重金属吸附工程菌的选育、性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用原生质体技术选育高效的重金属吸附工程菌。主要包括工程菌的原生质体诱变、原生质体融合、突变株的筛选、吸附性能、吸附机理、工程菌的毒性实验以及实际废水的处理等。
     初步探讨了4株重金属吸附菌——掷孢酵母7-3(Sorobolomycetaceae sp.7-3)、玫瑰掷孢酵母(Sporobolomycetaceae roseus)、解脂假丝酵母(Candida lipolytica)和产朊假丝酵母(Candida utilis)的抗铬机理及Cr~(6+)对它们的毒性影响,结果表明:假丝酵母的可驯化性较好;Sorobolomycetaceae sp.7-3对高浓度Cr~(6+)的耐受性最好;Candida utilis的除铬机理是表面吸附和胞内积累并存。
     考察了制备上述4株重金属吸附菌原生质体的最佳条件。一方面,选用紫外线和亚硝酸对Candida utils CR-001的原生质体进行诱变,得到了6株具有高重金属抗性的高效重金属吸附菌。另一方面,采用原生质体电融合技术获得高效的重金属吸附菌R_(32)。利用CRC2811-1和R_(32)对实际废水的处理结果表明:2株工程菌对3种工业废水的处理效果普遍好于诱变前或融合前出发菌株。此外,CRC2811-1和R_(32)对多种工业废水都具有较强的适应能力,处理能力和耐冲击能力。
     毒性实验结果表明:在吸附Cr~(6+)以前R_(32)对微生物无致突变性,对藻类、洋葱、斑马鱼和小鼠无急性毒性、慢性毒性和蓄积毒性;吸附Cr~(6+)后,常规水处理中的各种回收和杀菌措施可以降低出水中R_(32)的量,使出水排入江河后不会对环境中的各种生物产生不良的影响。
The protoplast technology was used to breed the effective heavy metal sorption engineering strains in this research, including preparation of parental strains protoplast, protoplast-induction and protoplast-fusion of engineering strains, selection of mutants, capability and mechanism of sorption of mutants, toxicity experiment, and treatment of real wastewater, etc.The Cr6+-resistance mechanisms of four heavy metal sorption strains , namely Sporobolomycetaceae sp. 7-3, Sporobolomycetaceae roseus, Candida lipolytica, Candida utilis, and the toxicity of Cr6+ on them have been discussed elementarily. The results showed that acclimatization of Candida sp. was better than Sporobolomycetaceae sp., and the Cr6+-resistance of Sporobolomycetaceae sp. 7-3 was the best of the four. Removal of Cr6+ by Candida sp. was depended on both surface sorption and intracellular accumulation.The optimal condition of protoplast preparation of those four strains had been studied. Then ultraviolet and HNO2 were selected as the mutagens to perform induction mutation towards Candida utilis protoplast of CR-001. Six mutants which possessed high heavy metal removal efficiency and high resistance to Cr6+ were obtained. On the other hand , protoplast-electricity-induced fusion was used to construct high-efficiency heavy metal sorption strains. CRC2811-1 and R32 were used to treat real wastewater. The results showed that treatment effects of CRC2811-1 and R32 of three kinds of industry wastewater were better than the original strains before indution or fusion, especially of the planting wastewater. Furthermore, CRC2811-1 and R32 possessed adaptability, treatment ability and shock resistant ability to a lot of industry wastewater.The results of toxicity experiments showed that R32 would not cause acute, chronic, cumulative and genetical toxicity effect on algae, Allium cepa, Zebra, fish and mice before it absorbed Cr. The recovery and sterilization measurement in routine water treatment could reduce most of the R32 in effluent. This may ensure that the effluent would not cause any ill effect on all kinds of biology in the environment after it was discharged into the river.
引文
[1] 伦世仪.环境生物工程.北京:化学工业出版社,2002:309~320.
    [2] 冯彬,张利民.电镀重金属废水治理技术研究现状及展望.江苏环境科技,2004,17(3):38~40.
