynamic cycle,haspotential of highest electrical efficiency and a spacious foreground in medium-small powerrange.As the development of decentralized energy system (DES),small HAT has beenpaid more and more attention and industrial test has begun.However,seldom studies aboutsmall HAT cycle focused on performace enhancement by configuration adjustment so far.Therefore,performance of small HAT cycle with different configurations and integratingwith IBC ( inverted Brayton cycle) bottom cycle was studied respectively in the thesis toseek for reasonable system configuration to improve performance.Finally,application totypical heat (cooling) and electrical load of cogeneration system based on HAT cycle wereinvestigated primarily by taking consideration of part-load,environment temperature andrunning mode.The main works and conclusions are as follows:
     1.Parameters optimization of HAT cycle with different water circuits,exhaustdischarging methods and part-flow air humidification shows that small HAT cycle withpart-flow air humidification and makeup water entering economizer can obtain highestelectrical efficiency and slightly higher than that of full-flow air HAT cycle.The optimalpart-flow ratio is about 0.46 to 0.65 as the turbine inlet temperature (TIT) increases from950℃to 1350℃.The optimal pressure ratio grows as the TIT increases,which makes itpossible to realize intercooling in small HAT cycle and at Ieast 2 percentage pointsenhancement of electrical efficiency can be achieved if intercooling was adopted.
     2.The electrical efficiency of the complex cycle (so-called BAHAT in the thesis) byintegrating the small HAT cycle with IBC (Inverted Brayton Cycle) is 0.4~0.6 percentagepoints higher than that of HAT with intercooling and the working pressure of aftercooler,humidification tower and hot section of turbine is 2~3 times lower than that of the later,which is much important to life-span and safety of the unit.Reduction of relativecompression work due to low exhaust temperature and increase of turbine output becauseof the high pressure ratio are the main factors of the performance enhancement.
     3.Performances of HAT cycle with different exhaust discharging methods show that electrical efficiency of HAT cycle with induced draft fan (IDF) or exhaust compressor is 1to 1.5 percentage points higher than that of exhaust discharging directly and exhaustrecuperate since the former takes advantage of low exhaust temperature after waterrecovery to reduce compression work.The optimal pressure ratio of IDF is about 1.5~1.6and it's better to put another condenser after the IDF to hold water recovery ratio.
     4.Comparing with recuperative cycle,high electrical efficiency can be obtained atpart load because of the heat recovery.The increase of humid rate makes the cycleunsensitive to environmental temperature rising.
     5.HAT cycle can run as recuperative cycle or water injected cycle in summer tosupply flexible electrical and heat load and,at the same time,hold exhaust temperaturehigh enough to drive absorption chiller.The problem of heat in pure HAT cycle's exhaustcan't supply cooling is overcomed.
     6.Applying to typical buildings,cogeneration system based on small HAT cycle cansupply heat and power in winter and cooling and power in summer by changing runningmode.The system has strong adaptability to user's load and has advantage in runningcharge and primary efficiency comparing with cogeneration system based on simple cycle.
     These conclusions provide references not only for small HAT cycle design but forplan and operation of cogeneration system with HAT cycle.
引文
[1]DOE/EIA,International Energy Outlook 2007 [R].Washington,2007.
    [2]IEA,World Energy Outlook 2006 [R].Paris,2006.
    [3]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2001-2007.
    [4]DOE/EIA,International Energy Outlook 2008 [R].Washington,DC,2008.
    [5]华贲,左政,杨艳丽.分布式能源系统对中国天然气下游市场开拓的重要性[J].沈阳工程学院学报(自然科学版),2006,2(2):97-103.
    [6]王以中.关于城市天然气战略安全的思考[J].城市燃气,2005,369(11):34-37.
    [7]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [8]林汝谋,蔡睿贤.工业燃气轮机发展的趋势与特点[J].燃气轮机技术,1998,11(3):1-4.
