紫杉烷化合物的抗氧化应激作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:神经保护药物是治疗神经系统疾病的重要治疗方法,具有极为广阔的开发与应用空间,现已证明证明钙拮抗剂尼莫地平对于急性缺血性脑血管病的死亡率无明显改善。替拉扎特治疗组卒中的随机对照的临床试验由于缺乏效果已被提前停止。氧自由基清除剂依达拉奉尚没有足够的临床试验证明其神经保护作用,目前人类已将众多中药应用于神经系统疾病的临床研究,目前尚缺乏证据证明其临床有效性,人类仍在积极地致力于神经保护药物的开发与研究,在自然界中寻找具有神经保护作用的化合物是开发具有神经保护作用药物的重要方法,萜类化合物是一大类植物次生产物的总称,研究显示萜类化合物具有神经保护作用,如樟芝(樟菇,最贵的蘑菇)中提取的五种二萜类化合物,在在体研究中适当浓度时表现了神经保护作用。紫杉醇是最初自红豆杉树皮中提取的一类复杂的二萜类化合物,具有含氧四环的紫杉烷环及酯侧链结构。人们对其抗肿瘤作用及其构效关系进行了深入、广泛的研究,发现有些化合物与抗肿瘤作用并无关联,本实验从具有某些结构特征的紫杉烷化合物中筛选具有抗氧化应激作用研究的化合物并对其构效关系进行研究。
     实验一氧化应激模型的建立
     目的:应用H2O2处理SK-N-SH细胞建立氧化应激细胞模型。
     方法:取对数生长期SK-N-SH细胞,调整细胞浓度为1×105/mL,分4组接种于96孔培养板,每组三个复孔,每孔100μL,37℃、5%CO2饱和湿度下培养,12小时后,加入100μL不同浓度H2O2,使各组H2O2终浓度分别为0、50、100、150μmol/L,继续培养24小时,采用MTT比色法检测各组细胞的细胞活力。
     结果:三组细胞H2O2的终浓度为50、100、150μmol/L,孵育24 h。随着浓度的增加,细胞活力与正常对照组相比(H2O2浓度为0μmol/L)均有不同程度的下降,细胞活力分别为:(99 + 3.9)%,(70.6 + 2.3)%(p<0.05),(26.1 + 1.1)%(p<0.05)。100、150μmol/L浓度组细胞活力与对照组比较有显著差异(p<0.05)。
     结论:H2O2对SK-N-SH细胞具有损伤作用,在50-150μmol/L范围内呈浓度依赖关系, 150μmol/L H2O2处理24h后细胞活力为26.1 + 1.1 %,因此将此浓度作为建立细胞模型浓度。
     实验二筛选具有抗氧化应激活性的紫杉烷化合物
     目的:筛选具有抗氧化应激作用的紫杉烷类化合物,并分析其构效关系。
     方法:实验分为空白对照组、阴性对照组、处理组、阳性对照组、正常对照组。取对数生长期Sk-N-Sh细胞,调整细胞浓度为1×105/mL,分别接种于96孔培养板,每孔160μL,37℃、5%CO2饱和湿度下培养,12小时后,各组细胞加入不同试剂。空白对照组:每孔加入40μL PBS;阴性对照组:每孔加入20μL 1640培养基,2小时后加入20μL H2O2(1.5mmol/L),使H2O2终浓度为150μmol/L;处理组:包括Taxine B、7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B、7,10-Diacetyl-2’-deoxyl-taxine A每种药物三个浓度组,共12个亚组,每亚组三复孔。每孔加入20μL不同种类、浓度的化合物,2小时后加入20μL H2O(21.5mmol/L),使H2O2终浓度为150μmol/L ,药物终浓度为1、10和100μmol/L;阳性对照组:每孔加入20μL表没食子儿茶素没食子酸酯(Epigallocatechin Gallatte,EGCG) (100μmol/L),2小时后加入20μL H2O(21.5mmol/L),使H2O2终浓度为150μmol/L ,EGCG终浓度为10μmol/L;正常对照组分别加入20μL PBS和20μL浓度为1mmol/L的7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B、Taxine B、7,10-Diacetyl-2’-deoxyl-taxine使四种紫杉烷化合物终浓度均为100μmol/L,共4个亚组。各组细胞处理24小时后MTT法检测细胞活力,HO荧光染色观察细胞核形态。
     结果:阴性对照组细胞活力27.3±0.85%。7-deacetyl-taxine B化合物浓度1、10、100μmol/L时细胞活力分别是25.9±1.609%,31.2±1.253%,57.6±3.74%(p<0.05);5-cinnamoyloxy-taxin B浓度1、10、100μmol/L时细胞活力分别是25.0±3.79%,32.5±2.458%,54.5±1.682%(p<0.05);Taxine B浓度1、10、100μmol/L时细胞活力分别是28.4±0.603%,30.5±1.967%,31.5±1.308%;7,10-diacetyl-2’-deoxyl-taxine A浓度1、10、100μmol/L时细胞活力分别是27.4±0.751%,32.4±0.971%,34.4±1.852%;EGCG浓度为10μmol/L时细胞活力为45.4±1.168%(p<0.05) ; 100μmol/L7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B以及10μmol/LEGCG处理氧化应激模型细胞后与阴性对照组比较细胞活力显著提高(p<0.05)。
     正常对照组细胞经过浓度均为100μmol/L的四种化合物7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B、Taxine B、7,10-Diacetyl-2’-deoxyl-taxine处理后,细胞活力分别为102±3.02%,95.4±7.73%,98.4±5.98%,97.8±6%,与空白对照组100±11%比较无显著差异。
     Hoechst染色显示阴性组大量细胞染色质凝聚; 100μmol/L 7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B、10μmol/L EGCG处理后染色质凝聚细胞较阴性对照组明显较少, Taxine B、7,10-Diacetyl-2’-deoxyl-taxine A处理后减少不明显。
     结论:本实验选用的四种化合物Taxine B、7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B、7,10-Diacetyl-2’-deoxyl-taxine A均为自紫杉中提取的紫杉烷类化合物,拥有共同的母环结构,具有共同的特点本试验化合物C13位乙酰基取代长侧链,C1位羟基消失,C2位乙酰基代替了苯甲酰基,C4位乙酰基消失,C5位的羟基导致氧丁环消失。他们的区别在于:Taxine B在C5位上含有羟基,C7位上含有乙酰基;7-Deacetyl-taxine B C5、C7位上含有羟基;5-Cinnamoyloxy-taxin B在C7位上含有乙酰基,C5位上含有脂溶性侧链;7,10-Diacetyl-2’-deoxyl-taxine A在C7位上含有乙酰基,C5位含有碱性性长链基团。
     结果表明经修饰后的紫杉烷并未表现抗肿瘤作用,可能与他们共同的结构特点有关:C13位取代侧链,C1位取代了羟基,C2位代之以乙酰基,C4位乙酰基消失,C5位代之以羟基导致氧丁环消失。
     7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B化合物不仅细胞毒性消失,并且使氧化应激细胞模型细胞活力显著提高,表现了抗氧化应激、神经保护作用。其中7-Deacetyl-taxine B抗氧化应激作用强于5-Cinnamoyloxy-taxin B,Taxine B、7,10-Diacetyl-2’-deoxyl-taxine A较对阴性对照比较无显著性差异。7-Deacetyl-taxine B的抗氧化应激作用最强,可能由于此化合物5、7位上相邻羟基的稳定苯氧自由基结构的作用导致了抗氧化应激作用的增强。
     本实验SK-N-SH细胞经H2O2处理24h后,Hoechst染色显示阴性组显示大量细胞染色质凝聚; 100μmol/L 7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B、10μmol/L EGCG处理后染色质凝聚细胞较阴性对照组明显较少,Taxine B、7,10-Diacetyl-2’-deoxyl-taxine A处理后减少不明显。化合物的抗氧化应激作用可能与阻止细胞质凝集,减少细胞染色质损伤有关。
     实验三、紫杉烷化合物对于H2O2诱导氧化应激损伤保护的机制研究
     目的:探讨紫杉烷类化合物抗氧化应激神经保护作用的机制。
     方法:实验分为阴性对照组和处理组,每组包含3个复孔,每孔加入160μL细胞浓度为1×105/mL的对数生长期细胞,细胞在37℃、5% CO2,饱和湿度下培养,12小时后给予药物干预。
     对照组:每孔加入20μL 1640培养基,2小时后加入20μL H2O2(1.5mmol/L),使H2O2终浓度为150μmol/L。