    [3] 刘萍,曾光明,黄瑾辉,牛承岗.生物吸附在含重金属废水处理中的研究进展.工业用水与废水,2004,35(5):1~5.
    [4] Texier A. C., Andres Y., Lecloiree P.. Selecting biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa. Environmental Science and Technology, 1999, 33 (3): 489~495.
    [5] 刘月英,李仁忠,张秀丽,薛茹,傅锦坤.固定化地衣芽孢杆菌R08吸附pb~(2+)的研究.微生物学报,2002,42(6):700~705.
    [6] 李清彪,刘刚,胡月琳,邓旭,吴元菲.黄孢展齿革菌对镉离子的吸附.离子交换与吸附,2001,17(6):501~506.
    [7] Mameri N., Boudries N., Addour L.. Batch Zinc biosorption by a bacterial nonliving Streptomyces Rimosus biomass. Water Research, 1999, 33(6): 1347~1354.
    [8] 陈勇生,孙启俊,陈钧,庄源益,戴树桂.重金属的生物吸附技术研究.环境科学进展,1997,5(6):34~43.
    [9] 刘恒,王建龙,文湘华.啤酒酵母吸附重金属离子铅的研究.环境科学研究,2002,15(2):26~29.
    [10] Guangyu Y., Virarghavan T.. Heavy metal removal in a biosorption column by immobilized M. Rouxii biomass. Bioresource Technology, 2001, 78(3): 243~249.
    [11] Aloysius R., Karim M. I. A, Ariff A. B..The mechanism of cadmium removal from aqueous solution by nonmetabolizing free and immobilized live biomass of Rhizopus oligosporus. World Journal of Microbiology and Biotechnology, 1999, 15(5): 571~578.
    [12] Bayramoglu G., Bektas S., Arica M. Y.. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 2003, 101(3): 285~300.
    [13] 陈敏,甘一如.重金属的生物吸附.化学工业与工程,1999,16(1):19~25.
    [14] Jinbai Y., Bohumil V.. Biosorption of uranium on Sargassum biomass. Water Research, 1999, 33 (15): 3357~3363.
    [15] 刘刚,李清彪.重金属生物吸附的基础和过程研究.水处理技术,2002,28(1):17~21.
    [16] Yu Q. M., Matheickal J. T., Yin P. H.. Heavy metal uptake capacities of common marine macro algal biomass. Water Research,, 1999, 33 (6): 1534~1537.
    [17] Asma S., Muhammed I.. Bioremoval of cadmium from aqueous solution by black gram husk(Cicer arientinum). Water Research, 2003, 37 (14): 3472~3480.
    [18] Waihung L., Hong C., Kim-Hung L.. A comparative investigation on the biosorption of Lead by filamentous fungal biomass. Chemosphere, 1999, 39 (15): 2723~2736.
    [19] Jinbai Y., Bohumil V., Biosorption of uranium on Sargassum biomass. Water Research, 1999, 33 (15): 3357~3363.
    [20] Jianlong W.. Biosorption of copper (Ⅱ) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 2002, 37 (8): 847~850.
    [21] Fourest E., Volesky B.. Contribution of sulphonate guoups and alginate to heavy metal biosorption by the dry biomass of Sargassumfluitans. Environmental Science Technology, 1996, 30 (1): 277~282.
    [22] 刘月英,傅锦坤,胡洪波,汤丁亮,林种玉,倪子绵,于新生.金霉素链霉菌废菌丝体吸附金(Au~(3+))特性的表征.科学通报,2001,46(14):1179~1182.
    [23] 王保军,杨慧芳,李文忠.烟草头孢霉F_2对氯化汞解毒作用的研究.环境科学学报,1992,12(3):275~281.
    [24] Bai R. S., Abraham T. E.. Studies on enhancement Cr(Ⅵ) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 2002, 36 (5): 1224~1236.
    [25] F维戈利奥.综述回收金属的生物吸附法.国外金属矿选矿,1998,(12):27~35.
    [26] 施巧琴,吴松刚.工业微生物育种学.第二版.北京:科学出版社,2003:68~98.