    [9]POULLIKKAS A.An Overview of Current and Future Sustainable Gas Turbine Technologies.[J].Renewable and Sustainable Energy Reviews,2005,9:409-443.
    [10]JONSSON M,YAN J.Humidified Gas Turbines-A Review of Proposed and Implemented Cycles [J].Energy,2005,30(7):1013-1078.
    [11]A.D.RAO.Process for Producing Power:U.S.A,No.4,829,763.[P/OL].1989-May 16].
    [12]BHARGAVA A,COLKET M,SOWA W,et al.An Experimental and Modeling Study of Humid Air Premixed Flames [J].Journal of Engineering Gas Turbine Power,2000,122(3):405-411.
    [13]HERMANN F,KLINGMANN J,GABRIELSSON R.Computational And Experimental Investigation of Emissions in A Highly Humidified Premixed Flame;proceedings of the 2003 ASME Turbo Expo Power for Land,Sea & Air,2003 [C].ASME Paper No.GT2003-38337.
    [14]赵丽凤,刘泽龙,张世铮.整体煤气化湿空气透平(IGHAT)循环的性能分析[J].工程热物理学报,2000,21(4):413-416.
    [15]赵丽凤,张世铮,肖云汉.整体煤气化湿空气透平(IGHAT)循环的参数优化[J].工程热物理学报,2000,21(2):141-144.
    [16]金红光,赵洪滨,刘泽龙,等.新颖外燃式湿空气燃气轮机循环及性能研究[J].工程热物理学报,2002,23(3):265-270.
    [17]A.D.RAO,G.S.SAMUELSEN.A THERMODYNAMIC ANALYSIS OF TUBULAR SOFC BASED HYBRID SYSTEMS;proceedings of the ASME TURBO EXPO 2001,2001 [C].ASME Paper No.2001-GT-0522.
    [18]赵丽凤,肖云汉,张世铮.环境温度对湿空气透平(HAT)循环性能的影响[J].热能动力工程,2002,17(2):122-125.
    [19]张士杰,肖云汉.基于微燃机的HAT循环变工况性能分析[J].工程热物理学报,2006,27(4):545-548.
    [20]SZARGUT J.Cogeneration of network heat in the set of a humid air turbine [J].Energy,2002,27(1):1-15.
    [21]BARTLETT M.Developing Humidified Gas Turbine Cycles,Doctoral Thesis [D].Stockholm,Sweden.;Royal Institute of Technology,2002.
    [22]ISHIDA M,JI J.Proposal of Humid Air Turbine Cycle Incorporated with absorption heat transformer [J].International Journal of Energy Research,2000,24:977-987.
    [23]WADE,World Survey of Decentralize Energy 2006 [R].Scotland,UK,2006.
    [24]徐建中.分布式供电和冷热电联产的前景[J].节能与环保,2002,3:10-14.
    [25]李先瑞.燃气热电冷联产是天然气供热的最佳方式[J].区域供热,2003,3:36-42.
    [26]华贲,郭慧,岳永魁.重视天然气资源的综合优化利用[J].能源政策研究,2005,2:30-34.
    [27]韩晓平.小型燃气轮机热电联产——西气东输市场的最佳选择[J].节能与环保,2002,2:8-12.
    [28]MARTINKA M.Combustion engine and a method for the operation thereof.:USA,No.2,186,706 [P/OL].1940-.
    [29]MORI Y,NAKAMURA H,TAKAHASHI T,et al.A highly efficient regenerative gas turbine system by new method of heat recovery with water injection;proceedings of the the 1983 Tokyo International Gas Turbine Congress,1983 [C].p.297-303.Paper No.83-Tokyo-IGTC-38.
    [30]EPRI,A comparison of humid air turbine (HAT) cycle and combined-cycle power plants,EPRI IE-7300,Project 2999-7 [R].Palo Alto,CA:Electric Power Research Institute,1991.
    [31]COHN A.Power Plant Cycles Featuring Air Humidification [J].EPRI J 1993,18:43-47.