     处理组:包括7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B两组,每组三复孔。每孔加入20μL不同种类的化合物,2小时后加入20μL H2O2(1.5mmol/L),使H2O2终浓度为150μmol/L ,药物终浓度为100μmol/L。各组细胞处理24小时后,透射电镜观察其超微结构改变,流式细胞术观察其细胞凋亡率的变化、细胞内氧自由基的含量和细胞线粒体膜电位的变化。
     结果:
     电镜观察显示:SK-N-SH细胞经H2O2处理后表现了凋亡典型的形态特征:核染色质浓染、边集、凋亡小体形成,还出现了内质网扩张,扩张的内质网内可见少量致密物质,线粒体肿胀;经过紫杉烷化合物7-Deacetyl-taxine B(100μmol/L)、5-Cinnamoyloxy-taxin B(100μmol/L)处理后细胞凋亡现象较对照组明显减少,细胞核染色质边集少、线粒体肿胀均较前者减轻,但内质网改变不明显。
     Annexin-v/pi染色后对照组细胞中FITC-/pi- (正常细胞) 73.62±2.14%,FITC+/ pi-(早期凋亡)22.06±3.08%;5-Cinnamoyloxy-taxin B处理后FITC-/pi-(正常细胞)83.55±2.34%(p<0.05),FITC+/pi-(早期凋亡)12.68±2.36%(p<0.05);7-Deacetyl-taxine B处理后FITC-/pi-(正常细胞)比84.78±0.75%(p<0.05),FITC+/pi-(早期凋亡)5.84±2.39%(p<0.05)。紫杉烷化合物处理后正常细胞明显增多,早期凋亡数量减少,具有显著性差异(p<0.05)。
     DCFH-DA染色后流式细胞仪检测荧光强度显示:7-Deacetyl-taxine B处理组1.77±0.12(p<0.05) , 5-Cinnamoyloxy-taxin B处理组2.57±0.05(p<0.05),与对照组细胞荧光强度47.37±2.32比较有显著差异。氧化应激细胞模型经过7-Deacetyl-taxine B, 5-Cinnamoyloxy-taxin B处理后细胞内氧自由基含量显著减少(p<0.05)。
     Rhodamine123染色后流式细胞检测荧光强度显示对照组细胞荧光强度9.77±1.29,7-Deacetyl-taxine B处理组细胞荧光强度15.5±0.44(p<0.05),5-Cinnamoyloxy-taxin B处理组细胞荧光强度14.93±0.40(p<0.05),紫杉烷化合物处理后细胞荧光强度较对照组比较显著(p<0.05)。
     结论:
     1、H2O2可使SK-N-SH细胞的线粒体和内质网肿胀,染色质固缩、浓染、边集,细胞小体形成,H2O2的氧化应激损伤与诱导细胞凋亡有关。
     2、应用紫杉烷类化合物7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B化合物处理氧化应激细胞模型可使细胞凋亡率明显减少,存活率提高,线粒体肿胀减轻,线粒体膜电位明显提高,说明紫杉烷化合物的抗氧化应激、神经保护作用可能与保护线粒体、减少凋亡有关。
     3、应用紫杉烷类化合物7-Deacetyl-taxine B、5-Cinnamoyloxy-taxin B化合物处理氧化应激细胞模型可使细胞内氧自由基含量明显减少,说明紫杉烷化合物的抗氧化应激、神经保护作用可能与直接清除细胞内氧自由基有关。
Neuroprotective agents had been used to save neurons from irreversible injuries in nervous system diseases and had been an aroused general study interest. Evidence-based medical research showed there are still no agents with neuroprotective efficacy. Nimodipine had been proven to possess no efficacy on acute ischemic stroke mortality in patients; a randomized controlled clinical trial on treatment with stroke of tirilazad had been stopped because its effect was not observed; edaravone is not suitable as neuroprotective agent. Natural compounds are major origin of active compounds. Terpenes are a large class of second products of plants,neuroprotection of diterpines from the fruiting body of Antrodia camphorate had been reported. Taxols are diterpines compounds from Taxus cuspidate, we discovered some of them with certain structures and antitumor activities and some of them presenting no antitumor activity. We screened taxane compounds with antioxdation activity and discussed the mechanisms and structure-activity relationship.
     Experiment 1: Stablishment of oxidative stress cell model
     Objective: To establish oxidative Sk-N-Sh cell model with hydrogen peroxide.
     Methods:SK-N-SH cells were divided into four groups. Each group involved 3 wells of cells in 96 well plate. 100μL experimental cells in logarithmic phase after adjusted concentration of 1*105/L were vaccinated in the 96 well plate and cultured in saturated humidity at 37℃and under 5 % CO2 and 95 % air. 12 hrs later, 100μL different concentrations of hydrogen peroxide were added. The final concentrations of hydrogen peroxide of groups were successively 0, 50, 100 and 150μmol/L. After 24hrs of treatment, the cell viabilities were evaluated using 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di- phenytetrazoliumromide (MTT) assay.
     Results: Cell viabilities in different hydrogen peroxide concentrations(50,100,150μmol/L) are respectively(99 + 3.9)%, (70.6 + 2.3)%(p<0.05), (26.1 + 1.1)%(p<0.05) , cells viabilities of two groups in concentrations of 100,150μmol/L decreased obviously comparing with normal control group(0μmol/L hydrogen peroxide).
     Conclusion: Hydrogen peroxide can decrease cell viability dose-dependently within 150μmol/L. After treated with 150μmol/L hydrogen peroxide for 24hrs, cell viability was 26.1 + 1.1%, so we chose the concentration of hydrogen peroxide to establish the oxidative cell model. Experiment 2: Screening of taxane compounds using antioxidation activities using MTT assay.
     Objective: To screen taxane compounds with antioxidation Structure-Activity Relationship.
