干白葡萄酒用高产多糖酿酒酵母的筛选及其发酵特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优质葡萄酒需要具有产区特征、能够体现葡萄酒特色和风格的优良酵母菌种,因为酵母多糖可以增强葡萄酒的酒石、蛋白和色素单宁的稳定性,平衡葡萄酒的各个组份,增强酒的圆润感和后味,增加葡萄酒香气的复杂性。然而在目前,我国在葡萄酒酵母的研究和利用方面还处于起步阶段。因此,筛选具有我国产地特色的高产多糖酵母菌株对我国葡萄酒尤其是白葡萄酒的生产具有重要的意义。
     试验采用苯酚-硫酸法对120株酵母产多糖的能力进行初步筛选,获得3株多糖产率高于对照或与对照相当的菌株,即:W-15、NX-4、NE-18,它们的多糖产率分别为2.23%、2.20%、2.17%,高于对照菌株VL1和AWRI796的多糖产率2.15%和2.17%。该3株菌株形态学、生理生化以及分子生物学鉴定的(Saccharomyces cerevisiae)菌株,测序结果的同源率为99.6%(W-15),100%(NX-4),100%(NE-18)。菌株发酵力和耐受性试验的结果显示:W-15和NX-4在起酵速度和发酵的持久力方面不符合工业生产的要求;而NE-18的耐受性符合干白葡萄酒在发酵过程中对耐受性的要求。
     随后,在18℃的条件下,以2株工业菌株为对照,将初筛获得的3株酵母同时进行小容器发酵试验,结果表明:W-15的起酵速度和发酵用时都不及对照菌株,W-15的理化指标当中残糖量不符合国家标准;NX-4的起酵速度与对照菌株VL1相当,发酵用时与对照菌株AWRI796相当;NE-18的发酵速度低于对照菌株VL1,高于对照菌株AWRI796,发酵用时与对照菌株VL1相当。
     最后,对利用筛选菌株发酵所得酒进行相关试验结果发现:酵母的产多糖能力越强,发酵得酒的蛋白质稳定性和酒石酸冷稳定性越好酒样的香气也越复杂,所含芳香类化合物的种类越多、浓度越高;感官品评结果表明,NE-18发酵得酒的感官品质与活性干酵母VL1相当,优于NX-4和对照菌株AWRI796,而NE-18所得酒比其它三株酵母发酵得酒更能保持葡萄品种本身的香气。
     研究结果:NE-18菌株的各方面性能符合选育目标,适于优质干白葡萄酒生产的要求。
The production of high-quality wine requires fine wine yeast strains, which can bring special characters and styles to the wine. The yeast polysaccharide can increase the stability of tartar, protein, and tannin and pigment, keep the balance of wine, enhance the round feeling after being tasted, and improve the complexity of flavor. However, studies on the yeast strains applied to winemaking in our own country such as screening and usage are few. Therefore, it’s very important to screen the yeasts rich in polysaccharide for winemaking in China.
     The polysaccharide production rates of 120 Saccharomyces cerevisiae strains were preliminarily screened by the phenol-sulfuric acid method and three strains with higher polysaccharide production were achieved. The polysaccharide production rate of W-15, NX-4, and NE-18 were 2.23%、2.20%、2.17%, their rate were higher than the VL1 :2.15% and AWRI796:2.17%, respectively. After a series of experiments done by biochemical methods, physiological characteristics and molecular biology identification methods, these three strains were identified as Saccharomyces cerevisiae strains. The results of sequences analysis showed that the homology of W-15 was 99.6%, NX-4 was 100%, and NE-18 was 100%. Subsequent experiments on the fermentative properties of them, including the fermenting power, and resistant capability, demonstrated that the resistant capability of NE-18 was desirable for the requirements of dry white wine production, and the other two strains of NX-4 and W-15 could not match the standards of fermenting power.
     Subsequently, these three yeasts screened above together with other two active dry yeasts (as the control) were put in a small container to ferment at 18℃, and the results showed that, the fermentation speed and time of W-15 did not reach the level of active dry yeast,and the physical and chemical parameters of its wine could not meet the requirements of dry white wine; The fermentation speed of NX-4 was the same as VL1, and its fermentation time was the same as AWRI796; the fermentation speed of NE-18 was quicker than AWRI796, but slower than VL1, and its fermentation time was the same as VL1.