    [32]EPRI,EPRI TR-102156,Project 3251-05 [R].Palo Alto,CA:Electric Power Research Institute,1993.
    [33]RAO A D,ROBSON F L,GEISBRECHT R A.COAL-BASED POWER PLANT SYSTEM CONFIGURATIONS FOR THE 21STCENTURY;proceedings of the ASME Turbo Expo 2004 Power for Land,Sea,and Air,2004 [C].ASME Paper No.GT2004-53105.
    [34]RAO A D,ROBSON F L,GEISBRECHT R A.COAL-BASED POWER PLANT SYSTEM CONFIGURATIONS FOR THE 21STCENTURY;proceedings of the ASME Turbo Expo 2003 Power for Land,Sea,and Air,2003 [C].ASME Paper No.GT2003-38942.
    [35]TORBJ RN LINDQUIST,MARCUS THERN,TORD TORISSON.Experimental and Theoretical Results of A Humidification in An Evaporative Gas Turbien Cycle Pilot Plant;proceedings of the ASME TURBO EXPO 2002,2002 [C].ASME Paper No.GT-2002-30127.
    [36]FORNOSH DALILI.Humidification in Evaperative Power Cycles [D].Stockholm,Sweden;Royal Institute of Technology,2003.
    [37]NIKLAS D.AGREN,MATS O.WESTERMARK,MICHAEL A.BARTLETT,et al.First Experiments on An Evaporative Gas Turbine Pilot Power Plant Water Circuit Chemistry and Humidification Evaluation [M].ASME TURBOEXPO 2000.ASME Paper No.2000-GT-0168.2000.
    [38]KIGUCHI T,HATAMIYA S.Improvement of Gas Turbine Efficiency by Advanced Utilization of Moisture;proceedings of the World Energy Council,18th Congress,2001 [C].
    [39]HATAMIYA S,ARAKI H,HIGUCHI S I.An Evaluation of Advanced Humid Air Turbine System with Water Recovery;proceedings of the ASME Turbo Expo 2004 Power for Land,Sea and Air,2004 [C].ASME Paper GT2004-54031.
    [40]HIGUCHI S I,HATAMIYA S,SEIKI N,et al.A Study of Performance on Advanced Humid Air Turbine Systems;proceedings of the the International Gas Turbine Congress 2003 Tokyo,2003 [C].IGTC2003Tokyo TS-090.
    [41]KUROKI H,SHIBATA T,KOGANEZAWA T,et al.Development of elemental technologies for advanced humid air turbine system;proceedings of the GT2006 ASME Turbo Expo 2006:Power for Land,Sea and Air,2006 [C].ASME Paper No.GT2006-90639.
    [42]XIAO Y,CAI R,LIN R.Modeling HAT Cycle And Thermodynamic Evaluation [J].Energy Convers Mgmt,1997,38(15-17):1605-1612.
    [43]靳海明.HAT循环的一种改型:CHAT循环[J].热能动力工程,1996,11(1):37-39.
    [44]王永青,王滨.湿压缩HAT循环的热力学分析[J].燃气轮机技术,2002,15(1):45-48.
    [45]HONGGUANG JIN,HONGBIN ZHAO,ZELONG LIU,et al.Novel EFHAT with Enhancement of Humidification by Recovery of GT Exhaust Latent Heat;proceedings of the ASME TURBO EXPO 2002,2002 [C].ASME Paper No.GT-2002-30128.
    [46]MATS O.WESTERMARK.Method And Device for Generation of Mechanical Work and,if Desired,Heat in an Evaporative Gas Turbine Process.,International Patent Application,Publication No.WO9801658 [P/OL].1998-.
    [47]NIKLAS D.AGREN.,MATS O.J.WESTERMARK.Design Study of Part Flow Evaporative Gas Turbine Cycles:Performance and Equipment Sizing Part 1:Aeroderivative Core;proceedings of the ASME TURBO EXPO 2001,2001 [C].ASME Paper No.2001-GT-0112.
