钢桥梁高效电弧喷涂系统及纳米改性封闭涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济社会的不断进步和交通工程建设节奏的加快,对钢桥梁的耐久性提出了更高的要求,高效施工设备和长效防腐涂层体系也正备受重视。
     本文设计和试验了高效多雾化电弧喷枪,解决了传统喷涂设备工效低和喷幅窄、且涂层附着力低、厚度不均匀和质量不稳定的难题;针对国内对电弧喷涂封闭涂层缺乏研究的现状,研制了电弧喷涂层纳米改性环氧封闭涂料,提出了二步法制备纳米封闭涂料的工艺方法,探讨了电弧喷涂层纳米改性环氧封闭涂料的封闭机理和耐蚀性机理;设计了电弧喷涂纳米封闭复合涂层体系,通过电弧喷涂阳极性金属涂层和纳米封闭有机涂层的协同作用,显著提高了复合涂层的耐蚀性和结合强度,具有涂层附着力高、防腐蚀寿命长、寿命周期成本低的特点,为钢桥梁的耐久性和安全性提供有力的技术保障,具有重要的工程应用价值。
     针对钢箱梁大平面喷涂施工对机械化高效喷涂的要求,通过多次雾化射流技术研究,研制了高效多雾化电弧喷枪,与机械化喷涂工装配套形成的高效多雾化电弧喷涂系统,与现在通用的普通电弧喷涂设备相比,喷涂电流提高1倍(达到700A)、喷涂速度提高2倍(达到78kg/h)、喷涂幅宽提高2倍(有效幅宽达140mm)、涂层附着力提高40%、涂层厚度分布更均匀、涂层质量更稳定。
     针对电弧喷涂层多孔隙的固有特性和高渗透性封闭涂料有效封孔的要求,研究了多种纳米氧化物粉体的表面改性和在环氧树脂涂料中的分散技术,提出了先制备多种纳米材料杂化的浓缩浆再制备纳米改性环氧封闭涂料的二步法工艺,制备了纳米改性环氧封闭涂料(发明专利公开号CN 1887992A),具有粘度低、渗透性好、封孔能力强、涂层附着力高、涂层致密、耐蚀性好等特点。
     通过试验研究分析了纳米改性封闭涂料对电弧喷涂层的双重封闭作用机理,用电化学阻抗谱(EIS)研究了电弧喷涂纳米封闭复合涂层的防腐蚀机理。纳米颗粒能改善封闭剂对基体的渗透性能,能充分渗透至电弧喷涂层孔隙内,涂层致密,与基体结合力提高,具有很好的物理隔离封闭作用。封闭涂料中的防锈颜料与电弧喷涂锌/铝金属发生化学反应,生成耐蚀的磷酸盐钝化膜,不仅更好地封闭了电弧喷涂层的孔隙,也进一步提高了复合涂层的结合力和耐蚀性。纳米材料的加入改善了涂层的电化学性能,对基体金属的腐蚀防护作用明显。
     针对钢桥梁的长寿命防腐要求,首次设计和应用了电弧喷涂纳米封闭复合涂层体系(CN101451243A),采用电弧喷涂金属防腐层和纳米封闭有机涂层的联合保护可起到最佳协同效应,显著提高复合涂层的耐蚀性和结合强度,具有涂层附着力高、防腐寿命长、寿命周期成本低的特点,在多座桥梁工程获得成功应用。
With the progress of the economy and society of our country continuously and acceleration of construction pace in traffic engineering, the higher requirements of durability for steel bridges are put forward, efficient construction equipment and long-lasting anti-corrosion coatings system are also being focused upon.
     In this dissertation, an efficient multi-atomizing arc spraying gun is designed and tested to solve the problems facing by the traditional arc spraying equipment, such as low efficiency, narrow spraying width, low adhesion, uneven thickness and unstable quality of sprayed coating. For the status of lack of domestic research on the sealing coating for arc spraying coating, the formulation of nano-modified epoxy sealing paint is designed as arc spraying coating sealer, the two-step process method of preparation of nano-modified paint is proposed, the sealing and corrosion protection mechanism of arc spraying coating is discussed. The arc spraying nano-sealing composite coating system is firstly designed. Through the synergy action of arc spraying anode metal coatings and nano-sealing organic coatings, the corrosion resistance of the composite coating and its bonding strength are significantly increased, with the characteristics of high coating adhesion, long-life anti-corrosion and low life cycle cost. The composite coating system provided strong technical support for the durability and security of steel bridges, and had important engineering application value.
     According to the characteristics of large flat of steel box girder fitting for mechanized efficient arc spraying, and through the study of multi-atomizing spraying technology, the efficient multi-atomizing arc spraying gun is firstly developed, and supported with mechanized spraying apparatus to forming the efficient and multi- atomizing arc spraying system. Comparing with traditional arc spraying equipment, the newly developed multi-atomizing arc spraying system has achieved the following goals: the spray current is doubled (up to 700A), the spray rate increases two times (up to 78kg / h), spray width increases two times (effective width up to 140mm), coating adhesion increases 40%, coating thickness distribution is more uniform and coating quality is more stable.