    [27] 陶文祈.工业微生物生理与遗传育种学.北京:中国轻工业出版社,1997:102~114.
    [28] 焦瑞身.生物工程概论.北京:化学工业出版社,1991:27~32.
    [29] Kim K. S., Cho N. Y., Pai H. S.. Mutagenesis of Micronospora rosarian by using protoplasts and mycelial fragment. Applied and Environmental Microbiology, 1983, 46 (3): 689~693.
    [30] 魏赛金,程新,涂国全.南昌霉素A产生菌原生质体诱变选育研究.江两农业大学学报,2004,26(3):427~430.
    [31] 彭益强,贺淹才,全成恒,苏丽政.用原生质体诱变选育高植酸酶活的黑曲霉变异株.微生物学杂志,2002,22(5):7~9.
    [32] 罗强,孙启玲.原生质体诱变选育透明质酸菌株及发酵条件的优化.四川大学学报(自然科学版),2003,40(5):949~952.
    [33] 陈春涛,王岁楼,卫军.产类胡萝卜素酵母菌原生质体的制备、再生与诱变.生物技术,2002,12(3):23~25.
    [34] 张忠光编著.真菌原生质体技术.湖南:湖南科学技术出版社,2003:95~96.
    [35] Kao K. N, Michayluk M. R. A method for high-frequency intergeneric fusion of plant protoplasts. Planta. 1974, 115: 355~367.
    [36] 张志光编著.真菌原生质体技术.湖南:湖南科学技术出版社,2003:77.
    [37] 周东坡,平文祥.微生物原生质体融合,哈尔滨:黑龙江科学技术出版社,1990:87~93.
    [38] 彭志英.食品生物技术.北京:中国轻工业出版社,1999:63~82.
    [39] Fodor K., Hadlaczky G.. Y., Alfoldi L. Reversion of B. megaterium protoplasts into bacillary from J. Bacteriology 1976, 121: 390~391.
    [40] Schaeffer P., Brigitte C., Hotchkiss R. D.. Fusion of bacterial protoplasts. National Academy of Sciences, 1976, 73 (6): 2151~2155.
    [41] 江行娟,杨庆云,任大明.枯草杆菌通过细胞融合的质粒转移.遗传学报,1981,8(1):1~7.
    [42] 林炜铁.酿酒酵母拆合技术的研究.华南理工大学学报(自然科学版),1991:19(1):1~7.
    [43] 刘党生.利用原生质体诱变筛选L-异亮氨酸高产菌株.沈阳药学院学报,1990,7(1):19~23.
    [44] 周东坡,平文祥,贾树标.原生质体融合选育赖氨酸高产菌种的研究.微生物学报,1991,31(4):287~292.
    [45] 张修军,周启.利用同源菌株融合改良农抗5102产生菌.华中农业大学学报,1997,16(1):1~4.
    [46] 王金盛,郝德阳,李春波,扈雪梅.棘孢小单胞菌原生质体的融合育种.山东大学学报(自然科学版),1999,34(2):219~223.
    [47] 方霭祺.耐热酵母与酿酒酵母原生质体融合的研究.生物工程学报,1990,6(3):224~229.
    [48] 曾云中,吴雪昌,金珊.耐高温酿酒酵母的选育.杭州大学学报(自然科学版),1992,19(3):327-335.
    [49] 王金盛,郝德阳,李春波.利用电场诱导原生质体融合技术选育高产耐高温酵母融合株.中国调味品,1998,(9):11~13.
    [50] Millam S., Payne L. A., Mackay G. R.. The integration of protoplast fusion derived material into a potato breeding program. Euphytica, 1995, 85 (1~3): 451~459.
    [51] Lima N., Moreira C., Teixeira T. A.. Introduction of flocculation into industrial yeast Saccharomyces cerevisiae sake by protoplast fusion. Microbios, 1995, 81 (328): 187~197.