     Methods: To screen the type and concentration of taxane compounds with anti-oxidative effects, SK-N-SH cells were divided into blank control group, negative control group, treated groups, positive control group, and normal group, each of them including cells in 3 wells. 160μL cells in logarithmic phase after adjusted concentration of 1×105/L were vaccinated in the 96 well plate, and cultured in saturated humidity at 37℃and under 5 % CO2 and 95 % air. 12 hrs later, agents or PBS were added in. In blank control group, 40μL PBS was added in; in negative control group, 20μLculture medium and 2 hrs later, 20μL hydrogen peroxide (1 mmol/L) was added in. The final concentrations of hydrogen peroxide was 100μmol/L; In treated groups, there are 12 subunits including 3 concentrations of taxine B, 7-deacetyl-taxine B, 5-cinnamoyloxy-taxin B, and 7,10-diacetyl-2’-deoxyl-taxine A groups. Cells were pretreated with 20μL different types and concentrations of taxane compounds and 2 hrs later, 20μL hydrogen peroxide (1 mmol/L) was added in. The final concentrations of every agents were 1, 10, 100μmol/L, and that of hydrogen peroxide was 100μmol/L; in positive control group, 20μL Epigallocatechin Gallatte (EGCG) (100μmol/L) and 2 hrs later, 20μL hydrogen peroxide (1 mmol/L) were added in. The final concentrations of EGCG was 10μmol/L, and that of hydrogen peroxide was 100μmol/L; in normal control groups, 20μL PBS and 20μL 7-Deacetyl-taxine , 5-Cinnamoyloxy-taxin B, Taxine B, 7,10-Diacetyl-2’-deoxyl-taxine were added in. The final concentrations of four taxanes were 100μmol/L. After 24 hrs of treatment, the cell viabilities of groups were evaluated using 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di- phenytetrazoliumromide (MTT) assay and the nuclear morphological changes were observed after Hoechst 33258 treated.
     Results: cell viability of the negative group was 27.3±0.85%. Viabilities of oxidative model cells after treated with 1, 10,100μmol/L 7-deacetyl-taxine B are 25.9±1.609%,31.2±1.253%,57.6±3.74%(p<0.05) respectively, after treated with 1, 10, 100μmol/L 5-cinnamoyloxy-taxin B are 25.9±1.609%,31.2±1.253%,57.6±3.74%(p<0.05) respectively,after treated with 1, 10, 100μmol/L Taxine B are 28.4±0.603%,30.5±1.967%,31.5±1.308% respectively,and after treated with 1, 10, 100μmol/L 7,10-diacetyl-2’-deoxyl-taxine A are 27.4±0.751%,32.4±0.971%,34.4±1.852% respectively. Cell viability of the positive group (EGCG 10μmol/L) was 45.4±1.168% (p<0.05). 100μmol/L 7-deacetyl-taxine B, 5-cinnamoyloxy-taxin B and 10μmol/L EGCG improved viability of oxidative stress cell model obviously.
     Cell viabilities of the normal group were respectively 102±3.02%,95.4±7.73% , 98.4±5.98% , 97.8±6% , after treated with 100μmol/L 7-Deacetyl-taxine , 5-Cinnamoyloxy-taxin B, Taxine B, 7,10-Diacetyl-2’-deoxyl-taxine. Comparing with viability of blank group cells(100±11%), the four taxanes didn’t decrease or increase cell viability. After treated with Hoechst 33258, cell chromatin condensation was observed in the negative group. After treated by 10μmol/L EGCG, 100μmol/L 7-Deacetyl-taxine B and 5-Cinnamoyloxy-taxin B, the number of cell with condensed chromatin decreased, but not Taxine B, 7,10-Diacetyl-2’-deoxyl-taxine A .
     Conclusion: Taxine B , 7-Deacetyl-taxine B, 5-Cinnamoyloxy-taxin B, 7,10-Diacetyl-2’-deoxyl-taxine A are diterpine compounds from Taxus cuspidate with most the same ring structure. Comparing with taxol, they have the same substitutes: the side chain at the thirteenth carbon atom and the OBZ radical at the second carbon atom were substituted by acetyl radicals, the hydroxide radical at the fifth carbon atom induced the disapearance of oxetane ring, and the acetyl radical at the fourth carbon atom, hydroxide radical at the first carbon atom disappeared. 7-Deacetyl-taxine B has two hydroxide radicals at the fifth and the seventh carbon atom, Taxine B has a hydroxide radical at the fifth carbon atom and an acetyl radical at the seventh carbon atom. 5-Cinnamoyloxy-taxin B has a fat-soluble side chain radical at the fifth carbon atom and an acetyl radical at the seventh carbon atom. 7,10-Diacetyl-2’-deoxyl-taxine A has an alkalescence side chain radical at the fifth carbon atom and an acetyl radical at the seventh carbon atom.
     The result discovered that taxanes with different substitutes comparing with taxol did not present anticancer activity. It maybe attributed with that side chain at the thirteenth carbon atom and OBZ radical at the second carbon atom were substituted by acetyl radicals, acetyl radical at the fourth carbon atom, hydroxide radical at the first carbon atom disappeared, and the hydroxide radical at the fifth carbon atom induced the disappearance of oxetane ring.
     7-Deacetyl-taxine B and 5-Cinnamoyloxy-taxin B improve cell viabilities obviously and present powerful activity of anti-oxidative. 7-Deacetyl-taxine B is better than 5-Cinnamoyloxy-taxin B. Taxine B, 7, 10-Diacetyl-2’-deoxyl-taxine A have not the ability. The strongest antioxidative activity of 7-Deacetyl-taxine B may be due to the two adjacent hydroxide radicals having the ability of stabilizing the phenoxy radicals.
     After treated with hydrogen peroxide, cell chromatin condensation was observed in the negative group. After treated by 10μmol/LEGCG, 100μmol/L 7-Deacetyl-taxine B and 5-Cinnamoyloxy-taxin B, the number of cell with condensed chromatin decreased, but not Taxine B, 7,10-Diacetyl-2’-deoxyl-taxine A . So, the anti-oxidative effect of taxines may be due to that they can alleviate chromatin damage induced by oxidative stress.
     Experiment 3: Studying of mechanisms of taxanes against oxidative stress induced by hydrogen peroxide.
     Objective: To study the mechanisms of taxanes against oxidative stress induced by hydrogen peroxide.
     Methods: SK-N-SH cells were divided into control group and treated groups, each of them including cells in 3 wells. 160μL cells in logarithmic phase after adjusted concentration of 1×105/L were vaccinated in the 96 well plate, and cultured in saturated humidity at 37℃and under 5 % CO2 and 95 % air. 12 hrs later agents or PBS were added in; In control group, 20μL culture medium and 2 hrs later, 20μL hydrogen peroxide (1 mmol/L) were added in. The final concentrations of hydrogen peroxide was 100μmol/L; In treated groups, there are 2 subunits respectively treated with 7-deacetyl-taxine B and 5-cinnamoyloxy-taxin B. Cells were pretreated with 20μL two different compounds and 2 hrs later, 20μL hydrogen peroxide (1 mmol/L) was added in. The final concentration of compounds was 100μmol/L, and that of hydrogen peroxide was 150μmol/L . After 24 hrs of treatment, intracellular ROS content, mitochondrial membrane potential and apoptosis rate of groups were detected using flow cytometry assay and the micro-morphology was detected with electron microscopy.
     Results: Ultramicromorphology of control group cells showed that chromatin margination, endoplasmic reticulum swelling with some dense matter inside, mitochondrial dilation, apoptotic body appeared and 7-Deacetyl-taxine B(100μmol/L), 5-Cinnamoyloxy-taxin B(100μmol/L)obviously alleviated the dilation of mitochondrials and decreased apoptosis cells induced by oxidative stress.
     SK-N-SH cells after treated with showed features of apoptosis including nucleus shrinkage, dense aggregation of chromatin and chromatin margination chromatin margination and appearance of apoptotic body, endoplasmic reticulum swelling with some dense matter inside and mitochondrial dilation. After treared with 7-Deacetyl-taxine B, 5-Cinnamoyloxy-taxin B, the dilation of mitochondrials was obviously alleviated, but the endoplasmic reticulum swelling didn’t change.