     The arc spraying coating is porous inherently and needs to be effectively sealed by a high permeability sealing paint. So the nano-modified epoxy sealing paint is put forward to meet the requirements. The surface modification of variety of nano-oxide powders and dispersion technology in the epoxy resin paint are studied. The two-step process to prepare nano-modified epoxy sealing paint is advanced by preparing the nano-material concentrates firstly and then producing the nano-modified paint. The nano-modified epoxy sealing paint and its produce method are applied the patent right (Invention patent publication number: CN 1887992A). Nano-modified epoxy sealing paint has physical and chemical sealing dual role for the arc spraying coating with the advantages and characteristics of low viscosity, good permeability, strong sealing capability, high coating adhesion, compact coating structure and good corrosion resistance, etc. The two-step process method of preparing nano-modified paint brings upgrade of traditional protective paint industries, and provides a reasonable means of industrial protective paint production and change of paint production technology.
     The physical and chemical sealing dual role mechanism of nano-modified epoxy sealing paint for the arc spraying coating is analyzed by experimental research. Corrosion resistance mechanism of arc spraying nano-sealing composite coating is discussed by electrochemical impedance spectroscopy (EIS). Nano-particles can improve the permeability of sealer by fully penetrating into the porous of arc sprayed coating. The sealing coating is dense, and coating adhesion with substrate is increased, with a good physical isolation sealing effect. The sealer pigment could make chemical reaction with arc sprayed Zn/Al coating, and generating the phosphate passive film with good corrosion resistance. Not only the porous of arc spraying coating is better sealed, but also the adhesion and corrosion resistance of the composite coating is further enhanced. The electrochemical properties of the coating and corrosion protection for the substrate are improved by adding nano-materials to sealing paint.
     According to the requirements of long-life anti-corrosion and durability for steel bridge, the arc spraying nano-sealing composite coating system is firstly designed and applied the patent right (Invention patent publication number: CN 101451243A). Not only the best synergistic effect would be formed by the joint protection of arc spraying metal coating and organic nano-modified sealing coatings, but also the corrosion resistance and the bonding strength of composite coating system could be significantly improved. The composite coating system provides strong technical support for the durability and security of steel bridge by the advantages of high coating adhesion, long-life corrosion protection and low life cycle cost, and also be applied successfully on some large-scale steel bridges. There are very good actual engineering application value and important scientific significance.
引文
[1]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [2]任必年.公路钢桥腐蚀与防护[M].北京:人民交通出版社,2002.
    [3]李金桂,曹备.钢结构桥梁的腐蚀控制[J].中国表面工程,2004,(5):5-10.
    [4]庞启财.桥梁防腐蚀涂装和维修保养[M].北京:化学工业出版社,2003:1-30.
    [5] Luh-Maan Chang, Seunghyun Chung. Steel Bridge Protection Policy [R] ,FHWA-IN-JTRP-98-21, Indiana Department of Transportation and The U.S. Department of Transportation Federal Highw ay Administration,May 1999
    [6] Kogler, R. A., J. P. Ault, and C. L. Farschon. Environmentally Acceptable Materials for the Corrosion Protection of Steel Bridges[R] , FHWA-RD-96-058 , Federal Highway Administration, Washington, DC, January 1997.
    [7]朱文白,周建林,王敬民.江阴长江公路大桥钢箱梁防腐与涂装[C].江阴长江公路大桥工程建设论文集,北京:人民交通出版社,2000.
    [8]李雄晖.武汉军山长江公路大桥钢箱梁电弧喷铝长效防腐技术[J].桥梁建设,2000, (4): 38~41.
    [9]陈建阳,肖跃文等.电弧喷铝涂层的保护极限及钢箱梁大面积长效防腐[J].桥梁建设. 2001(1):32-34.
    [10]都昌林、易春龙.钢桥面无尘喷砂除锈设备及施工工艺[J].表面技术. 2004,(2):46-49.
    [11]王仁贵,孟凡超等.杭州湾跨海大桥总体设计[J].公路,2006(9):1-7.
    [12]杨元录,王辉平,许宏亮等.西堠门大桥钢箱梁制造工艺技术[A]. 2008年全国桥梁学术会议论文集[C].人民交通出版社,2008:284-289.
    [13]陈阶亮.桥梁钢结构防腐蚀技术探析[J].钢结构. 2002,17(5):60-62
    [14]易伦雄.钢结构桥梁防腐蚀涂装体系的选择[J].桥梁建设,1999,(2):70-72.
    [15]易春龙.电弧喷涂技术[M].北京:化学工业出版社,2006.
    [16]张忠礼.钢结构热喷涂防腐蚀技术[M].北京:化学工业出版社,2004.
    [17]美国焊接学会编,麻每流璜、贾永昌、刘维祥译.热喷涂原理与应用技术[M].四川科学技术出版社,1987.
    [18]高荣发.热喷涂[M].北京:化学工业出版社,1992.
    [19]喷锌、喷铝在钢铁防锈方面的应用[C].全国热喷涂经验交流会文集,1978.
    [20]韦福水、蒋伯平.热喷涂技术[M].北京:机械工业出版社,1986.