    [52] Gokhale D. V., Puntambekar U. S., Deobagkar D. N. Protoplast fusion of Candida tropicalisfor enhancing phenol degradation. Applied Microbiology and Biotechnology, 1995, 43 (3): 534~538.
    [53] Sivan A., Thomas J. C., Dubacq J. P.. Protoplast fusion and genetic complementation of pigmentmutation in the red microalga Protophytldium sp. Journal of Phycology, 1995, 31 (1): 167~172.
    [54] Hocart M. J., Licias J. A., Peberdy J. F.. Parasexual recombination between W-pathotype and R-pathotype of Pseudocercosporella-hepotrichoides through protoplast fusion. Mycological Research, 1993, 97: 977~983.
    [55] Akagi H., Tagnchi T., Fujimura T. Stable inheritance and expression of the CMS traits introduced by asymmetric protoplast fusion. Theoretical and Applied Genetics, 1995, 91 (4): 563~567.
    [56] Waiters T. M., Earle E. D.. Organellar Segregation, rearrangement and recombination in protoplast fusion-dreived Brassica-oleracea Calli. Theoretical and Applied Genetics, 1993, 85 (6~7): 761~769.
    [57] Kell A., Glasser R. W.. On the mechanical and dynamic properties of plant-cell membrance their role in growth, direct gene-transfer and protoplast fusion. Journal of theoretical biology, 1993, 160 (1): 41~62.
    [58] 葛岚,程树培.跨界原生质体融合产物细胞遗传物质整合过程中DNA含量变化.南京大学学报(自 然科学),1997,33(3):381~385.
    [59] 陈劲春,尉渤,周代福.原生质体技术在工业微生物育种中的应用.工业微生物,1997,27(4):34~36.
    [60] 金志刚,朱彤怀.污染物生物降解.上海:华东理工大学出版社,1997:124~158.
    [61] Wang Y. W., Chen Y. H., Chen N.. Hybrid strains for killing mosquitoes and lepidopters produced by protoplast fusion between Bacillus sphaericus and Bacillus thuringiensis. China Journal of Biotechnology, 1988, 2: 230~233.
    [62] Kolenc R. J.. Transfer and expression of Mesophilic plasmid mediated degradative capacity in a Psychrotrophic Bocterium. Applied Environmental Micrlbiol, 1988, 54 (3): 638~641.
    [63] 吴秀玲,毕学军.微生物遗传学技术发展及其在环境工程中的应用.安徽建筑工业学院学报,2001,9(1):73~78.
    [64] 李伟民,江映翔,尹大强,王连生.微生物选育技术在废水生物处理中的应用进展.环境污染治理技术与设备,2001,2(4):49~52.
    [65] 邱泽生.基因工程.北京:首都师范大学出版社,1992:1~15.
    [66] 雷永从,罗人明,国洁.利用工程菌处理废水的研究进展.河北工业科技,2004,21(6):59~61.
    [67] Lewandonaki (G. A.. Reactor design for hazardous waste treatment using a white rot fungus. Water Resource, 1990, 24 (1): 75~79.
    [68] Rdij M. W.. Contonuous degration of trichloroethylene by Xxanthobatcer SP. Strain Py2 during growth on ropene. Applied Environmental Microbiol, 1995, 61 (8): 2936~2941.
    [69] 杜丽平,闻建平.复合诱变菌处理氨氮废水.上海环境科学,2002,(1):15~16.
    [70] 廖劲松.原生质体融合选育高效菌株净化PVA工业废水的研究.郑州工程学院学报,2001,(2):84~90.
    [71] Yu J. X., Pang Y., Tang M. J.. Highly toxic and broad-spectrumin secticidal Bacillus Thuringiensis engineered by using the transposon Tn917 and protoplastfusion. Current Microbiology, 2001, 43 (2): 112~119.
    [72] 程树培,陈亮.遗传工程菌Fhhh降解精对苯二甲酸与mnp基因表达.环境科学学报,2002,(1):1~5.
    [73] 李尔炀,郑晓林,史乐文.工程菌处理高纯二甲醚生产废水的研究.环境科学与技术,2003,(2):47~48.