    [48]NIKLAS D.AGREN.,MATS O.J.WESTERMARK.Design Study of Part Flow Evaporative Gas Turbine Cycles:Performance and Equipment Sizing Part 2:Industrial Core;proceedings of the ASME TURBO EXPO 2001,2001 [C].ASME Paper No.2001-GT-0113.
    [49]MARIA JONSSON,YAN J.Economic Assessmengt of Evaporative Gas Turbine Cycles With Optimizated Part Flow Humidification systems;proceedings of the ASME Turbo Expo 2003,Power for Land,Sea,and Air,2003 [C].ASME Paper No.GT2003-38009.
    [50]NIKLAS D.(?)GREN,CAVANI A,WESTERMARK M O.New humidifier concept in evaporative gas turbine cycles;proceedings of the TAIES'97,Thermodynamic analysis and improvement of energy systems,Proceedings of international conference,1997 [C].p.270-6.
    [51]JORDAL K,TORISSON T.Comparison of Gas Turbine Cooling with Dry Air,Humidified Air,and Steam;proceedings of the ASME TURBOEXPO 2000,2000 [C].ASME Paper No.2000-GT-0169.
    [52]GALLO W L R,BIDINI G,BETTAGLI,N,et al.Effect of Turbine-blade Cooling on the HAT (Humid Air Turbine) Cycle [J].Energy,1997,22(4):375-380.
    [53]BARTLETT M A,WESTERMARK.M O J.A Study of Humidified Gas Turbines for Short-Term Realization in Midsized Power Generation-Part Ⅰ:Nonintercooled Cycle Analysis [J].J Eng Gas Turbines and Power,2005,127(1):91-99.
    [54]BARTLETT M A,WESTERMARK.M O J.A Study of Humidified Gas Turbines for Short-Term Realization in Midsized Power Generation-Part Ⅰ:Intercooled Cycle Analysis and Final Economic Evaluation [J].J Eng Gas Turbines and Power,2005,127(1):100-108.
    [55]RYDSTRAND M C,WESTERMARK M O,BARTLETT M A.An analysis of the efficiency and economy of humidified gas turbines in district heating applications [J].Energy,2004,29(12-15):1945-1961.
    [56]J.PARENTE,A.TRAVERSO,MASSARDO A F.Micro Humid air cycle part A:thermodynamic and technical aspects;proceedings of the ASME Turbo Expo Power for Land,Sea and Air,2003 [C].ASME Paper No.GT2003-38326.
    [57]J.PARENTE,A.TRAVERSO,A.F.MASSARDO.Micro humid air cycle part B:thermoeconomic analysis;proceedings of the ASME Turbo Expo 2003 Power for Land,Sea and Air,2003 [C].ASME Paper No.GT2003-38328.
    [58]J.PARENTE,A.TRAVERSO,MASSARDO A F.Micro Humid Air Cycle for Distributed Power Generation [M].Power-Gen 2002.Milan,Italy.2002.
    [59]AZIMIAN A R,OLAUSSON P L,ASSADI M.Pre-design Studies of Cycles with Energy,Exergy,Thermoeconomy And Elca Analysis;proceedings of the ASME Turbo Expo 2002,2002 [C].ASME Paper No.GT-2002-30418.
    [60]朱华,丁星阳,赵敬德.HAT循环构成热电冷三联产总能系统的可行性分析[J].能源工程,2002,2:32-36.
    [61]朱华,赵敬德,赵桂林.HAT循环构成热电冷三联产总能系统的热经济性计算与分析[J].热力发电,2002,31(1):2-5.
    [62]A.D.RAO,G.S.SAMUELSEN,F.L.ROBSEN,et al.POWER PLANT SYSTEM CONFIGURATIONS FOR THE 21ST CENTURY;proceedings of the ASME TURBO EXPO 2002,2002 [C].ASME Paper No.GT-2002-30671.