    [21] Bailey JC,Porter FC,Round M. Metal Spraying of Zinc and Aluminum in the United Kingdom[C]. 12th International Thermal Spraying Conference,London,1989.
    [22] Bob lrving. Thermal Sprayed Zinc Coatings Defend Steel and Concrete Bridge[J]. Welding,1993(9).
    [23] Steffens Hans Dieter, Matthias Wewel. Recent developments in vacuum arc spraying[R]. Dortmund: Institute of Materials Technology University of Dortmund, 1988.
    [24] Marantz David R, Marantz Daniel R. State of the Arc Spray Technology[C]. In: Bernechi F F, T.F.Hernecki. eds. Thermal Spray Research and Applications. USA. 1991. USA: ASM International, 1991:113-118
    [25] Fischer, K. P., W. H. Thomason, T. Rosbrook, and J. Murali. Performance of Thermal Sprayed Aluminum Coatings in the Splash Zone and for Riser Service[C], Paper No. 499. Corrosion 94, NACE, Houston, 1994.
    [26] Kelkar M., Hussary N., et al. Optical diagnostics and modeling of gas and droplet flow in wire arc spraying[C]. Proceedings of the 15th International Thermal Spraying Conference(ITSC),France,1998.
    [27] Tinnea JS, Tinnea & Associates. Field Performance of Sprayed Zinc Cathodic Protection Anodes[C]. Proceedings of the 15th International Thermal Spraying Conference(ITSC),France,1998.
    [28] Setuzo Takeuchi. Newly developed Arc Spraying Gun[C]. Proceedings of the International Thermal Spray Conference(ITSC’1986):Advances in Thermal Spraying. Dec 1986, Montreal Canada,p753-762
    [29]卞丽丽,吴萍,沈思科等.防腐技术在煤矿的应用及管理研究[J].煤矿机械,2004,(4):130-132.
    [30]王守强.钢闸门喷涂锌防腐蚀[M].北京:水利水电出版社,1988
    [31]邓世均.热喷涂技术在机械工业中的应用[J].材料保护,1982(1):1-3
    [32]温谨林,刘爱华,耿维生.电弧喷涂技术展望[J].电刷镀技术. 2000(4):8-13.
    [33]安云岐等.电弧喷涂技术在煤矿防腐工程的应用[J].热喷涂技术. 1998,(13):10-15.
    [34]雷钧.矿井立井井筒装备钢结构电弧喷涂长效防腐蚀工艺和设备技术的研究[D].辽宁:辽宁工程技术大学,1999.
    [35]王汉功.超音速电弧喷涂技术[M].北京:国防工业出版社,1999.
    [36]查柏林,王汉功.超音速电弧喷涂的粒子雾化研究[J].中国表面工程. 1998(3):27-30.
    [37]梁秀兵,徐滨士,马世宁.高速电弧喷涂枪的设计[J].兵工学报. 2004,25(2):246-248.
    [38]田保红,李诗卓,徐滨士等.高速电弧喷涂层的组织和性能[J].热加工工艺. 1999, (3):3-5.
    [39]沈承金,孙智,易春龙.钢桥面二次雾化电弧喷涂防腐蚀设备和技术的研究[J].中国腐蚀与防护学报. 2004(2):125-127.
    [40]沈承金,孙智,易春龙.二次雾化电弧喷涂设备和技术在钢桥面防腐中的应用[J].世界桥梁. 2004(1):P26-28.
    [41]刘松.逆变式电弧喷涂设备的研制[D].武汉:华中科技大学,2002.
    [42]易春龙.大功率二次雾化电弧喷涂系统研究[D].徐州:中国矿业大学,2002.
    [43]张秀会,索双富等.电弧喷涂技术的发展与应用[J].新技术新工艺. 2003(12):42-44.
    [44]张秀会,索双富,易春龙等.我国电弧喷涂自动化技术的发展与应用[J]. 2003,36(11):27-28.
    [45]吴子健.热喷涂技术与应用[M].北京:机械工业出版社,2006.
    [46]徐滨士.优质、高效电弧喷涂技术的应用和发展[J].表面工程. 1996, (4):7~14.
    [47]温瑾林.电弧喷涂技术的现状和未来[C]. 98’全国表面技术研讨会论文集,昆明,1998.
    [48] Yi Chun-long, An Yun-qi, Shen Ya-tan,etc. Recent Ten Years Applications of Arc-spraying Technology for Corrosion Protection of Steel Bridges in China[C]. The 16th International Corrosion Conference. Beijing: 2005. P-18-C-67.
    [49] Kuroda, S., and M. Takemoto. Ten Year Interim Report of Thermal Sprayed Zn, Al and Zn-Al Coatings Exposed to Marine Corrosion by Japan Association of Corrosion Control[C]. The International Thermal Spray Conference (ITSC 2000), Montreal, Canada, 2000.
    [50] Marantz David R, Marantz Daniel R. State of the Arc Spray Technology. In: Bernechi F F, T.F.Hernecki. eds. Thermal Spray Research and Applications. USA. 1991. USA: ASM International, 1991.113-118.