    [74] Kuroda K., Seda M., Shibasaki S.. Cell surface engineering yeast with ability obind, and self aggregateirre sponseto, coperion. Applied Microbiol Biotechnology, 2002, 59: 259~264.
    [75] Gressel J.. Potential failsafe mechanisms against the spread and introgression of transgenic hypervirulent biocontrol fungi. Trends Biotechnology, 2001, 19 (4): 149~154.
    [76] Williams E. J.B., Hurst L. D.. The proteins of linked genes evolve at similar rates. Nature, 2000, 407: 900~903.
    [77] Gebhard E, Smalla K. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. Microbiology Ecology, 1999, 28 (3): 261~272.
    [78] Nielsen K. M., van Elsas J. D., Smalla K.. Transformation of Acinetobacter sp. Strain BD413(pFG4Delta nptⅡ) with Transgenic Plant DNA in Soil Microcosms and Effects of Kanamycin on Selection of Transformants. Applied and Environmental Microbiol, 2000, 66 (3): 1237~1242.
    [79] Joersbo M.. Advances in the selection of transgenic plants using non-antibiotic marker genes. Physiologia Plantarum, 2001, 111 (3): 269~272.
    [80] Schubbert R., Renz D., Schmitz B.. Foreign M13 DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc. Natl. Acad. Sci. USA, 1997, 94: 961~966.
    [81] Doerfler W., Schubbert H., Heller J.. Foreign DNA in mammalian systems. APMIS Suppl, 1998, 106: 62~68.
    [82] Doblhoff-Dier P., Bachmayer H., Bennett A.. Safe biotechnology 10: DNA content of biotechnologicai process waste. The safety in biotechnoiogy working party on the European Federation of biotechnology. Trends Biotechnol, 2000, 18: 141~146.
    [83] 程鲁榕,邓秀珍.紫外线诱变原生质体选育核黄素高产菌株.微生物学通报,1993,20(1):19~21.
    [84] 杜珠还,张泉渡.紫外线利氯化锂对棒状杆菌原生质体的诱变作用.生物工程学报,1985,1(4):59~62.
    [85] 李庆余,朱宝成.维生素B2产生菌原生质体诱变选育.微生物学报,1990,30(4):312~313.
    [86] 王弘,齐秀兰.紫外线诱发原生质体选育赖氨酸高产菌株.生物工程学报,1990,6(1):32~38.
    [87] 陈剑虹,曾光明,英建炎.重金属对大肠杆菌生长繁殖的影响研究.湖南有色金属,2002,18(3):35~36.
    [88] 尹华,叶锦韶,彭辉,张娜,余莉萍.掷孢酵母吸附去除铬的性能研究.环境化学,2003,22(5):469~473.
    [89] Valix M., Loon L. O.. Adaptive tolerance behaviour of fungi in heavy metals. Minerals Engineering, 2003, 16 (3): 193~198.
    [90] Yilmaz E. I.. Metal tolerance and biosorption capacity of Bacillus circulans strain EBI. Research in Microbiology, 2003, 154 (6): 409~415.
    [91] 周茂洪,张学俊,赵肖为.几种重金属离子对沼泽红假单胞菌的生物效应.微生物学通报,2003,30(3):64~68.
    [92] 林稚兰,黄秀梨.现代微生物学与实验技术.北京:科学出版社,2000,289~327.
    [93] 陈玉成.污染环境生物修复工程.北京:化学工业出版社,2003,26~30.
    [94] 张建民,王转斌.重金属离子对酵母影响的研究.微生物学通报,1999,26(1):18~20.
    [95] 王殿夫,麻丽丹,孟宪军,王东明.红发夫酵母原生质体的形成和再生.食品科学,2002,23(12): 52~55.
    [96] 傅力,丁友昉,王得培,朱正兰.里氏木霉DWC原生质体制备条件的研究.新疆农业大学学报,2003,26(2):52~55.
    [97] 刘青,刘长江,朱凤妹.克鲁丝假丝酵母原生质体形成和再生条什的研究.沈阳农业大学学报,2002,33(5):374~376.