    [63]ASHOK D.RAO.Process and system for producing power:U.S.,No.5181376 [P/OL].1993-.
    [64]NAKHAMKIN M,SWENSEN E,WILSON LM,et al.The cascaded humidified advanced turbine (CHAT) [J].J Eng Gas Turbines and Power,1996,118(3):565-571.
    [65]NAKHAMKIN M,SWENSEN EC,SCHEIBEL JR,et al.CHAT technology:an alternative approach to achieve advanced turbine systems efficiencies with presengt combustion turbie technology;proceedings of the Proceedings of the international gas turbine and aeroengine congress and exhibition,1998 [C].ASME Paper No.98-GT-143.
    [66]NAKHAMKIN M,WOLK R,POTASHNIK B,et al.Injecting humidified and heated air to meet peak power demands;proceedings of the ASME Turbo Expo 2000,2000 [C].ASME Paper No.2000-GT-596.
    [67]COHN A,EHRLICH S,DARGUZAS J,et al.Compressed air energy storage with humidification:an economic analysis.;proceedings of the the international gas turbine and aeroengine congress and exhibition,1999 [C].ASME Paper No.99-GT-328.
    [68]WOLK RH,COHN A.New power plant cycles utilizing air humidification and turbomachinery;proceedings of the the American power conference,1993 [C].vol.55-I,p.84-9.
    [69]PARENTE J O S,TRAVERSO A,MASSARDO A F.Saturator Analysis for an Evaporative Gas Turbine Cycle [J].Applied Thermal Engineering,2003,23(10):1275-1293.
    [70]CEVASCO R,PARENTE J,TRAVERSO A,et al.Off-design And Transient Analysis of Saturators for Huimid Air Turbine Cycles;proceedings of the ASME Turbo Expo 2004 Power for Land,Sea,and Air,2004 [C].ASME Paper No.GT2004-53315.
    [71]ARAKI H,HIGUCHI S,MARUSHIMA S,et al.DESIGN STUDY OF A HUMIDIFICATION TOWER FOR THE ADVANCED HUMID AIR TURBINE SYSTEM;proceedings of the GT2005 ASME Turbo Expo 2005:Power for Land,Sea and Air,2005 [C].ASME Paper No.GT2005-68671.
    [72]赵丽凤,张世铮,王迅.HAT循环关键部件—空气湿化器的初步试验性能[J].工程热物理学报,1999,20(6):677-680.
    [73]刘刚,王永泓,杨勇刚,等.饱和器热力过程数学模型[J].船舶工程,2000,1:38-40.
    [74]王玉璋,翁史烈,李一兴,等.逆流式空气湿化器加湿性能的试验研究[J].中国电机工程学报,2004,24(8):152-156.
    [75]XU Z,XIAO Y,WANG Y.Experimental and theoretical studies on air humidification by a water spray for humid air turbine cycle;proceedings of the GT2006 ASME Turbo Expo 2006:Power for Land,Sea and Air,2006 [C].ASME Paper,No.GT2006-51045.
    [76]徐震.HAT循环空气湿化过程研究[D].北京;中国科学院工程热物理研究所,2006.
    [77]CHEN A G,MALONEY D J.Humid Air NOx Reduction Effect on Liquid Fuel Combustion proceedings of the ASME TURBO EXPO 2002 2002 [C].A SME Paper No.GT-2002-30163.
    [78]ULF NILSSON,LARS EIDENSTEN,JOHAN TOLLIN.Applications for Evaporative Gas Turbines.;proceedings of the Power-gen Europe,2001 [C].
    [79]金大祥,王代骄,胡宗军,等.大湿度燃烧室试验台的研制[J].动力工程,2000,20(5):816-820.
    [80]ZHANG Z,XIAO Y,WANG Y,et al.Influence of air humidity on the oxidation of CO in syngas diffusion flames;proceedings of the GT2006 ASME Turbo Expo 2006:Power for Land,Sea and Air,2006 [C].ASME Paper,No.GT2006-90338.