     After fermentation, the final wine was analyzed, demonstrating the yeast that had higher polysaccharide capacity in fermentation, had better protein stability, and tartaric cold-stability, together with the complexity of aroma components of this wine. After being evaluated by 22 professional winetasters, the results indicated that the sensory quality of NE-18 was the same as VL1, and better than NX-4 and AWRI796.
     Therefore, NE-18 is considered as the most desirable stain for the production of dry white wine with high quality.
引文
[1] Roger B. Boulton, Vernon L. Singleton, Linda F. Bisson, Ralph E. Kunkee 著, 赵光鳌等译葡萄酒酿造学——原理及应用 [M] 。北京,中国轻工业出版社,2001(3):103-107.
    [2] 张春晖,李华著.葡萄酒微生物学[M].西安:陕西人民出版社,2003.
    [3] Aline Lonvaud-Funel. Microbiology of the malolactic fermentation: molecular aspects [J]. Microbiology Letters,1995(126):209-214.
    [4] 李华.葡萄酒酿造微生物研究进展[C].葡萄与葡萄酒研究进展.2000 年.西安:陕西人民出版社.
    [5] Alexandre Guilliermond, Les levures (The yeasts) [M], 1912.
    [6] Kreger-van Rij, The yeast: a taxonomic study [M].1st edition, 1952.
    [7] Lodder J. The yeast: a taxonomic study [M]. North-Holland Publishing Co. Amsterdam, 1970.
    [8] Kreger-van Rij, N.J.W, The Yeast, A Taxonomic Study [M], Elsevier Science Publishers. Amsterdam,1984.
    [9] Yarrow. The yeast: a taxonomic study 3rd edition [M], 1984.Gl Naumov. Genetic identification of biological species in the Saccharomyces sensu stricto complex [J]. Journal of Industrial Microbiology and Biotechnology, 1996(17):295-302.
    [10] Naumov G I, Naumova E S. & Sniegowski P D. Differentiation of European and Far East Asian populations of Saccharomyces paradoxus by allozyme analysis. [J] Int J Syst Bacteriol, 1997(47):341-344.
    [11] JA Barnett, RW Payne, D Yarrow. Yeasts: Characteristics and Identification (ed.).Cambridge University Press, Cambridge. 1983.
    [12] Green S R., Gray P P. A differential procedure applicable to bacteriological investigationin brewing [J]. Wallerstein Comm, 1950 (13):357-366.
    [13] Cavazza A,M. S. Grando and C. Zini. Rilevazione della flora microbica di mosti e vini[J]. Vignevini, 1992 (9):17-20.
    [14] Price CW, Fuson GB & Phaff HJ. Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces and Pichia [J], Microbial Re, 1978(42):161-193.
    [15] Martini A & Phaff HJ. The optical determination of DNA-DNA homologies in yeasts [J]. Annali di Microbiologia, 1973 (23):59-68.
    [16] Kurtzman CP, Smiley MJ, Jhoson CJ, Wicherham LJ & Fuson GB. Two new and closely related heterothallic species, Pichia amylophila and Pichia missisippiensis: characterization by hybridization and dexoxyribonucleic acid reassociation [J]. Int J Syst Bacterial, 1980(30), 208-216.
    [17] Holzschu DL, Tredick J, Phaff HJ. Validation of the yeast Sporidiobolus ruinenii based on its DNA relatedness to other species of the genus Sporidiobolus [J]. Curr Microbiol, 1981 (5):73-76.
    [18] Kurtzman CP. Synonym of the yeast genera Hansenula and Pichia demonstration through comparison of deoxyribonucleic acid relatedness [J]. Antonie van Leeuwenhoek, 1984(50):209-217.
    [19] Vaughan-Martina A, & Kurtzman CP. Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto [J]. Int J Syst Bacterial, 1985(35):508-511.
    [20] Vaughan-Martina A. Saccharomyces barnettii spencerorum: two new species of Saccharomyces sens[J]. Antonie van Leeuwenhoek, 1995(68):111-118.
    [21] Vaughan-Martina A, Barcaccia S & Pollacci P. Saccharomyces rosinii sp. Nov. a new species of Saccharomyces sensu lato(van der Walt) [J]. Int J Syst Bacterial, 1996 (46):615-618.