    [98] 李梅,辛平,杨谦.球毛壳菌原生质体形成与再生研究.哈尔滨工业大学学报,2002,34(5):595~598.
    [99] 王康义,徐开成,夏培禹,李强,邵榕.产酯酵母诱变育种.酿酒科技,1999,(3):26~27.
    [100] Reinecke S. A., Prinsloo M. W., Reinecke A J. Resistance of Eisenia fetida(Oligochaeta) to cadmium after long-term exposure. Ecotoxicology Environmental Safety, 1999, 42 (1: 75~80.
    [101] 熊英,胡建平,林滨兰,郑存江.氧化亚铁硫杆菌的驯化与诱变选育.矿产综合利用,2001,(6):27~31.
    [102] Rani G., Prema A., Seema K.. Microbial biosorbents: Meeting challenges of heavy metal pollution in aqueous solutions. Current Science, 2003, 78 (8): 967~973.
    [103] Nikolle S. R., Marc E. F., Patricia A. S.. Characterization of mercury resistance mechanisms in marine sediment microbial communities. FEMs Microbiology Ecology, 1999, 30 (3): 273~284.
    [104] 李明春,姜恒,侯文强,邢来君.酵母菌对重金属离子吸附的研究.菌物系统,1998,17(4):367~373.
    [105] Mark R. B., Sanjay K., Frederick W. O.. Microbial resistance to metals in the environment. Ecotoxicology Environmental Safety, 2000, 45 (3): 198~207.
    [106] Naoto U., Rieko H., Hiroyuki H.. Effect of mitochondria on electrofusion of yeast protoplasts. Enzyme and Microbial Technology, 1998, 23 (1~2): 107~112.
    [107] Ren J. P., Dickson M. H., Earle E. D.. Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B-oleracea. Theoret Applied Gene, 2000, 100 (5): 810~819.
    [108] Ogawa K., Yoshida N., Gesnara W., Omumasaba C. A., Chamuswamg C.. Hybridization and breeding of the benomyl resistant mutant, Trichoderma harzianum antagonized to phytopathogenic fungi by protoplast fusion. Biology, Biotechnology and Biochemical, 2000, 64 (4): 833~836.
    [109] Jacobs M. F.. Expression of the subtilisin Carisberg-enconding gene in Bacillus licheniformis and Bacillus subtilis. Gene, 1995, 152 (1): 67~74.
    [110] 杜连祥.应用微生物实验方法.天津:天津科学技术出版社,1992:132~168.
    [111] Kevin K., Peter A. W.. Application of protoplast fusion to the nonconventional yeast. Enzyme and Microbial Technology, 1996, 18 (1): 45~51.
    [112] 孙君社,李雪,李军席.原生质体融合构建耐高温酵母菌株.食品与发酵工业,2002,28(5):1~5.
    [113] 张建民,韩晓弟,陈丽华,苗艳丽.不同浓度的硫离子处理酵母菌的生物学效应.聊城师院学报,2002,15(1):57~59.
    [114] Rani G, Prerna A., Seema K.. Microbial biosorbents: Meeting challenges of heavy metal pollution in aqueous solutions. Current Science, 2003, 78 (8): 967~973.
    [115] 左小明,曾云中,吴雪昌,张东妮,朱晓平.原生质体电融合酵母多倍体生理特性的研究.生物工程学报,1997,13(1):58~64.
    [116] 孟繁伊,黄权,高峰,孙红梅.酵母培养物在动物营养方面的研究进展及应用.北华大学学报(自然科学版),2004,5(1):70~74.
    [117] 管越强,张义科,陈勇,田毅.Cu~(2+)对钝顶螺旋藻(Spirulina platensis)的毒性影响.河北大学学报,2000,20(2):182~184.
    [118] 徐柳,邹方东,王忠彦,胡永松.高产胞外植酸酶酵母菌的选育.四川大学学报,2002,39:31~34.