    [81]张哲巅.湿空气扩散火焰的实验和数值研究[D].北京;中国科学院工程热物理研究所,2006.
    [82]FAN WEI,YUNHAN XIAO,SHIJIE ZHANG.LATENT HEAT RECOVERY AND PERFORMANCE STUDIES FOR AN OPEN CYCLE ABSORPTION HEAT TRANSFORMER;proceedings of the ASME Turbo Expo 2008:Power for Land,Sea and Air,2008 [C].ASME Paper,No.GT2008-51105.
    [83]魏璠.开式循环吸收式热泵理论及部件试验研究[D].北京;中国科学院研究生院,2008.
    [84]魏璠,肖云汉,张士杰.结合吸收式热泵的HAT循环系统综合设计与性能分析[J].工程热物理学报,2007,28(增刊1):17-21.
    [85]HIDEFUMI ARAKI,YUKINORI KATAGIRI,SHINYA MARUSHIMA,et al.Experimental Results of Humidification and Water Recovery of The Advanced Humid Air Turbine System Pilot Plant;proceedings of the The International Gas Turbine Congress 2007 Tokyo,2007 [C].IGTC2007 Tokyo TS-012.
    [86]LINDQUIST.Evaluation,Experience and Potential of Gas Turbine Based Cycles with Humidification.[D].Lund,Sweden;Lund University,2002.
    [87]DOE,Advanced Microturbine Systems-Program plan for Fiscal Year 2000 through 2006.[R].Washington,2006.
    [88]TATSUMI T.Development of the 300kW Ceramic Gas Turbine CGT302 [M]//ROODE M V,FERBER M K,RICHAERSON D W.Ceramic Gas Turbine Design and Test Experience.New York;ASME PRESS.2002:331-360.
    [89]王波,张士杰,张彦,等.有无后冷器的微燃机HAT循环研究[M].中国工程热物理学会工程热力学与能源利用学术会议论文集(上册).2007:352-357.
    [90]SHIJIE ZHANG,YUNHAN XIAO.Steady-state Off-design Thermodynamic Performance Analysis of A Humid Air Turbine Based on A Micro Turbine;proceedings of the GT2006 ASME Turbo Expo 2006:Power for Land,Sea andAir,2006 [C].ASME Paper No.GT2006-90335.
    [91]WANG B,ZHANG S,XIAO Y.STEADY-STATE OFF-DESIGN PERFORMANCE OF HUMID AIR TURBINE CYCLE;proceedings of the GT2007 ASME Turbo Expo 2007:Power for Land,Sea and Air,2007 [C].ASME Paper No.GT2007-27350.
    [92]DESIDERI U,MARIA F D.Water Recovery from HAT Cycle Exhaust Gas:A Possible Solution for Reducing Stack Temperature Problems [J].Int J Energy Research,1997,21(9):809-822.
    [93]BIANCHI M,MONTENEGRO G N D,PERETTO A.Inverted Brayton Cycle Employment for Low Temperature Cogenerative Application;proceedings of the ASME Turbo Expo 2001,2000 [C].ASME Paper,No.2000-GT-315.
    [94]BIANCHI M,MONTENEGRO G N D,PERETTO A.Cogenerative BAGT Performance with Variable Thermal Power;proceedings of the ASME Turbo Expo 2002,2002 [C].ASME Paper No.GT-2002-30557.
    [95]BLANCHI M,MONTENEGRO G N D,PERETTO A.Thero-economic Optimization of A Cogeneration Plant with Below Ambient Pressure Discharge Gas Turbine;proceedings of the TURBO EXPO 2003:Power for Land,Sea and Air,2003 [C].ASME Paper No.2001-GT-0209.
    [96]ANONYMOUS.The TopHat Turbine Cycle [J].Modern Power Systems,2001,21(4):35-37.
    [97]WILSON D G.The Design of High-Efficiency Turbomachinery and Gas Turbines [M].Massachusetts,London,England:The MIT Press Cambridge,1984.