    [22] Montrocher R, Verner MC, Briolay J, Gautier C & Marmeisse R. Phylogenetic analysis of the Saccharomyces cerevisiae group based on polymorphisms of rDNA spacer sequences [J]. Int J Syst Bacteriol, 1998 (48):295-303.
    [23] Rosa de Lanos Frutos, Teresa Fernández-Espinar M and Amparo Quero. Identification of species of the genus Candida by analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers [J]. 2004(85):175-185.
    [24] Francisco Javier Las Heras-Vazquez, Lydia Mingorance-Cazorla, Josefa Marla Clemente-Jimenez, Felipe Rodriguez-Vico. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers [J]. FEMS Yeast Research, 2003 (3):3-9.
    [25] José Manuel Guillamón, Josepa Sabaté, Eladio Barrio, Josep Cano, Amparo Querol. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer(ITS)region[J]. Arch Microbiol, 1998(169):387-392.
    [26] Giuseppe Comi, Michela Maifreni, Marisa Manzano, Corrado Lagazio. Mitochondrial DNA restriction enzyme analysis and evaluation of the enological characteristics of Saccharomyces cerevisiae strains isolated from grapes of the wine-producing area of Collio(Italy)[J]. International Journal of Food Microbiology, 2000(58):117-121.
    [27] Christian A Lopes, Teresa L Lavalle1, Amparo Querol and Adriana C Caballero. Combined use of killer biotype and mtDNA-RFLP patterns in a Patagonian wine Saccharomyces cerevisiae diversity study [J]. Antonie van Leeuwenhoek, 2005(1):147-156.
    [28] Schwartz DC & Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis [J]. Cell, 1984(37): 67-75.
    [29] Carle GF & Olson MV. An electrophoretic karyotype for yeast [J]. Proc Natl Acad Sci USA, 1985 (82):3756-3760.
    [30] Chu G. Pulsed field electrophoresis in contour clamped homogeneous electric field for the resolution of DNA by size or topology [J]. Electrophoresis, 1989 (10):290-295.
    [31] Dewar K, Bernier L & Levesque RC. Electrophoretic karyotyping in fungi [J]. Adv Appl Microbiol, 2003(53):243-70.
    [32] Naumov GI, Naumov ES & Korhola M. Karyotypic relationships among species of Saccharomyces sensu, S. castellii, Sdairensis, Sunisporus and S.servazzii [J]. Syst Appl Microbiol, 1995 (18):103-108.
    [33] Petersen RF, Tillgren TN & Pi skur J. Karyotypes of Saccharomyces sensu late species [J]. Int J Syst Evol Microbio, 1999(149):1925-1931.
    [34] Cardinali G & Martiny A. Electrophoretic karyotypes of authentic strains of the sensu stricto group of the genus Saccharomyces [J]. Int J Syst Bacteriol, 1994(44):791-797.
    [35] 白逢彦,贾建华.脉冲电泳核型分析在酿酒酵母菌分类学研究中的应用 [J].微生物学报,2000,19(2):9-11.
    [36] Gutell, R R & Fox, G E. Compilation of large subunit RNA sequences presented in a structural format[J]. Nucleic Acids Res, 1988(16):175-269.
    [37] Peterson SW & Kurtzman CP. Ribosomal RNA sequence divergence among sibling species of yeasts [J]. Syst Appl Microbiol, 1991(14):124-129.
    [38] Kurtzman CP & Robnett CJ. Identification and ascomycetous yeasts from analysis of nuclear large subunit(26S)ribosomal DNA partial sequences[J]. Antonie van Leeuwenhoek, 1998(73):331-371.
    [39] Fell JW, Boekhout T, Fonseca A, Scorzetti G & Statzell-Tallman A. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis [J]. Int J Syst Evol Microbiol, 2000(50):1351-1371.
    [40] Harry van Keulen, Donald GL, Kathleen EZ and Wes Gerlosky. Yeasts present during spontaneous fermentation of Lake Erie Chardonnay, Pinot Gris and Riesling [J]. Antonie van Leeuwenhoek, 2003(83):149-154.
    [41] Valente P, Ramos JP & Leoncini O. Sequencing as a tool in yeast molecular taxonomy [J]. Can J Microbiol, 1999 (45):949-958.