    [119] 卫军,陈春涛,王岁楼,彭新榜,王军.法夫酵母原生质体紫外线诱变育种的研究.食品科学,2003,24(5):79~81.
    [120] 李用芳,李学梅,杨清香,刘国生,何方淑.面包酵母原生质体的制备、再生及紫外线诱变的初步研究.生物技术,2000,10(2):23~26.
    [121] Ames B. N., Maron D. M.. Revised methods for the Salmonella mutagenicity test. Mutat Res., 1983, 113: 173~215.
    [122] Russel A. M., Zhang Z., Lograsso T. A.. Mechanical properties of single crystal Yag. Acta Materialia, 2004, 52 (13): 4033~4040.
    [123] Cao H., Ihm Y., Wang C. Z.. Three-dimensional threading approach to protein structure recognition. Polymer, 2004, 45 (2): 687~697.
    [124] Jager I., Hafner C., Schneider K.. Mutagenicity of different textile dye products in Salmonella typhimurium and mouse lymphoma cells. Muta Res/Genetic Toxicology and Envir Muta, 2004, 561 (1~2): 35~44.
    [125] 国家环境保护总局.水和废水监测分析方法.北京:中国环境科学出版社,2002,201~205.
    [126] Paradiz J., Druskovic B., Skrk J., et al. Micronucleus assay in Aliium cepa irradiated roots. Muta Res, 1997, 379 (1): 94.
    [127] Bezrukov V. F., Lazarenko L. M.. Environmental impact on age-related dynamics of karyotypical instability in plants. Muta Res, 2002, 520 (1~2): 113~118.
    [128] 齐志广,秘彩莉,柏峰,黄占景,沈银柱.不同预处理对有丝分裂的影响.河北师范大学学报(自然科学版),2003,27(1):88~91.
    [129] 董建新,于秀俊,齐志广.二氧化硫对洋葱根尖生长及细胞分裂的影响.河北师范大学学报,2003,27(5):515~518.
    [130] 高扬,李学玲,辛树权.汞对洋葱根尖细胞有丝分裂的影响.吉林师范大学学报(自然科学版),2003,5(2):55~57.
    [131] 刘红玉,廖柏寒,鲁双庆.表面活性剂、酸雨和Cd~(2+)复合污染对蚕豆胚根细胞核的毒性.应用生态学报,2004,15(3):493~496.
    [132] 高杨,陈凤艳,何正飚.硒对洋葱根尖细胞有丝分裂的影响.通化师范学院学报,2003,24(2):22~25.
    [133] 许秀珍,钱晓薇.三种植物根尖细胞微核率的比较.温州师范学院学报,1998,19(3):66~68.
    [134] Vaijapurkar S. G., Agarwal D., Chaudhuri S. K.. Gamma-irradiated onions as a biological indicator of radiation dose. Radiation Measurements, 2001, 33 (5): 833~836.
    [135] Ambros P. F., Ambros I. M., Stock C.. A VNTR-sequence at lp36 frequently deleted in solid tumour is amplified during normal differentiation. Cancer Genetics and Cytogenetics, 1996, 91 (2): 175.
    [136] 张青碧,陈志群,甘仲淼,李祥,衡止昌.用Ames试验和小鼠原代细胞彗星试验检测A市生活饮用水遗传毒性。中国工业医学杂志,2004,17(4):224~226.
    [137] Cotelle S., Masfaraud J. F., Ferard J. E. Ecogenotoxicity of contaminated soil samples assessed by the Allium/Vicia root tip test. Muta Res, 1997, 379 (1): 104.
    [138] Edenharder R., Frangart J., Hager M.. Protective effect of fruits vegetables against in vivo clastogenicity of cyciophosphamide or benzo[a]pyrene in mice. Food and Chem toxicology, 1998, 36 (8): 637~645.
    [139] 陈海柳,潘纲,闫海,秦延文.六价铬抑制淡水监绿藻生长的毒性效应.环境科学,2003,24(2):13~18.
    [140] 党亚爱,王国栋,辛宝平,杨敏.几种染料抑制斜生栅藻生长的毒性效应.西北植物学报,2003,23(2):332~335.