    [51]李秉忠,王昌辉,董志红等.电弧喷涂Zn/Al伪合金涂层耐蚀性能研究[J].材料保护. 2008,41(4) :31-32.
    [52]罗成明王伊卿朱东波丁玉成卢秉恒。Zn-Al-Cu伪合金涂层制备与性能研究。材料热处理学报,2003,24(2):24-29.
    [53]张忠礼,耿维生,刘爱华,温瑾林.电弧喷涂耐蚀锌-铝伪合金涂层[J].中国表面工程, 1992(03):6-9.
    [54]杜贵平,黄石生.电弧喷涂设备的现状与展望[J].表面技术,2001,30(6):22-25.
    [55]刘松.电弧喷涂设备及其发展趋势[J].电焊机,2004,34(3):34-37.
    [56]李鹤岐,刘嘉,常锋.电脑控制电弧喷涂设备的研制[J].甘肃工业大学学报.1998,24(02):11-14.
    [57]张文扬,李鹤岐.电弧喷涂系统中几个问题的探讨[J].甘肃科学学报.1997,23(3):11-15.
    [58]李鹤岐,李春旭,陈克选.电弧喷涂自适应控制系统研究[J].甘肃科学学报,2002,14(1):11-16.
    [59]熊腊森,刘松等.电弧喷涂枪的研究与设计[J].电焊机. 2003,33(10):25-28.
    [60]熊腊森,刘长友,刘松.逆变式电弧喷涂电源的研究[J].电焊机,2001,31 (6):11-12.
    [61]汤文博,吴振卿,郑英姿等.电弧喷涂同步送丝电路的研究[J].郑州工业大学学报,1999,20(4):48-49.
    [62]张秀会,索双富,易春龙.电弧喷涂送丝系统的阻力分析[J].表面技术,2004,33(1):25-27.
    [63]李鹤岐,李春旭,陈克选等.电弧喷涂最优控制系统[J].焊接学报,2002,23(6):9-12.
    [64] R. Carison and J. Heberlein. Effects of Operating Parameters on High Definition Single Wire Arc Spraying[C]. Proceedings of the International Thermal Spray Conference(ITSC2001):New Surfaces for a New Millennium, 28-30 May 2001, Singapore, p447-453.
    [65]陈钢.超音速电弧喷涂枪研制[D].北京:北京工业大学,2001.
    [66]王昆生,周斌,李晓斌.新型IGBT逆变式脉冲电弧喷涂装置[J].机械工人(热加工),2001,(11):24-26.
    [67]王昆生,魏继昆,李晓斌.逆变式电弧喷涂/气保护焊机的研制[J].焊接技术,2003,32(1):34-36.
    [68] Thomas J. Fox, Lawrence A. Saia et al. Arc spray system: USA, 4668852.[P]. 1987.05.26.
    [69] TAFA Incorporated. Metal Spray: USA, 4492337. [P]. 1985.01.08.
    [70] Frank S. Rogers. Arc Metal Spray Apparatus and Method: USA, 4512513.[P]. 1985.04.23.
    [71] Applied Materials, Inc. Method and apparatus for the application of twin wire arc spray coatings:USA,7554052.[P]. 2005.07.29.
    [72] Larry L. Boyd, Mark A. Boyd. Electric arc spray gun: USA, 6005215.[P]. 1998.1.28.
    [73]古丽娅索双富易春龙.国内外大功率电弧喷涂设备现状概述及喷枪设计改进方案探讨[J].机械设计与制造. 2003(5):117-118.
    [74]张冰.基于超音速电弧喷涂技术的参数优化及防腐蚀涂层研究[D].山东理工大学,2001.
    [75]徐滨士,马世宁,时小军.面向21世纪的电弧喷涂技术[J].设备管理&维修,1998,(7):19-21.
    [76]孙颖.水下热喷涂的研究[J].热喷涂技术,1997(7):29~32.
    [77]李秉忠,张海成,胡友权等.一种高效率电弧喷枪:中国,94205494.6 [P]. 1995.03.26.
    [78]彼尔金—爱默公司.电弧喷涂系统:中国,86100836A.[P]. 1988.02.10.
    [79]王汉功,杨辉,苏勋家等.超音速电弧喷涂装置:中国,97208364.2[P]. 1997.03.24.
    [80]郭面焕.可调方向的电弧内孔喷涂枪:中国,200410043647.9 [P]. 2004.06.23.
    [81]珀金-埃尔默.喷涂受限区域的电弧喷枪:中国,89107716.1 [P]. 1989.04.22.
    [82]郭面焕,刘爱国.单丝钨极电弧喷涂枪:中国,200410043643.0 [P]. 2004.06.23.
    [83]郭面焕.窄间隙电弧喷涂枪:中国,200410043642.6 [P]. 2004.06.23.
    [84]郭面焕.一体化双头电弧喷涂设备:中国,200410043646.4 [P]. 2004.06.23.
    [85] Chunlong Yi, Shangfu Suo, Zhi Sun, Xunan Pang. Field application of automated power arcspraying system on steel bridge deck[J],Material Protection. 2004 (9z):1-3;
    [86]刘立湖,王洪涛等.大功率二次雾化电弧喷涂技术系统的研制[J].材料保护,2003,36(10):35-36.