    [42] Takashima M & Nakase T. Four new species of the genus Sporobolomyce isolated from leaves in Thailand [J]. Mycoscience, 2001(41):357-369.
    [43] Sugita T, Nishikawa A, Ikeda R & Shinoda T. Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification [J]. J Clin Microbiol, 1999b (37):1985-1993.
    [44] Matthias Sipiczki. Candida zemplinina sp. Nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines [J]. International Journal of Systematic and Evolutionary Microbiology, 2003(53):2079-2083.
    [45] Gloria Scorzetti, Fell JW, Fonseca A, et al. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions [J]. FEMS Yeast Research, 2002 (2):495-517.
    [46] James SA, Cai J, Roberts I.N & Collins MD. A Phylogenetic analysis of the Genus Saccharomyces based on 18s rRNA Gene Sequencer: Description of Saccharomyces kunashirensis sp.nov and Sacchromyces martiniae sp.nov [J]. Int J Syst Bacterial, 1997, 453-460.
    [47] Fleet GH & Heard GM Yeasts: growth during fermentation.In: Fleet GH (Ed) [M] Wine Microbiology and Biotechnology (pp27–54). Harwood, Chur. 1993.
    [48] Amerine MA & Kunkee RE. Microbiology of winemaking.Ann. Rev. Microbiol [J]. 1968(22):323–358.
    [49] Cuinier C. Changes in the microflora of Chinon wines during winemaking [J]. Vignes vins, 1978(269):29-33.
    [50] Amerine MA, Berg HW, Kunkee RE, Ough CS, Singleton VLUL & Webb AD The Technology of Wine Making, 4th edn[M]. AVI Publishing Company, Westport, Conn.1982.
    [51] 张彭湃.微生物菌种选育技术的发展与研究进展[J].生物学教学,200530(9):3-5.
    [52] 王慧,张立强,刘天明等.产地葡萄酒优良酵母菌株的筛选及鉴定[J].酿酒科技,2007(9):29-31.
    [53] 邹姝姝,全学军,周跃钢.酒用耐酸酵母的自然选育[J].重庆工学院学报,2003(1):22-24.
    [54] 郑晓冬,何国庆,王友永等.一株优良啤酒酵母的筛选及其生产性能试验[J].浙江大学学报,1999,25(6):599-602.
    [55] 张素华,张翠英,邹兴燕等.产香果酒酵母耐低温菌株的分离选育[J].四川食品与发酵,2005(3):30-33.
    [56] 战景娟,金勇键.山葡萄酒酵母的选育与应用[J].酿酒科技,2004(2):81-83.
    [57] G. W. Beadle, E. L. Tatum.Genetic Control of Biochemical Reactions in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 1941,27(11):499-506.
    [58] 胡卫红,陈友为,李邵兰等.CO2 激光辐照对酿酒酵母属的诱变作用[J].微生物学通报,2000,27(1):36-38.
    [59] 王康义,徐开成,夏培禹等.产酯酵母诱变育种[J].酿酒科技,1999(3):26-27.
    [60] 尹吉泰,张军,吴军等.低产硫化氢葡萄酿酒酵母的选育[J].酿酒,200633(4):46-47.
    [61] 肖冬光,韩涛,李家飚.低产杂醇油啤酒酵母菌株的选育[J].酿酒科技,2005(4):31-33.
    [62] 张丽杰,邸进申,全学军等.诱变选育高产海藻糖的酵母菌株[J].生物技术,200515(1):31-33.
    [63] 申玉香,汪志君,方维明.紫外诱变及苯黄隆抗性处理选育低双乙酰啤酒酵母[J].酿酒科技,2007(5):39-41.
    [64] Legmann, R. and Margalith, P. Intracellular snd extracellular ethanol [J]. Appl. Microbiol. Biotechnol, 1986, 23(5):995-1003.
    [65] 高年发,王淑豪,李小刚.酿酒酵母与粟酒裂殖酵母属间原生质体融合选育降解苹果酸强的葡萄酒酵母[J].生物工程学报,2000,16(6):718-722.
    [66] 高玉容.原生质体融合葡萄酒酵母用于葡萄酒降酸[J].生物工程学报,2000,16(6):59-60.