     After annexin-v/pi staining, the livability rate and apoptosis rate of the control group were 73.62±2.14% and 22.06±3.08%. After treated with 5-Cinnamoyloxy-taxin B the two rates were respectively 83.55±2.34% (p<0.05) and 12.68±2.36% (p<0.05); and after treated with 7-Deacetyl-taxine B, they were 84.78±0.75% (p<0.05) and 5.84±2.39% (p<0.05). After treated with taxines the livability rate increased and the apoptosis rate decreased obviously comparing with control group.
     Fluorescence intensities of DCFH-DA stained cells after treated with 7-deacetyl-taxine B and 5-cinnamoyloxy-taxin B were 1.77±0.12(p<0.05), 2.57±0.05(p<0.05) showed obviously decreased comparing with 47.37±2.32 that of control group.
     Fluorescence intensities of rhodamine123 stained cells after treated with 7-deacetyl-taxine B and 5-cinnamoyloxy-taxin B were 15.5±0.44 (p<0.05), 14.93±0.40 (p<0.05) showed obviously decreased comparing with9.77±1.29 that of control group.
     Conclusion:
     1. Hydrogen peroxide can induce SK-N-SH cell to present chromatin margination, endoplasmic reticulum swelling with some dense matter inside, mitochondrial dilation and apoptotic body. The oxidative stress damage induced by hydrogen peroxide is associated with apoptosis.
     2. After treated with 7-deacetyl-taxine B and 5-cinnamoyloxy-taxin B, the dilation of mitochondrial was alleviated, the mitochondrial membrane potential was improved, the livability rate increased and the apoptosis rate decreased obviously comparing with control group. The anti-oxidative activity of taxanes may be due to protecting mitochondrial and decreasing apoptosis.
     3. After treated with 7-deacetyl-taxine B and 5-cinnamoyloxy-taxin B, intracellular ROS content decreased obviously comparing with control group cells. The antioxidative activity of taxanes may be due to eliminating intracellular ROS.
引文
1 Horn J, Limburg M. Calcium antagonists for acute ischemic stroke. The Cochrane Datebase of Systematic Reviews 2000, 1
    2 RANTTAS Investigators. A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). Stroke, 1996, 27: 1453-1458
    3 Yang Qing-Wei, Liu Ming, Zhang Shi-Hong, et al. Edaravone for acute cerebral infaction: a systematic review. Chinese J Evidence-Based Medicine, 2006, 6(1): 18- 22
    4张振学,张海霞,杨庆林.紫杉醇构效关系及其类似物的研究开发进展,天然产物研究与开发,2005,17(7):810-817
    5 Gibson G E, Huang H M. Mitochondrial enzymes and endoplasmic reticulum calcium stores as targets of oxidative stress in neurodegenerative diseases.J Bioenerg Biomembr 2004, 36(4): 335-340
    6张斌,夏作理,赵晓民等.氧化应激模型的建立及其评价.中国临床康复,2006,10(44):112-114
    7蔡曦光,许爱霞,葛斌,等.菟丝子多糖抑制衰老小鼠模型中氧自由基域的作用.第三军医大学学报,2005,27(13):1326-1328
    8幸浩洋,胡新珉,刘鸿莲,等.O3衰老小鼠模型的DNA损伤研究.华西医大学报,2001,32(2):229-231
    9 Song LH, Cai DL,Yan HL,et al. Effects of soybean isoflavone on liver oxidative stress resulting from 60Co-gamma rays. Acad J Sec Mil Med Univ 2005, 26(2):151-154
    10郑延松,李源,张珊红,等.用低浓度过氧化氢建立心肌细胞氧化损伤模型.第四军医大学学报,2001,22(20):1849-1851
    11 Farombi EO,Moller P,Dragsted LO.Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat liver cells.Cell Biol Toxicol 2004,20:1-12
    12邓勇,黄珀,陈同良,等.肾小管细胞氧化性损伤模型的建立.现代泌尿外科杂志,2004,9:144-146
    13 Jang JH, Surh YJ Protective effects of resveratrol on hydrogen peroxide induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat Res, 2001, 496(1): 181-190
    14 Jiang B,Liu JH, Bao YM,et al. Hydrogen peroxide induced apoptosis in PC12 cells and the protective effect of puerarin. Cell Biol Int,2003,27(12):1025-1031
    15 Wang Xiaofei, Perez Evelyn, Liu Ran, et al. Pyruvate Protects Mitochondria from Oxidative Stress in Human Neuroblastoma SK-N-SH Cells Brain Res. 2007, 1132(1) 1-9
    16 Wallace D R, Dodson S L, Nath A, et al. Delta opioid agonists attenuate TAT1-72-induced oxidative stress in SK-N-SH cells.NeuroToxicology, 2006, 27 (1):101-107
    1 Horn J, Limburg M. Calcium antagonists for acute ischemic stroke. The Cochrane Datebase of Systematic Reviews 2000, 1
    2 RANTTAS Investigators. A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). Stroke, 1996, 27: 1453-1458
    3 Yang Qing-Wei, Liu Ming, Zhang Shi-Hong, et al. Edaravone for acute cerebral infaction: a systematic review. Chinese J Evidence-Based Medicine, 2006, 6(1): 18- 22
    4 Chen cheng chi, Shiao young ji, Lin ruei da, et al. Neuroprotective diterpenes from the fruiting body of Antrodia camphorate. Journal of natural products,2006, 69(4): 689-691
    5张振学,张海霞,杨庆林.紫杉醇构效关系及其类似物的研究开发进展,天然产物研究与开发,2005,17(7):810-817
    6 Changhong Huo, Xiping Zhang, Cunfang Li, et al. A new taxol analogue from the leaves of Taxus cuspidate. Biochemical Systematics and Ecology, 2007, 35: 704-708
    7 Gibson G E, Huang H M. Mitochondrial enzymes and endoplasmic reticulum calcium stores as targets of oxidative stress in neurodegenerative diseases.J Bioenerg Biomembr 2004, 36(4): 335-340
    8 Wang R, Xiao X Q, Tang X C. Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate. Neuro Report, 2001, 12(12): 2629-2634
    9 Xiao X Q, Zhang H. Huperzine A attenuates amyloidβ-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res, 2002, 67: 30-36
    10 Lim H, Kim HP. Inhibition of Mammalian Collagenase, Matrix Metalloproteinase-1, by Naturally-Occurring Flavonoids.Planta Med. 2007, 73: 1267-1274
    11 Hou RC, Huang HM, Tzen JT, et al. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J Neurosci Res. 2003, 74(1): 123- 33
    12 Mandel SA, Amit T, Kalfon L et al. Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr.2008, 138: 1578-1583
    13 Badria F A,Guirguis A N,Perovic S, et al. Sarcophytolide: a new neuroprotective compound from the soft coral Sarcophyton glaucum. Toxicology, 1998, 131(2-3): 133-143
    14戴颖,朱萱.熊果酸抗实验性大鼠肝纤维化作用机制的研究.江西医药, 2008,43: 414-417
    15 Chang H J, Kim H J, Chun H S. Quantitative structure-activity relationship ( QSAR) for neuroprotective activity of terpenoid. Life sciences, 2007, 80 (9):835-841
    16 Wani M C, Taylor H L, Wall ME, et al. Plantanti-tumoragent (IV):the isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.J Am Chem Soc,1971,93: 2325-2327