    [87]徐建富,杨传良.千岛湖南浦大桥防腐蚀涂层方案的分析与确定[J].桥梁建设,2002(5):71-74.
    [88] GB/T 9793-1997金属和其他无机覆盖层热喷涂锌、铝及其合金.
    [89] C.G. Munger, Corrosion Prevention by Protective Coatings, National Association of Corrosion Engineers, 1440 South Creek Drive, Houston, Texas 77084, p. 143.
    [90] Bailey, J. C. Corrosion Protection of Welded Steel Structures by Metal Spraying. Metal Construction, Vol. 15, No. 5, May 1983, pp. 264–266, 268–270.
    [91] J.R. Davis,Handbook of Thermal Spray Technology,the Thermal Spray Society and ASM International,2004.
    [92] Tsourous, A. The Restoration of the Historic Trenton Non-Toll Bridge Using Field Applied Thermal Spray Coatings. Presented at SSPC International Conference, 1998.
    [93]易春龙、张胜利、安云岐、陈卫国.纳米环氧封闭漆对电弧喷铝涂层封孔作用的电镜分析[C].第2届纳米材料在涂料中应用技术发展研讨会论文集,2006年5月,北京.
    [94]易春龙、安云岐、沈亚郯、陈卫国.纳米环氧封闭漆对电弧喷涂层结合强度的影响[J],有色金属. 2006(z):9-11.
    [95]易春龙、沈亚郯、刘国彬.纳米改性含氟聚氨酯防腐蚀涂料的研制[J],有色金属. 2007(z):4-7.
    [96]易春龙,张胜利,陈卫国.纳米改性环氧封闭漆的研制及在西堠门大桥的应用[J],公路. 2009(01):54-59.
    [97] Y. Chun-long , A. Yun-qi, S. Ya-tan. Three Years Corrosion Tests of Nanocomposite Epoxy Sealer for Metalized Coatings on the East China Sea[J]. 2009 International Thermal Spray Conference Proceedings. Las Vegas , USA: 2009.5, p1090-1093.
    [98] ANSI/AWS C2.18-93 Guide for the Protection of Steel with Thermal Sprayed Coatings of Alminum and Zinc and Their Alloys and Composites. USA. [S]. 1993.04.22.
    [99]喻尊璞等.煤矿井筒钢结构件长效防腐复合涂层. [R].原煤炭工业部科技成果鉴定技术报告,1991.
    [100]吴绍吟.纳米碳酸钙的特点与应用[J].橡胶工业,1999,46(3):146-150.
    [101] Lei. Li, Haikui Zou, Lei Shao etc. Study on mechanical property of epoxy composite filled with nano-sized calcium carbonate particles[J]. Journal of Materials Science,2005,40(5).
    [102]邹海魁,陈建峰,刘润静等.纳米CaCO3的制备、表面改性及表征[J].中国粉体技术,2001,7(5):15-19.
    [103]宋胜梅,曾瑞,谢惠定等.纳米二氧化钛的特性及应用[J].化工时刊,2001,(5):22~25.
    [104] P. Stamatakis, B. R. Palmer. Optimum particle size of titanium dioxide and zinc oxide for Atenuation of Ultraviolet Radiation[J]. Journal of Coatings Technology,1990,62(789):95.
    [105] Peng Bing,Huang Yi,Chai Li-yuan etc. Influence of polymer dispersants on dispersion stability of nano-TiO2 aqueous suspension and its application in inner wall latex paint[J]. Journal of Central South University of Technology,2006.
    [106]张梅,杨绪杰,陆路德等.纳米TiO2—一种性能优良的光催化剂[J].化工新型材料, 2000, 28(4): 11~13.
    [107]周铭.纳米二氧化钛研究进展[J].涂料工业,1996, 26(4): 36.
    [108]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [109]胡娟,邓建刚,何水样等.纳米级二氧化钛制备方法的比较研究[J].材料科学与工程,2001,(04):71-74 .
    [110]邹建.纳米TiO2的表面改性及机理研究[D].重庆大学,2004.
    [111]柯博,黄志杰等.纳米SiOx在涂料中的应用[J].涂料工业, 1998, 28(12):29.
    [112]刘景春,韩建成.跨世纪高新科技纳米材料一员——纳米SiO2 [J].涂料工业,1998, 28 (1):34
    [113]顾元松,陈莉,陈苏.纳米二氧化硅复合材料的研究进展[J].南京工业大学学报(自然科学版) ,2003,(04) .
    [114] Ye Qing, Zhang Zenan, Sheng Li etc. A comparative study on the pozzolanic activity between nano-SiO2 and silica fume [J]. Journal of Wuhan University of Technology (Materials Science Edition), 2006, 21(3).
    [115]徐国财,邢宏龙等.纳米SiO2在紫外光固化涂料中的应用[J].涂料工业,1999, 29(7): 3-5.
    [116]张密林,丁立国,景晓燕等.纳米二氧化硅的制备、改性与应用[J].化学工程师,2003,(06) :11-14.