    [67] Hinchliffe,E .J.Inst Brew[M].1992(98):27-28.
    [68] Meaden , P. G.Tubb , R.S. European Brewery Convention Proceeding of the 20th Congress Helsinki[C].1985,219.
    [69] Pentlila,M.,Suikko,M-L,Lehtiben,Y.,Nikkola,M Knowles,J. K,Current Genetics[J].1987(12):413.
    [70] Cardona.P, Carrasco.P, Perez-ortin.JE, et al. A novel approach for the improvement o fstressresistance in wine yeasts[J].IntJFoodMicrobiol,2007,114(1):83-91.
    [71] 李华,刘延琳,蒋思欣等.Oenococcusoeni 苹果酸-乳酸发酵关键酶基因在酿酒酵母中的转化与表达[J].农业生物技术学报,2006,14(4):606-601.
    [72] Sutherland, C M,Henschke, P A, Langridge, P. et al. Subunit and cofactor binding of Saccharomyce scerevisiaesulfite reductase-towards developing wine yeast with lowered ability to produce hydro gensulfide[J]. Aust Jgrape Wine Res,2003(9):186-193.
    [73] Malherbe, D F, Toit, M D, Cordero-oterorr, et al. Expression of the A spergillus niger glucoseoxidase genein Saccharomy cescerevisiae and its potential applications inwine production [J].ApplMicrobiolBiotechnol,2003(61):502-511.
    [74] Bauer, H., M Horisberger, D.A.Bush, and E.Sigarlaki.Mannan as a major component of the bud scars of Saccharomyces cerevisiae. Arch.Mikrobiol.1972 (85):202-208.
    [75] Aspinall, G.O.Polysaccharides.Pergamon press, New York, 1970, 89-92.
    [76] Llauberes, R. M., D. Duboursieu, and J.-C. Villetaz. Exocellular polysaccharides from Saccharomyces in wine. J. Sci.Food Agric.1987(41):277-286.
    [77] Feuillat, M., C. Charpentier, G. Picca, and P. Bernard. Production des colloides par levures dans le vin mousseux elabore selon la methode champenoise. Rev.Fr.Oenol. 1988(111):36-45.
    [78] Dietrich, H., and E. Zimmer. Die Kolloidbestimmung von Weinen: ein Methodenvergleich. Mitt. Klost.1992 (44):19-21.
    [79] J. S. D. Bacon, V. C. Farmer, D. Jones, and Irene F. Taylor. The glucan components of the cell wall of baker's yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructureBiochem [J]. 1969,114(3): 557–567.
    [80] David J. Manners, Alan J.Masson, James C. Patterson. The structure of a β-1, 3-Glucan from Yeast Cell Walls. Biochem. J.1973A (135):19-36.
    [81] David J. Manners, Alan J.Masson, James C.Patterson. Thestructure of a β-1, 6-Glucan from Yeast Cell Walls. Biochem. J.1973B (135):11-18.
    [82] Peter N.Lipke, Rafael Ovalle. Cell wall architecture in yeast: New structure and new challenges. Bacteriology[J].1998(180):3735-3740.
    [83] 黄芳.活性多糖的研究进展[J].天然产物研究与发展,1998,1(5).
    [84] Gordon, D.B., Siamon, G. Fungal-glucansand mammalian immunity [J].Immunity, 2003(19):311-315.
    [85] 郭永亮.如何提升葡萄酒的口感—酵母产多糖的重要作用[J].中外葡萄与葡萄酒,2001(2):53-54.
    [86] 周鹏,谢明勇.多糖的生物活性[J].食品研究与开发,2001,22(2):6-8.
    [87] Darina S., Juraj L., , Livia K. Protective effects of fungal(1-3)-β-D-glucan derivatives against oxidative DNA lesions in V79 hamster lung cells. Cancer Letters, 2003(198):153–160.
    [88] Mork A C, Sun X, Liu X, et al. Regulation of (1-3) - be2ta - glucan - stimulated Ca2 + influx by p rotein kinase C inNR8383 alveolarmacrophages [J]. J Cell Biochem, 2000(78): 131-140.
    [89] Young S E , Ye J , FrazerD G, et al. Molecularmechanism of tumor necrosis factor - alpha p roduction in 1,3-beta glucan-activated macrophages[J]. Biol Chem, 2001(276):20781-20787.