    17 Schiff P B, Fant J. Horwitz S B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5): 665-667
    18 Yoshino T, Shiina H, Urakami S, et al, Bcl-2 expression as a predictive marker of hormone refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res 2006, 12 (20 Pt 1): 6116-6124
    19 Collins TS, Lee L F, Ting J P. Paclitaxel up-regulates interleukin-8 synthesis in human lung carcinoma through an NF-κB- and AP-1-dependent mechanism. Cancer Immunol. Immunother.2000, 49(2): 78-84
    20 Mhaidat N M, Wang Y, Kiejda K A, et al. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Molecular Cancer Therapeutics, 2007, 6(2): 752-761
    21 Morita H, Gonda A, Wei L, et al. 3D QSAR analysis of taxoids from taxus cuspidata var.nana by comparative molecular field approach. BioorMed Chem Lett, 1997, 7(18): 2387-2392
    22 Querolle O, Dubois J, Thoret S, et al. Synthesis of C2-C3′N-linked macrocyclic taxoids. Novel docetaxel analogues with high tubulin activity.JMed Chem, 2004, 47(24): 5937-44
    23 Xu X, Xu Z G, Luo Y F, LiW H. Study on the quantitative structure-activity relationships of 10-oac-paclitaxel analogues.Chin JMed Chem, 2001, 11(6): 317-21
    24许旋,徐志广,罗一帆.紫杉醇类似物抗癌活性构效关系的神经网络模式识别研究[ J].华南师范大学学报(自然科学版),2005,4(4): 74-80
    25 Samaranayake G, Magri NF, Jitrangsri C, et al. Modified taxols. 5. Reaction of taxol with electrophilic reagents and preparation of a rearranged taxol derivative with tubulin assembly activity. J Org Chem. 1991, 56: 5114-5119
    26 Nerdigh KA, Gharpure MM, Rimoldi JM, et al. Synthesis and biological evaluation of 4-deacetylpaclitaxel. Tetrahedron ett.1994, 35: 6839-6842
    27 Chordia MD, Chaudhary AG, Kingston DGI, et al. Synthesis and biological evaluation of 4-deacetoxypaclitaxel. Tetrahedron Lett. 1994, 35: 6843-6846
    28 Datta A, Jayasinghe LR, Georg GI, 4-Deacetyltaxol and 10-Acetyl-4-deacetyltaxotere: Synthesis and Biological Evaluation. J. Med. Chem, 1994, 37: 4258 -4260
    29 Georg,G.I, Ali,S.M, Boge,T.C, et al.Selective C-2 and C-4 deacylation and acylation of taxol: The first synthesis of a C-4 substituted taxol analogue.Tetrahedron Lett.1994,35,8931-8934
    30佟铁光,韩文志.紫衫醇构效关系的研究.吉林中医药,2005,25(7):50-51.
    31 Kinston D G I. Taxol: The chemistry and structure-activityrelationships of a novel anticancer agent. Trends Biotechnol. 1994, 12(6), 222-227
    32 Nicolaou KC, Dai WM, Guy RK. Chemistry and biology of Taxol. Angew. Chem.Int.Ed.Engl.1994, 33: 15-44
    33 Kinston,D.G.I,Chordia,M.D.,Jjagtap,P.G.et al,Synthesis and Biological Evaluation of 1-Deoxypaclitaxel Analogues. J.Org.Chem.1999, 64(6):1814-1822
    34 Chen SH, Farina V. Preparation of Taxol derivatives as neoplasm inhibitors US5248796,1993.9.28
    35 Hiroshi Ueda, Chikako Yamazaki,Masatoshi Yamazaki. A hydroxyl group of flavonoids affects oral anti-inflammatory activity and inhibition of systemic tumor necrosis factor-a production. Bioscience, Biotechnology, and Biochemistry,2004,68 (1):119-125
    36 Motoyama K., Arima H., Hirayama F et al. Inhibitory effects of 2,6-di-o-methyl-3-o-acetyl-β-cyclodextrins with various degrees of substitution of acetyl group on macrophage activation and endotoxin shock induced by lipopolysaccharide. J. Incl. Phenom. Macrocycl. Chem, 2006,56:75-79
    37 Park Young Hyun, Chiou George C.Y. Structure-Activity Relationship (SAR) Between Some Natural Flavonoids and Ocular Blood Flow in the Rabbit. Journal of Ocular .Pharmacology and Therapeutics. 2004, 20(1): 34-41
    38 Takemura G, Onodera T, Ashraf M. Characterization of exogenous hydroxyl radical effects on myocardial function, metabolism and ultrastructure. J Mol Cell Cardiol. 1994, 26(4):441-454
    39 Husain S, Cillard J, Cillerd P. Hydroxyl radical scavenging activity of flavonoids. Photochamistry, 1987, 26: 2489-2491
    40刘杰,王伯初,彭亮等.黄酮类抗氧化剂的构-效关系.重庆大学学报,2004,27(2):120-124
    41 Felder CC,Bymaster FP,Ward J, et al. Therapeutic opportunities formuscarinic receptors in the central nervous system.J Medchem, 2000,43(23):4333-4353
    42陈维州,张培智.银杏叶提取物的药理和研究进展(上).中国新药与临床杂志,1999,18(5):315-317
    43徐巧玲,蔡小兵.银杏叶提取物药理研究进展.人民军医,2004,47(10):609-611
    44 Wang ji tao, He hai yang, Xu yu ming. The influence of an acetyl group on the cyclopentadienyl ring in the formation of Sn-Mo(W) complexes by nucleophilic displacement reactions, crystal and molecular Structure of CH3COC5H4(CO)3MoSnPh2Cl. Heteroatom Chemistry, 1998, 9(2), 169-172
    1 Jang JH, Surh YJ. Protective effects of resveratrol on hydrogen peroxide induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat Res,2001;496(1):181-190
    2 Jiang B,Liu JH, Bao YM,et al. Hydrogen peroxide induced apoptosis in PC12 cells and the protective effect of puerarin. Cell Biol Int,2003;27(12):1025-1031
    3 Changhong Huo, Xiping Zhang, Cunfang Li, et al. A new taxol analoguefrom the leaves of Taxus cuspidate. Biochemical Systematics and Ecology, 2007, 35: 704-708
    4 Liu Li, ZHANG Xiao-jin, JIANG Su-rong et al.Heat shock protein 27 regulates oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via reactive oxygen species generation and Akt activation. Chinese Medical Journal, 2007(120): 2271-2277
    5 Hu Bo Hua. Delayed mitochondrial dysfunction in apoptotic hair cells in chinchilla cochleae following exposure to impulse noise.Apoptosis, 2007(12): 1025-1036
    6 Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif, 1991, 24 (2): 203-214
    7 Ishisaka R, Utsumi K, Utsumi T, et al. Involvement of lysosomal cysteine protease in hydrogen peroxide-induced apoptosis in HL-60 cells. Biosci Biotechnol Biochem, 2002, 66(9): 1865-1872
    8 Hossain G S,van Thienen J V,Werstuck G H,et al. TDAG51 is induced by homocysteine,promotes detachment-mediated programmed cell death,and contributes to the development of atherosclerosis in hyperthermia ocysteinemia. J Biol Chem,2003,278:30317-30320
    9 Hirota K, Matsur M, Iwata S, et al. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc atl Acad Sci USA, 1997, 94: 3633-3638