    [117]吕玉珍,杨瑞枫等.氧化铁纳米颗粒的合成、表征及特性研究[J].功能材料,2004,35(z):2736-2739.
    [118]牛新书,徐或.乙二醇甲醚体系中α-Fe2O3纳米晶制备与结构分析[J].无机材料学报,2001,16(2):243
    [119]胡季帆,钟定永等.溶胶凝胶法制备Fe2O3纳米微粒及其材料形貌研究[J].功能材料,2000,31(2):217.
    [120]杨学宏,史佩红,马子川等.透明氧化铁颜料的应用及发展现状[J].河北师范大学学报(自然科学版),2004, (5).
    [121]高翠英.纳米氧化铁的性质及应用进展[J].科技情报开发与经济,2007,(10):113-114.
    [122] Yang Q L, Zhai J, Feng L, et al. synthesis and characterization of conductiong polyaniline/γ-Fe2O3 magnetic nanocomposite. [J]. Synthetic Metals, 2003, 135-136: 819.
    [123]胡鸿飞,李大成,吉红兵.纳米氧化铁的制备方法及进展[J].四川有色金属,2001,(01):15-20
    [124]李志远;姜斌;张吕鸿等.纳米氧化铁的制备及其掺杂效应[J].化学工业与工程,2003,(06):497-501.
    [125]张兆志,魏雨.纳米α-Fe2O3制备的研究进展[J].纳米科技,2007,(04):13-16.
    [126]魏雨,赵建路,武瑞涛等.一种液相制备均匀α-Fe2O3微粉的新方法[J].功能材料,2000,31(1): 105.
    [127]魏雨,郑学忠,赵建路.凝胶-溶胶法制备针状和纺锤状α-Fe2O3[J],功能材料与器件学报. [J]. 1997, 3(4): 267.
    [128] Liu Tm, Guo L, Tao Y, et al. Bondlength alternation of nanoparticles Fe2O3 coated with organic surfactants probed by EXAFS. [J]. Nanostructured Materials, 1999, 11(8): 1329.
    [129] Diamandescu L, Tarabasanu DM, Pogrion Np, Hydro-theraml synthesis and characterization of some polycry-stallineα-iron oxides [J]. Ceramics International, 1999, 25(8): 689.
    [130] Bin Xiang, Hengyong Xu and Wenzhao Li. Effect of calcination temperature on the performance of nano-size iron oxide catalysts for ethylbenzene dehydrogenation[J]. Reaction Kinetics and Catalysis Letters, 2008, 94(1).
    [131] T.P.Raming, A.J.A.Winnubst, C.M.Kats, A.P.Philipse. The Syn and Mag. Prop. of Nanosized Hematite(α-Fe2O3) Pa. [J]. J. of Col. and Int. Sci. 2002, 249,249: 346-350.
    [132]赵克辉,王承权等.纳米Fe2O3的制备与气敏性质的研究[J].化工进展,2002,21(8): 579.
    [133]张强,张彰.纳米氧化铁粉体分散技术研究进展[J],化学工业与工程技术,2004,25(05):41-44.
    [134]李秀梅.纳米氧化锌的性质和用途[J].通化师范学院学报,2004, (4):54.
    [135]张建华.纳米氧化锌的功能及应用前景[J].济南纺织化纤科技,2005, (01):18-19.
    [136]田静博,刘琳等.纳米氧化锌的制备技术与应用研究进展[J].化学工业与工程技术,2008, 29(2):46-49.
    [137]王小丹,铁绍龙.纳米氧化锌的性能及其在涂料中的应用[J].电镀与涂饰,2005,(03):27-30.
    [138] Michael S. Lowry, David R. Hubble, Amy L. Wressell etc. Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation [J]. Journal of CoatingsTechnology and Research, 2008, 5(2).
    [139]陈洪民,吴晓,黄贞岚.纳米氧化锌的制备及应用研究进展[J].江西化工,2008,(3):11-13.
    [140] Tomokiyo Y,Takoshi M,Tanaka E. Shape and structure of zinc oxide particles prepared by vapor phase oxidation of zinc vapor [J]. Journal of the American Ceramic Society,1988,71 (5):391-395.
    [141]魏绍东等.纳米氧化锌制备技术与工业生产[J].化工科技市场,2006,29(4):46.
    [142]王久亮.纳米级氧化锌制备技术研究进展[J].硅酸盐通报,2004(5):59.
    [143]姜秀平,高艳阳,贾素云.纳米ZnO的制备方法简述[J].科技信息,2006(7):257-258.
    [144]沈钟,王果庭.胶体表面化学[M].北京:化学工业出版社,1997:38-50.
    [145]邱正松,王在明,胡红福等.纳米碳酸钙抗团聚机理及分散规律实验研究[J].石油学报,2008,29(1):124-127.
    [146] Henry L. Jakubauskas. Use of A-B block polymers as dispersants for non-aqueous coating systems [J]. Jounral of Coatings Technology,1986,58(736):71.
    [147]邱冠周,胡岳华,王淀佐.颗粒之间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993:82-101.