    [141] 张伟,阎海,吴之丽.铜抑制单细胞绿藻生长的毒性效应.中国环境科学,2001,21(1):4~7.
    [142] Gocke E., Chetelat A. A., Csato M.. Phototoxicity and photogenotoxicity of nine pyridone derivatives. Muta Res/Genetic Toxicology and Envir Muta, 2004, 535 (1): 43~54.
    [143] 房英春,王冲,朱延才,宋钢,金静怡,付小燕.敌百虫对泥鳅、鲤鱼的急性毒性.安徽农业科学,2003,31(4):678~679.
    [144] 杨丽华,方展强,郑文彪.重金属对鲫鱼的急性毒性及安全浓度评价.华南师范大学学报(自然科学版),2003,(2):101~106.
    [145] 瞿建国.锌对金鱼的急性毒性及在体内的积累和分布.上海环境科学,1996,15(6):42~43.
    [146] 黄玉瑶,陈锦萍.铜离子对鳗鲡幼鱼的急性毒性.中国环境科学,1992,12(4):255~260.
    [147] 陈锡涛.镉对花鲢Aristichthys nobills幼鱼,鱼曲和鱼种的急性毒性及其安全浓度的评价.环境科学与技术,1991,(4):5~8.
    [148] 吴贤汉,江新霁,张宝录,曲艳梅.几种重金属对青岛文昌鱼毒性及生长的影响.海洋与湖沼,1999,30(6):604~608.
    [149] 廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社,1992:210~323.
    [150] 蓝伟光,杨孙楷.海水污染物对对虾毒性研究的进展.福建水产,1990,(1):41~45.
    [151] 吴晓尔,都培双,顾饶胜.胃福胶囊的急性和慢性毒性实验研究.第四军医大学吉林军医学院学报,2003,25(2):66~67.
    [152] 张敏,纪晓光,王京热.对一种强化碱性戊二醛消毒剂的毒理学评价.中国消毒学杂志,2002,19(3):1R9~191
    [153] Sanjay C, Greg E, Colin R. Genotoxicity studies with pure trans-capsaicin. Mutation Research, 2004, 557 (1): 85~97.
    [154] 那日苏,桂荣,敖长金,赵青余.酵母及其产品在畜牧业中的应用.黑龙江畜牧兽医,2004,(1):48~49.
    [155] 周元军.生物发酵饲料养猪新技术。四川畜牧兽医,2003,30(11):12.
    [156] Silva J. D., Herrmann S. M., Heuser V.. Evaluation of the genotoxic effect of rutin and quercetin by comet assay and micronucleus test. Food and Chemical Toxicology, 2002, 43 (7): 941~947.
    [157] Villasenor I. M., Canlas A. P., Faustino K. M.. Evaluation of the bioactivity of triterpene mixture isolated from Carmona retusa(Vahl.)Masam leaves. Journal of Ethnopharmacology, 2004, 92 (1): 53~56.
    [158] 庄颖,江城梅,赵红.淮河水有机提取物对小鼠遗传毒性和脂质过氧化作用.环境与健康杂志,2003,20(60):351~352.
    [159] Francisco J., Cisneros, Stacy B.. Transplacental exposure to the DNA demethylating Agent, 5-AZA-CdR, affects the sexual behavior of CD-1 male mice. Neuro Toxicology. 2004, 25 (3): 411~417.
    [160] Zhang Y., Wu X. Q., Ren Y. P.. Safety evaluation of a triterpenoid-rich extract from bamboo shavings. Food and Chemical Toxicology. 2004, 42 (11): 1867~1875.
    [161] Kurcda K., Seda M., Shibasaki S.. Cell surface engineering yeast with ability obind, and self aggregateirre Sponseto, Coperion. Applied Microbiol Biotechnology, 2002, 59: 259~264.
    [162] 余莉萍,尹华,彭辉.环境生物技术的应用及发展趋势.城市环境与城市生态,2002,15(2):52~54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700