    10谢振华,刘长振,王爱民等.过氧化氢对PC12细胞中硫氧还蛋白和APE/Ref-1基因表达的影响.中国老年学杂志2007(03):247-249
    11 Djavaheri-Mergny M, Wietzerbin J, Besancon F, et al. 2-Methoxyestradiol induces apoptosis in Ewing sarcoma cells through mitochondrial hydrogen peroxide production. Oncogene, 2003, 22(17): 2558-2567
    12祝建,胡振海.蜜腺发育过程中细胞分化、凋亡与泌蜜的关系.同济大学学报, 2001,22(5):10-13
    13吴波,马捷,孙桂勤等.肝细胞凋亡的超微结构观察.电子显微学报,2000,19(6):792-798
    14郭敏,郭宏,杨志宏等.小鼠肾脏发育中细胞凋亡的超微结构改变.锦州医学院学报, 2001,22(2)1-3
    15彭远英,彭正松,喻可芳,凋亡细胞的超微结构变化,细胞生物学杂志,2003,25(5):280-283
    16 Malhotra J D, Kaufman R J. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol, 2007, 18: 716-731
    17 Verkhratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle:From neuronal signalling to neuronal death.Eur J Pharmacol,2002,447(2-3):141-154
    18祝筱梅,刘秀华.内质网应激与缺血再灌注损伤及其防护.国际病理科学与临床杂志. 2006, 26: 177- 181
    19方欢,申宗候.内质网应激.医学分子生物学杂志. 2004, 1: 36-39
    20娄利霞.内质网应激与心血管疾病.中国分子心脏病学杂志, 2005, 5: 496-499
    21 Hossain G S,van Thienen J V,Werstuck G H,et al. TDAG51 is induced by homocysteine,promotes detachment-mediated programmed cell death,and contributes to the development of atherosclerosis in hyperthermia ocysteinemia. J Biol Chem,2003,278:30317-30320
    22 Moil K.Tripartite management of unfolded proteins in the endoplasmic reticulum.Cell,2000,101(5):451-454
    23 Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell, 2000, 101: 249-258
    24 Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287 (5453): 664-666
    25 Obeng EA, Boise LH. Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis.J BiolChem, 2005, 280(33): 29578-29587
    26 Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol, 2007, 18: 716-731
    27 Verkhratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle:From neuronal signalling to neuronal death.Eur J Pharmacol,2002,447(2-3):141-154
    28 Ferri KF, Kroemer G. Organelle-speciic initiation of cell death pathways. Nat Cell Biol 2001, 3: E255-E263
    29 Groenendyk J , Lynch J , Michalak M . C alreticulin , Ca2+ , and calcineurin-signaling from the endoplasmic reticulum.Mol Cells, 2004, 17(3): 383-389
    30 Li H, Yuan JY. Deciphering the pathways of life and death. Curr Opin Cell Biol, 1999, 11: 261-266
    31 Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling.nature. 2000, 1:11-21
    32 Viner R I, Huhmer A F, Bigelow D J, et al. The oxidative inactivation of sarcoplasmic reticulum Ca2+-ATPase by peroxynitrite. Free Radic Res, 1996, 24: 243-259
    33南庆贤,常泓,贾秀丽等.钙蛋白酶及其与疾病的关系.生命的化学. 2006, 26(2):144-146
    34蔡真.内质网-肿瘤治疗的新靶点.中国肿瘤生物治疗杂志. 2005, 12(1): 5 -8
    35 Ferri K, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol, 2001,3(11):E255-E263
    36王海英,张秋玲,白波.内质网应激及其相关性凋亡与缺血性脑损伤.泰山医学院学报,2008,29(5): 390-393
    37 Hanoch Goldshmidt, Devorah Matas, Anat Kabi et al. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in trypanosoma brucei. PLoS Pathogens, 2010, 6(1): e1000731
    38 Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4: e423
    39 Bommiasamy H, Back SH, Fagone P, Lee K, Meshinchi S, et al. ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci, 2009, 122: 1626-1636
    40 Schipper H M. Brain iron deposition and the free radical-mitochondrial theory of ageing.Ageing Res Rev, 2004, 3(3):265-301
    41 Compton M, Virji S, Ward J M. Cyclophilin -D binds strongly to complexes of the voltage-dependent anion channel and Lbe adenine nuecleotide translocase to form the permeability transition pore. Eur J Biochem,1998,258(2):729-735
    42 Haletrap AP, Mcstay CP, Clarke SJ. The permeability transition pore complex: another view.Biochimie,2002, 84(2-3):153-166.
    43 Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta, 1995, 1241(2):139-176
    44 Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress.FEBS lett, 2001,495 (1-2)12-15
    45 Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun, 2003,304(3), 463-470
    46 Vallano M L, Lee M Y, and Sonenberg M. Hormones modulate adipocyte membrane potential ATP and lipolysis via free fatty acids. AJP - Endocrinology and Metabolism, 1983, 245(3): E266-E272
    47朱静峰.氧自由基、钙超载与心肌缺血再灌注损伤.云南医药,2007, 28(1): 67-70
    48 Forsmark-andree P, Lee C P, Dallner G, et al.Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles J].Free Radic Biol Med,1997,22(3):391-400
    49 Trrens J F.Mitochondrial formation of reactive oxygenspecie.J Physiol,2003, 552(Pt2):335-344
    50 Lopez-torres M, Gredilla R, Sanz A, et al.Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.Free Radic Biol Med,2002,32(9):882-889
    51 Wei MC, Zong WX,Cheng EH. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science,2001,292: 727-730
    52 Xie Q, Khaoustov VI, Chung CC, et al. Effect of tauroursodeocholic acid on ER stress-induced Caspase-12 activation.Hepatology, 2002, 36(3): 592-601
    1 Horn J, Limburg M. Calcium antagonists for acute ischemic stroke. The Cochrane Datebase of Systematic Reviews 2000, 1
    2 RANTTAS Investigators. A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). Stroke, 1996, 27: 1453-1458
    3 Yang Q W, Liu M, Zhang SH, et al. Edaravone for acute cerebral infaction: a systematic review. Chinese J Evidence-Based Medicine, 2006, 6(1): 18-22
    4李荣,李俊.黄酮类化合物药理活性及其构效关系研究.安徽医药, 2005, l9 (7): 481-483
    5 Husain SR, Ciliard J, Cillard P. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry, 1987, 26 (9):2487-2491
    6胡春,丁霄霖.黄酮类化合物在不同氧化体系中的抗氧化作用研究.食品与发酵工业, 1996, 22(3): 46-53
    7 Husain SR, Ciliard J, Cillard P. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry, 1987, 26 (9):2487-2491
    8 Olthof MR, Hollman P C, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. Nutr, 2001, 131: 66-71
    9 Zhang HY, Chen D Z. Theoretical characterization and its application of free radical scavenging activity for phernolic antioxidants. Acta Biophys. Sinica, 2000, 16(1): 1-9
    10张红雨.黄酮类抗氧化剂结构-活性关系的理论解释.中国科学, 1999, 29 (1): 91-96
    11王颖.银杏叶片对老龄大鼠学习记忆障碍的改善作用研究.齐鲁药事, 2004, 23(7):46-48
    12 Lim H, Kim HP. Inhibition of mammalian collagenase, matrix metalloproteinase-1, by naturally-occurring flavonoids. Planta Med. 2007, 73: 1267-1274.