    [148]刘福春.纳米材料浓缩浆及其在涂料中应用的研究[D].沈阳:中国科学院金属研究所,2002.
    [149]崔洪梅,刘宏,王继扬.纳米粉体的团聚与分散[J].机械工程材料, 2004, (8):38-41.
    [150]贾晓林,谭伟.纳米粉体分散技术发展概况[J].非金属矿, 2003, (4):1-3.
    [151]马文有,田秋,曹茂盛.纳米颗粒分散技术研究进展——分散方法与机理(1) [J].中国粉体技术,2002, (3):28-31.
    [152]汤志松,刘润静,郭奋.偶联剂在纳米CaCO3表面改性中的作用[J].北京化工大学学报,2004,31(4):1-4.
    [153] J.W inkler, E. Klinke et al. Theory for the deagglomeration of pigment clustes in dispersion machinery by mechanical forces. I/II. [J]. Journal of Coatings Technology, 1987, 59(754): 35-45.
    [154] James O. Stofer, Maher Fahim. Ultrasonic dispersion of pigment in water based paints[J]. Journal of Coatings Technology,1991, 63(797): 61.
    [155] S. E. Booth. Ultrasonics as a method of mixing dispersion and homogenization. [J]. Paint and Resin, 1986, 56(6): 17.
    [156]黄毅,彭兵,柴立元等.聚合物分散剂对纳米TiO2水悬浮液分散稳定性的影响[J].中国粉体技术,2006,(02) :24-28.
    [157]武照强,冯开才,刘振兴.超分散剂[J].现代塑料加工应用,2001,(05):45-49.
    [158]周峰.聚合物(超)分散剂的合成及分散性能研究[D].山东师范大学, 2000.
    [159]武利民.关于纳米涂料的研究开发与产业化[J].新材料产业,2002(2):60-62.
    [160]武利民.关于纳米涂料中存在的一些认识问题[J].中国涂料,2001(5):14-15.
    [161]陈津,魏丽乔,许并社等.纳米非金属功能材料[M].化学工业出版社,2007.
    [162]周树学,武利民.纳米材料在涂料中的应用研究[J].中国涂料,2001, (3):33-35.
    [163]周树学,武利民.纳米涂料制备技术及其系列化产品研究开发[J].材料导报,2002,16(3):41-43.
    [164]韩恩厚,刘福春,柯伟.纳米复合涂料的研究与应用[A].第二届全国重防腐蚀与高新涂料及涂装技术研讨会论文集[C],2004.
    [165]剧金兰,张鑫,赵石林.纳米涂料的开发与应用国内外发展情况综述[A].纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C],2001.
    [166]曾玉燕,沈培康.纳米复合建筑涂料的设计和表征[A]. 2003年中国纳微粉体制备与技术应用研讨会论文集[C],2003.
    [167]陈钢.超音速电弧喷涂枪研制[D].北京:北京工业大学,2001.
    [168]皮涛,李京龙,李长久.低速大熔滴模拟热喷涂熔滴扁平化过程的研究[J].甘肃工业大学学报. 1998(12):24-28.
    [169] R.Ghafouri-Azar, S. Shakeri, S. Chandra, J. Mostaghimi. Interactions between molten metal droplets impinging on a solid surface [J]. International Journal of Heat and Mass Transfer 46(2003) 1396-1407.
    [170] Watanabe,Kuribayashi I,Hnda T and Kanzawa A. Deformation and solidification of a droplet on a cold substrate [J]. Chem. Eng. Sci., 1993,47:3059-3065.
    [171]杨庆功.电弧喷涂过程的数值模拟[D].合肥:合肥工业大学,2006.
    [172] H Lubanska. Correlation of spray ring data for gas atomization of liquid metals[J]. Journal of Metals,1970(22):45.
    [173] T H Van Steenkiste,etal. Kinetic spray coatings [J]. Surface and Coatings Technology,111 (1999) 62-71.
    [174]童秉纲等.气体动力学[D].高等教育出版社,1990.
    [175] Bertagnolli M,Marchese M,Jaccuci G. Modeling of particles impacting on a rigid substrate under plasma spraying conditions. [J]. Thermal Spray Technology,1995, 4(l):41-49.
    [176]赵欣.异形喷嘴射流特性的实验研究[D].天津:天津科技大学,2005.
    [177]侯凌云,侯晓春.喷嘴技术手册[M].中国石化出版社,2007 :27-29
    [178]李航.喷嘴及其在涂装生产线上的应用[J].成组技术与生产现代化, 2009, (02) :57-59
    [179]管志川,陈庭根,胡永宏等.长圆形出口喷嘴射流特性的实验研究[J].石油大学学报. 1993,(5):42-46.
    [180]李久生,马福才.喷嘴形状对喷洒水滴动能的影响[J].灌溉排水. 1997,16(2):1-6.
    [181]李英能,李久生等.节能异型喷嘴水利性能研究及其研制[J].灌溉排水.1990,9(2):43-50.