    [90] Piet Loubser, The Role Of Polysaccharides In Vinification And Their Contribution To Aspects Such As Body,Better Mouthfeel And Stability,technical files of Lallemand S.A.,2003.
    [91] Moine-Ledoux v., Dubourdieu d. Role yeast mannoproteins with regard to tartaric stabilisation of wines [J]. Bulletin de l’Office international de la vigne et du vin, 2002(75):471-482.
    [92] Saucier. An assay for glucanase activity in wine [J]. Enzyme and Microbial Technology, 2004(4):537-543.
    [93] 李华.多糖对葡萄酒感官质量的作用[J].酿酒,2001,28(6):65-67.
    [94] 黄丹,刘达玉,酿酒酵母中活性多糖的提取工艺研究[J],《食品工业》2004(4):27-29.
    [95] A Barnett, RW Payne, D Ya-row.酵母菌的特征与鉴定手册[M].青岛:青岛海洋大学出版社.1991.
    [96] Eddy, A. A., Woodhead, J. S. An alkali-soluble glucan fraction from the cell walls of the yeast Saccharomyces carlsbergensis [J]. FEBS Letters, 1968(1):67-68.
    [97] 胡晓忠,冯万祥.酵母葡聚糖的制备及理化性质[J].华东理工大学学报,1999,25(5):477-479.
    [98] Stefan Freimund, Martin Sauter, Othmar Kfppeli, Hans Dutler. A new non- degraing isolation process for 1, 3-β-Dglucan of high purity from baker's yeast Saccharomyces cerevisiae [J]. Carbohydrate Polymers, 2003(54):159-171.
    [99] 张惟杰编著.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987.
    [100] 周德庆编著.微生物学试验手册[M].上海:上海科学技术出版社,1986.
    [101] 苏畅,肖冬光,许葵.几种进口葡萄酒活性干酵母发酵性能比较[J].酿酒科技,2004(1):30-32.
    [102] 俞然,张春娅,王树生等.耐低温耐酒精白葡萄酒酵母的选育[J].中外葡萄与葡萄酒,2003(3):51-53.
    [103] 李华,刘曙东,王华等.葡萄酒感官评价结果的统计分析方法研究[J].2006(2):126-137.
    [104] Seung-Joo Lee, Ann C.Noble.Characterization of odor-active compounds in Californian Chardonnay wines using GC-Olfactometry and GC-Mass spectrometry [J].J.Agric Food Chem, 2003(51):8036-8044.
    [105] Eduardo Boido, Adriana Laoret, Karina Medina. Aroma composition of Vitis vinifera cv.Tannat: the typical red wine from Uruguay [J].J.Agric.Food Chem, 2003(51):5408-5413.
    [106] M.L. Sanz, M. Villamiel, I. Martínez-Castro. Inositols and carbohydrates in different fresh fruit juices [J]. Food Chemistry, 2004(87):325-328.
    [107] Sandra C. Diéguez, Lucía C. Lois, Esperanza F. Gomez. Aromatic composition of the Vitis vinifera grape Albarińo [J]. Lebensm.-Wiss. u.-Technol, 2003(36):585-590.
    [108] Maria Pilar Martí, Montserrat Mestres, Cristina Sala. Solid-phase microextraction and gas chromatography olfactometry analysis of successively diluted samples. A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma [J].J. Agric Food Chem, 2003(51):7861-7865.
    [109] Lodder M. Culea, M. Oros, O. Cozar. Aroma compounds and antioxidants from red wine by GC/MS[R]. Fifth General Conference of the Balkan Physical Union, 2003.
    [110] Alejandro Calleja, Elena Falqué. Volatile composition of Mencía wines [J]. Food Chemistry, 2005 (90):357-363.
    [111] Teresa Garde Cerdán, Sara Rodríguez Mozaz, Carmen Ancín Azpilicueta.Volatile composition of aged wine in used barrels of French oak and of American oak[J]. Food Research International, 2002(35):603-610.
    [112] JA Barnett, RW Payne, D Yarrow. Yeasts, Characteristics and Identification, 3rd edn Cambridge University Press.2000.
    [113] 李华.酵母甘露糖蛋白对葡萄酒酒石稳定性的影响研究[J].食品科学,2003,24(10):104-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700