    13 Guo S, Bezard E, Zhao B. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through the ROS-NO pathway. Free Radic Biol Med, 2005, 39: 682-695
    14 Wei H, Wu YC, Wen CY, et al. Green tea polyphenol (-)-epigallocatechin gallate attenuates the neuronal NADPH-d/nNOS expression in the nodose ganglion of acute hypoxic rats. Brain Res, 2004, 999: 73-80
    15 Mandel S, Reznichenko L, Amit T, et al. Green tea polypheno(-)- epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway. Neurotox Res,2003, 5: 419-424
    16 Levites Y, Amit T, Mandel S, et al. Neuroprotection and neurorescue against A? toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol(-)- epigallocatechin- 3-gallate. FASEB J, 2003 17: 952-954
    17 Higuchi A, Yonemitsu K, Koreeda A, et al. Inhibitory activity of epigallocatechin gallate (EGCG) in paraquat-induced microsomal lipid peroxidation-a mechanism of protective effects of EGCG against paraquat toxicity. Toxicology, 2003, 183(1-3):143-149
    18厚荣荣,陈建宗,陈宏等.绿茶多酚主要成分对百草枯诱导PC12细胞损伤的保护作用.神经解剖学杂志, 2007,23(1):83-87
    19 Jeong JH, Kim HJ, Lee TJ, et al. Epigallocatechin 3-gallate attenuates neuronal damage induced by 3-hydroxykynurenine. Toxicology, 2004, 195(1):53-60
    20 Chen C,Yu R,Owuor ED, et al. Activation of antioxidant response element(ARE),mitogen-activated protein kinases (MAPKs)and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res,2000, 23(6):605-612
    21 Kalfon L, Youdim MB, Mandel SA.Green tea polyphenol(-)- epigallocatechin-3-gallate promotes the rapid protein kinase C- and proteasome-mediated degradation of Bad: implications for neuroprotection. J Neurochem , 2007, 100 (4): 992-1002
    22 Hou RC, Huang HM, Tzen JT, et al. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J Neurosci Res.2003, 74(1):123-133
    23 Yasushi Ito, Yukihiro Akao, Masamitsu Shimazawa et al,Lig-8, a Highly Bioactive Lignophenol Derivative from Bamboo Lignin,Exhibits Multifaceted Neuroprotective Activity,CNS Drug Reviews ,2007,13(3): 296 - 307
    24 Wang R, Xiao X Q, Tang X C. Huperzine A, a potential therapeutic agentfor dementia, reduces neuronal cell death caused by glutamate. Neuro Report, 2001, 12(12): 2629-2634
    25 Xiao X Q, Zhang H. Huperzine A attenuates amyloidβ-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res, 2002, 67: 30-36
    26 Badria F A,Guirguis A N,Perovic S, et al. Sarcophytolide: a new neuroprotective compound from the soft coral Sarcophyton glaucum, Toxicology, 1998, 131(2-3): 133-143
    27 Chen cheng chi, Shiao young ji, Lin ruei da, et al. Neuroprotective diterpenes from the fruiting body of Antrodia camphorate. Journal of natural products,2006, 69(4): 689-691
    28戴颖,朱萱.熊果酸抗实验性大鼠肝纤维化作用机制的研究.江西医药, 2008,43: 414-417
    29 Chang HJ, Kim HJ, Chun HS. Quantitative structure-activity relationship (QSAR) for neuroprotective activity of terpenoid. Life sciences, 2007, 80 (9):835-841
    30 Wani M C, Taylor H L, Wall ME, et al. Plantanti-tumoragent (IV):the isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.J Am Chem Soc,1971,93: 2325-2327
    31 Schiff P B, Fant J. Horwitz S B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5): 665-667
    32 Yoshino T, Shiina H, Urakami S, et al, Bcl-2 expression as a predictive marker of hormone refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res 2006, 12 (20 Pt 1): 6116-6124
    33 Collins TS, Lee L F, Ting J P. Paclitaxel up-regulates interleukin-8 synthesis in human lung carcinoma through an NF-κB- and AP-1-dependent mechanism. Cancer Immunol. Immunother.2000, 49(2): 78-84
    34 Mhaidat N M, Wang Y, Kiejda K A, et al. Docetaxel-induced apoptosis inmelanoma cells is dependent on activation of caspase-2. Molecular Cancer Therapeutics, 2007, 6(2): 752-761
    35 Morita H, Gonda A, Wei L, et al. 3D QSAR analysis of taxoids from taxus cuspidata var.nana by comparative molecular field approach. BioorMed Chem Lett, 1997, 7(18): 2387-2392
    36 Querolle O, Dubois J, Thoret S, et al. Synthesis of C2-C3′N-linked macrocyclic taxoids. Novel docetaxel analogues with high tubulin activity.JMed Chem, 2004, 47(24): 5937-5944
    37 Xu X, Xu Z G, Luo Y F, LiW H. Study on the quantitative structure-activity relationships of 10-oac-paclitaxel analogues.Chin JMed Chem, 2001, 11(6): 317-321
    38许旋,徐志广,罗一帆.紫杉醇类似物抗癌活性构效关系的神经网络模式识别研究[ J].华南师范大学学报(自然科学版),2005,4(4): 74-80
    39 Samaranayake G, Magri NF, Jitrangsri C, et al. Modified taxols. 5. Reaction of taxol with electrophilic reagents and preparation of a rearranged taxol derivative with tubulin assembly activity. J Org Chem. 1991, 56: 5114-5119
    40 Nerdigh KA, Gharpure MM, Rimoldi JM, et al. Synthesis and biological evaluation of 4-deacetylpaclitaxel. Tetrahedron ett.1994, 35: 6839-6842
    41 Chordia MD, Chaudhary AG, Kingston DGI, et al. Synthesis and biological evaluation of 4-deacetoxypaclitaxel. Tetrahedron Lett. 1994, 35: 6843-6846
    42 Datta A, Jayasinghe LR, Georg GI, 4-Deacetyltaxol and
    10-Acetyl-4-deacetyltaxotere: Synthesis and Biological Evaluation. J. Med. Chem, 1994, 37: 4258 -4260
    43 Georg,G.I, Ali,S.M, Boge,T.C, et al.Selective C-2 and C-4 deacylation and acylation of taxol: The first synthesis of a C-4 substituted taxol analogue.Tetrahedron Lett.1994,35,8931-8934
    44佟铁光,韩文志.紫衫醇构效关系的研究.吉林中医药,2005,25(7):50-51
    45 Kinston D G I. Taxol: The chemistry and structure-activity relationships ofa novel anticancer agent. Trends Biotechnol. 1994, 12(6), 222-227
    46 Nicolaou KC, Dai WM, Guy RK. Chemistry and biology of Taxol. Angew. Chem.Int.Ed.Engl.1994, 33: 15-44
    47 Kinston,D.G.I,Chordia,M.D.,Jjagtap,P.G.et al,Synthesis and Biological Evaluation of 1-Deoxypaclitaxel Analogues. J.Org.Chem.1999, 64(6):1814-1822
    48 Chen SH, Farina V. Preparation of Taxol derivatives as neoplasm inhibitors US5248796,1993.9.28
    49段瑞生,董玫,王维平等.紫杉烷类化合物的抗氧化应激作用.天然产物研究与开发, 2010,22(2):201-205,244
    50 Hiroshi Ueda, Chikako Yamazaki,Masatoshi Yamazaki. A Hydroxyl Group of Flavonoids Affects Oral Anti-inflammatory Activity and Inhibition of Systemic Tumor Necrosis Factor-a Production. Bioscience, Biotechnology, and Biochemistry,2004,68 (1):119-125
    51 Motoyama K., Arima H., Hirayama F et al. Inhibitory Effects of 2,6-Di-O-methyl-3-O-acetyl-β-cyclodextrins with Various Degrees of Substitution of Acetyl Group on Macrophage Activation and Endotoxin Shock Induced by Lipopolysaccharide. J. Incl. Phenom. Macrocycl. Chem, 2006,56:75-79
    52 Park Young Hyun, Chiou George C.Y. Structure-Activity Relationship (SAR) Between Some Natural Flavonoids and Ocular Blood Flow in the Rabbit. Journal of Ocular .Pharmacology and Therapeutics. 2004, 20(1): 34-41
    53 Takemura G, Onodera T, Ashraf M. Characterization of exogenous hydroxyl radical effects on myocardial function, metabolism and ultrastructure. J Mol Cell Cardiol. 1994, 26(4):441-454
    54 Husain S, Cillard J, Cillerd P. Hydroxyl radical scavenging activity of flavonoids. Photochamistry, 1987, 26: 2489-2491
    55刘杰,王伯初,彭亮等.黄酮类抗氧化剂的构-效关系.重庆大学学报,2004,27(2):120-124
    56 Felder CC,Bymaster FP,Ward J, et al. Therapeutic opportunities for muscarinic receptors in the central nervous system . J Medchem, 2000,43(23):4333-4353
    57陈维州,张培智.银杏叶提取物的药理和研究进展(上).中国新药与临床杂志,1999,18(5):315-317
    58徐巧玲,蔡小兵.银杏叶提取物药理研究进展.人民军医,2004,47(10):609-611
    59刘杰,王伯初,彭亮等.黄酮类抗氧化剂的构-效关系.重庆大学学报,2004,27(2):120-124
    1 Maurizio M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science. 2000, 288: 331-336
    2蔡真.内质网-肿瘤治疗的新靶点.中国肿瘤生物治疗杂志. 2005, 12(1):5 -8
    3郭伟,张木勋.内质网应激与肥胖、胰岛素抵抗、2型糖尿病.医师进修杂志2005, 28: 56-58
    4林丽,唐朝枢,袁文俊.内质网应激.生理科学进展.2003, 34: 333-335.