    [98]孙晓红.湿空气透平(HAT)循环机组主要部什性能和总体性能的研究[D].上海;上海交通大学,1999.
    [99]沈炳正,黄希程.燃气轮机装置[M].第二版ed.北京:机械工业出版社,1991.
    [100]LINDQUIST T,THERN M,TORISSON T.Experimental And Theortical Results of A Humidification Tower in An Evaporative Gas Turbine Cycle Pilot Plant;proceedings of the ASME TURBO EXPO 2002,2002 [C].ASME Paper No.GT-2002-30127.
    [101]PARENTE J,TRAVERSO A,MASSARDO AF.Micro Humid air cycle part A:thermodynamic and technical aspects;proceedings of the ASME Turbo Expo Power for Land,Sea and Air,2003 [C].ASME Paper No.GT2003-38326.
    [102]DODO S,NAKANO S.Development of An Advanced Microturbine System Using Humid Air Turbine Cycle;proceedings of the ASME Turbo Expo 2004 Power for Land,Sea,and Air,2004 [C].ASME Paper,No.GT2004-54337.
    [103]THERN M.,LINDQUIST T.,TORISSON T..Theoretical and experimental evaluation of a plate heat exchanger aftercooler in an evaporative gas turbine cycles.[M].ASME Turbo Expo 2003 Power for Land,Sea and Air.Atlanta,Georgia,USA;ASME Paper No.GT2003-38099.2003.
    [104]COHN H,ROGERS G,SARAVANAMUTTOO H.Gas Turbine Theory [M].4th ed.Edinburgh,England:Addison Wesley London Limited,1996.
    [105]CHODKIEWICZ R,POROCHNICKI J,KACZAN B.Steam-Gas Condensing Turbine System for Power and Heat Generation;proceedings of the ASME TURBO EXPO 2001,2001 [C].ASME Paper No.2001-GT-0097.
    [106]沈维道,蒋智敏,童钧耕.工程热力学[M].第三版ed.北京:高等教育出版社,2001.
    [107]KOLANOWSKI B F.Guide to Microturbines [M].Lilburn,Georgia:Fairmont Press,Inc.,2004.
    [108]BIANCHI M,MONTENEGRO G N D,PERETTO A.A Feasibility Study of Inverted Brayton Cycle for Gas Turbine Repowering;proceedings of the ASME Turbo Expo 2003,Power for Land,Sea and Air,2003 [C].ASME Paper No.GT2003-38186.
    [109]GALLO W L R.A Comparison Between the HAT Cycle and Other Gas-turbine Based Cycles:Efficiency,Specific Power and Water Consumption [J].Energy Convers Mgmt,1997,38(15-17):1595-1604.
    [110]J.B A,T.D W.Air Pollution Engineering Manual [M].New York:Van Nostrand Reinhold,1992.
    [111]锅炉大气污染物排放标准 GB13271-2001[M].2001.
    [112]DESIDERI U,MARIA F D.Humid Air Turbine Cycles with Water Recovery:How to Dispose Heat in An Efficient Way;proceedings of the the international gas turbine and aeroengine congress and exhibition,1998 [C].
    [113]陆伟.城市能源环境中分布式供能系统优化配置研究[D].北京;中国科学院研究生院,2007.
    [114]SAVOLA T,TVEIT T-M,FOGELHOLM C-J.A MINLP model including the pressure levels and multiperiods for CHP process optimisation [J].Applied Thermal Engineering,2007,27(11-12):1857-1867.
    [115]SAVOLA T,FOGELHOLM C-J.MINLP optimisation model for increased power production in small-scale CHP plants [J].Applied Thermal Engineering,2007,27(1):89-99.
    [116]2008年上半年电力行业供电煤耗运行分析[J].华经电力双周评(第107期),2008,中国产业竞争情报网:http://www.chinadz.org.cn/szp/article.asp?id=2330:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700