    [182] T. Wiederkehr, H. Müller, B. Krebs, M. Abdulgader. A Deposition Model for Wire Arc Spraying and Its Computationally Efficient Simulation [C]. ITSC 2009: Proceedings of the International Thermal Spray Conference, May 4-7, 2009. Las Vegas, Nevada, USA. p 492-498.
    [183]古丽亚.电弧喷枪流场研究与数值模拟分析[D].北京:清华大学,2003.
    [184] Antonio J K,Ramabhadran R,Ling T L. A framework for trajectory planning for automated spray coating [J]. International Journal of Robotics and Automation, 1997, 12(4): 124-134.
    [185] Ramabhadran R, Antonio J K. Planning spatial paths for automated spray coating application [J]. Proc 1996 IEEE Int’l Conference on Robotics and Automation, 1996(4): 1255-1260.
    [186] Ramabhadran R, Antonio J K. Fast Solution Techniques for a Class of Trajectory Planning Problems with Applications to Automated Spray Coating [J]. IEEE Transactions on Robotics and Automation, 1997, 13(4): 519-530.
    [187]王炎炎,赵德安,王振滨等.喷漆机器人喷枪最优轨迹规划的研究[J].江苏理工大学学报, 2001, 22(5):55-60.
    [188]吴迪光.变分法[M].北京:高等教育出版社,1987.
    [189]汪树玉,杨德铨,刘国华,张科锋.优化原理、方法与工程应用[M].浙江:浙江大学出版社,1991.
    [190]符曦.系统最优化及控制[M].北京:机械工业出版社,1998.
    [191]王训遒.纳米CaCO3的改性、分散及其复合涂料的制备[D].郑州大学,2006
    [192]王亮.纳米碳酸钙和纳米氧化铝的表面官能化改性及应用研究[D].北京化工大学,2008
    [193]刘琪,崔海信,顾微,林春梅,李颖.硅烷偶联剂KH-570对纳米二氧化硅的表面改性研究[J].纳米科技, 2009, (03) :15-18
    [194]刘国杰.功能性硅烷偶联剂在涂料中的应用[J].现代涂料与涂装, 2009, (02) :41-46.
    [195]邬继荣,陈利民,许文东.新型硅烷偶联剂研究进展[J].化工生产与技术, 2009, (04) :48-50,10.
    [196]李宝智,王文利.硅烷偶联剂用于非金属粉体表面改性的机理及应用中应注意的问题[J].中国粉体工业, 2006, (04) :12-14.
    [197]李桂林.环氧树脂与环氧涂料[M].北京:化学工业出版社,2003.
    [198]王宇新,姜忠义译.扩散:流体系统中的传质[M].北京:化学工业出版社,2002.
    [199]吴人洁.高聚物的表面与界面[M].北京:科学出版社,1998.
    [200] Lin C T. Green chemistry in situ phosphatizing coatings progress in organic coatings [J]. Progress in Organic Coatings, 2001, 42(14):226~235.
    [201] N. Hussary, J. Heberlein. Primary Breakup of Metal in the Wire Arc Spray Process. ITSC 2003: Advancing the Science & Applying the Technology, Published by ASM International, Materials Park, Ohio, USA, 2003.
    [202]周学杰,汤志刚,张三平等.阳极金属喷涂层在海水中的电化学性能[J].装备环境工程,2006,3(1):52-55.
    [203]周学杰,汤志刚,张三平等.金属喷涂层在海水中的腐蚀行为[J].腐蚀科学与防护技术,2004,16(4):236.
    [204]安云岐,陈阶亮,洪伟.海洋环境钢桥梁电弧喷铝复合涂层体系防护寿命预测[J].有色金属(冶炼部分), 2006(z): 80-82.
    [205] Neuder H,Sizemore C, Kolody M. Molecular design of in situ phosphatizing coatings(ISPCs)for aerospace primers [J]. Progress in Organic Coatings, 2003,47(16):225~232.
    [206]郑顺兴.漆前表面预处理技术的发展[J].表面技术,2004,33(1):1~3.
    [207]张金涛,胡吉明,张鉴清.金属涂装预处理新技术与涂层性能研究方法进展[J].表面技术,2005,34(1):1~4.
    [208]张丽,霍东霞,刘大壮等.三聚磷酸铝在水性乳胶涂层中的防锈机理研究[J].腐蚀科学与防护技术,2004,16(5):328-330.
    [209]王受谦.防腐蚀涂料与涂装技术[M].北京:化学工业出版社,2002.
    [210]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层[J].腐蚀与防护,1998,19(3):99.
    [211] Mansfeld F,Kending M W, ASTM STP 866,1985,(122).
    [212]李玮.环氧重防腐涂层体系失效过程的电化学阻抗谱研究[D].北京化工大学,2007.
    [213]吴丽蓉,胡学文,许崇武.用EIS快速评估有机涂层防护性能的方法[J],腐蚀科学与防护技术,2000,12(3):182.
    [214]张而耕等.纳米复合涂层对碳钢防腐性能的交流阻抗评定[J].腐蚀科学与防护技术, 2002,(6): 337~339.
    [215] Arvin, Charles Leon. Advanced materials synthesis at the nano and macro scale- An electrochemical approach [D]. University of Notre Dame,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700