    5 Malhotra J D, Kaufman R J. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol, 2007, 18: 716-731
    6 Verkhratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle:From neuronal signalling to neuronal death.Eur J Pharmacol,2002,447(2-3):141-154
    7祝筱梅,刘秀华.内质网应激与缺血再灌注损伤及其防护.国际病理科学与临床杂志. 2006, 26: 177- 181
    8方欢,申宗候.内质网应激.医学分子生物学杂志. 2004, 1: 36-39
    9娄利霞.内质网应激与心血管疾病.中国分子心脏病学杂志, 2005, 5: 496-499
    10 Hossain G S,van Thienen J V,Werstuck G H,et al. TDAG51 is induced by homocysteine,promotes detachment-mediated programmed cell death,and contributes to the development of atherosclerosis in hyperthermia ocysteinemia. J Biol Chem,2003,278:30317-30320
    11 Gao Jun Peng, Cai Ding Fang). Endoplasmic reticulum tress mediates the neurotoxic effect of misfolded proteins in neurodegenerative diseases. Chinese Journal of Pathophysiology 2008.24(1):201-205
    12姜山,谢青.内质网应激与细胞凋亡.国外医学·流行病学传染病学分册2004, 31: 330-333
    13 Moil K.Tripartite management of unfolded proteins in the endoplasmic reticulum.Cell,2000,101(5):451-454
    14 Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell, 2000, 101: 249-258
    15 Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287 (5453): 664-666
    16 Obeng EA, Boise LH. Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis.J Biol Chem, 2005, 280(33): 29578-29587
    17 Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol, 2007, 18: 716-731
    18 Verkhratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle:From neuronal signalling to neuronal death.Eur J Pharmacol,2002,447(2-3):141-154
    19 Ferri KF, Kroemer G. Organelle-speciic initiation of cell death pathways.Nat Cell Biol 2001, 3: E255-E263
    20 Groenendyk J , Lynch J , Michalak M . C alreticulin , Ca2+ , and calcineurin-signaling from the endoplasmic reticulum.Mol Cells, 2004, 17(3): 383-389
    21 Li H, Yuan JY. Deciphering the pathways of life and death. Curr Opin Cell Biol, 1999, 11: 261-266
    22 Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling.nature. 2000, 1:11-21
    23 Viner R I, Huhmer A F, Bigelow D J, et al. The oxidative inactivation of sarcoplasmic reticulum Ca2+-ATPase by peroxynitrite. Free Radic Res, 1996, 24: 243-259
    24南庆贤,常泓,贾秀丽等.钙蛋白酶及其与疾病的关系.生命的化学. 2006, 26(2):144-146
    25蔡真.内质网-肿瘤治疗的新靶点.中国肿瘤生物治疗杂志. 2005, 12(1): 5 -8
    26 Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature, 2000, 403(6765): 98-103
    27 Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c- a) independent activation of caspase-9 by caspase-12.J Biol Chem,2002, b) 277 (37): 34287-34294
    28 Nakagawa T, Yuan JY. Cross-talk between two cysteine protease families. activation of caspase-12 by calpain in apoptosis. J Cell Biol, 2000, 150 (4): 887-894
    29 Rao RV, Peel A, Logvinova A, et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78.FEBS Lett,2002,514(2-3): 122-128
    30 Baqui MM, Gereben B,Hlarry JW, et al. Distinct subcellular localization of transiently expresses type 1 and 2 iodothyronine deiodinasese asdetermined by immunofluorescence confocal microscopy. Endocrinology, 2000, 141: 4309-4312
    31 Miskovic D, Salter-cid L, Ohan N, et al .Isolation and characterization of a cDNA encoding a xenopus immunoglobulin binding protein, Bip(grp78). Comp Biochem Physiol Biochem Mol Biol, 1997 ,116(2):227-234
    32 Yaug GH, Li S, pestka JJ. Down-regulation of endoplasmic reticulum chaperone GRP78/Bip by vomitoxin(Deoxynivalenol). Toxicol Appl Pharmacol. 2000, 162 (3):207-217
    33 Liu H, Miller E,van de Water B, et al. Endoplasmic Reticulum Stress Proteins Block Oxidant-induced Ca2+ Increases and Cell Death. J Biol Chem. 1998, 273: 12858-12862
    34 Yu Z, Lou H, Fu W, et al. The endoplasmic reticulum stress-responsive protein Grp78 protects neurons against excitotoxicity apoptosis: suppression of oxidative stress and stabilization calcium homeostasis. Exp Neurol, 1999, 155(2):302-314
    35 Jordan R, Wang L, Graczyk TM, et al. Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J Virol, 2002, 76(19): 9588-9599
    36 Su HL, Liao CL, Lin YL. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol, 2002, 76: 4162-4171
    37 Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta, 1995, 1241(2):139-176
    38 Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability t ransition and oxidative stress.FEBS lett, 2001,495 (1-2)12-15
    39 Rizzuto R, Pinton P,Carrington W, et a1.Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses.Science, 1998, 280(5370): 1763-1766
    40刘芸野谢青.活性氧与内质网应激介导肝细胞凋亡研究进展.肝脏, 2006(4): 281-283
    41 Xie Q, Khaoustov VI, Chung CCm, et a1. Effect of tauroursodeoxycholic acid on ER stress-induced Caspase-12 activation. Hepatology, 2002, 36(3): 592-601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700