内啮合齿轮泵主要结构件的优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于国内近几年才开始发展和研究耐高压的内啮合齿轮泵,缺乏对内啮合齿轮泵设计参数、工作性能等方面的基础分析研究,使得目前国内的内啮合齿轮泵在输出压力、容积效率等参数和性能的稳定性方面与国外的产品还有较大的差距且我国企业生产的内啮合齿轮泵产量少、品种少、材料单一、规格不齐全。本文主要对渐开线式内啮合齿轮泵的一些主要结构件进行了有限元分析和优化,改善了泵的整体性能、减少了材料的使用,降低了泵的重量,使得齿轮泵在要求机动性和轻便性的场合有着更广的应用,最后做了壳体变形实验。
     本课题首先在SolidWorks软件中建立了渐开线式内啮合齿轮泵主要结构件的三维实体模型和齿轮泵的装配图,然后将在SolidWorks中完成的相关实体模型保存为*.X_T格式的文件,然后导入到ANSYS中。
     然后运用ANSYS软件的有限元分析功能对内啮合齿轮泵壳体的强度和刚度进行了分析,找出了壳体的应力主要集中区和变形量较大的位置,为壳体的设计提供了参考;然后对壳体进行了优化,在保证壳体的强度达到设计要求的情况下,增强了泵壳的刚度,减少了壳体变形,改善了泵的整体性能,减少了材料的使用,降低了泵的重量,达到节约材料资源的目的,有较好的社会经济效益。
     其次对不同材料齿轮泵壳体进行了分析比较:对齿轮泵铝合金壳体进行了有限元分析,找出了该规格铝合金壳体的最大许可工作压力,并与球墨铸铁壳体进行了性能的比较。由于铝合金和球墨铸铁有着不同的材料性能,球磨铸铁壳体的齿轮泵可用于中高压场合,而铝合金壳体主要应用在中低压的环境中。由于铝合金有高度的散热性,铝合金壳体的齿轮泵可用在高温等极端气候条件下。
     对这两种材料的壳体进行优化后,壳体的重量均减轻了7.4%左右,节省了材料,而优化后壳体的强度变化非常小,最大变形量反而减小了,与原壳体相比分别减少了10.33%(球墨铸铁壳体)和9.85%(铝合金壳体),增强了泵壳的刚度,改善了泵的整体性能,说明对泵的结构优化是合理的。这种有限元分析的方法,也可以推广到其它材料的壳体的分析比较,可以确定不同材料的壳体的最高工作压力。
     对内啮合齿轮泵齿圈进行了强度分析。得出由于高压油腔压力作用使得齿圈变形导致齿根应力过大而容易出现齿圈断裂的情况,因此在齿轮泵的制造过程中提高齿圈外表面和壳体内圈的加工精度。
     本文的这种分析优化的方法也可以推广到泵的其它零部件的设计优化,通过主要零部件的优化使泵总的工作性能达到最优,这样就可以完成整个泵的设计优化,有较好的现实意义。同时这种方法为其它型号、不同压力等级的内啮合齿轮泵的设计优化提供了分析依据,对于开发全新的不同材料的整个规格系列的新型齿轮泵有着重要的指导意义。
In recent years, Chinese have began to do the research of high-pressure internal gear pumps.But we lack research of internal gear pumps in parametric design, performance and other aspects of basic analysis.So there is a large gap between the current domestic internal gear pumps witn the products of foreign countries in output pressure, volumetric efficiency and the stability of the products.And China's internal gear pumps have low production and few species.
     In this paper,we mainly did the finite element analysis and optimizations for some main structures of internal gear pumps , which improved the overall performance of the gear pumps , reduced the use of materials and reduced the weight of the pump.So the pump could be used in some occasions,where mobility and portability were required. Finally,the actual deformation of shells of gear punps under different loads were measured.
     We first drawed the three-dimensional solid models of the main structures of the internal gear pump and the assembly drawing. Those draws were saved as the format of *.X_T,then they were imported into ANSYS.
     According to the finite element analysis of ANSYS software,the strength and stiffness analysis of shell of internal gear pump was done,finding the stress concentration zone and location of large deformation.The shell was optimized,ensuring the strength to meet the design requirement,which can improve the stiffness,improve the overall performance of pump,save material and reduce the weight of pump,which had better social and economic benefits.
     Then, the shells of internal gear pump of different materials were analyzed by ANSYS software. The shell of aluminum was analyzed,finding out the maximum permissible working pressure of this shell.And it was compared with the shell of dectile iron.Because of the different material properties, internal gear pumps of ductile iron are used in the high-pressure and medium-pressure cases,while internal gear pumps of aluminum are mainly used in the medium-pressure and low-pressure environments.The gear pump of aluminum can be used in the high-temperature and other extreme weather conditions.
     The weight of the optimized shells of two different materials both decreased by 7.4% than the original ones.The optimizations saved material. The strength of the shells changed very little,while the maximum deformation of ductile iron and aluminum decreased by 10.33% and 9.85%.The stiffness of the optimized shells was enhanced and the overall performances of the pumps were improved.,indicating that the structural optimizations of the shells were reasonable. The method of finite element analysis by ANSYS can also be extended to other shells of different materials for analysis and comparison to determine the maximum working pressures of them.
     The ring gear of the internal gear pump was analyzed for intensity.We could draw the conclusion that the pressure of high pressure oil chamber made the deformation of the ring gear,then the tooth root stress was very large.So the ring gear was easily broken. Therefore,we should improve the machining precision of the outer surface of the ring gear and the inneral surface of the shell.
     This method of analysis and optimization also has an important significance to design and analyze other parts of pumps,which can make the pump have the best overall performance.Also this method provides the analytical basis for internal gear pumps of different models and different pressures. This method of analysis,optimization and experiment also has an important significance to develop the whole series of new gear pumps of different materials.
引文
[1].林建亚,何存兴.液压元件[M].北京:机械工业出版社,1988.
    [2].路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [3].袁子荣.液气压传动与控制[M].重庆:重庆大学出版社,2002.
    [4].Dr. Reinhard Uphus.Extruder/Gear Pump Combinations For Processing[J].Rubber World,July 2001:23-25.
    [5].侯东海,吴晓铃.全齿廓啮合斜齿齿轮泵流量脉动特性[J].石油化工设备,2002,31(5):8-10.
    [6].杨尔庄.2008日本东京国际流体动力展综述[J].液压与气动.2009,(1):2-3.
    [7].C-K Chen and S-C Yang.Geometric Modeling For Cylindrical And Helical Gear Pumps With Circular Arc Teeth[J].Proceedings of the Institution of Mechanical Engineers,2000,214 :599-607.
    [8].杜昌义.齿轮泵困油现象及卸荷措施分析[J].四川农机,2002(6):24-26.
    [9].何培双.无侧隙啮合齿轮泵[J].液压与气动,2004(7):62-63.
    [10].叶清.内啮合齿轮泵几何参数及流量脉动的研究[D].兰州理工大学, 2007.
    [11].李宏伟,张方晓.内啮合齿轮泵的排量分析[J].液压与动,2006(3):135-136.
    [12].赵菊娣.新型内啮合齿轮油泵参数化图形输出[J].机械工程师,2003(6):54-56.
    [13].李宏伟,成小创.内啮合齿轮泵齿轮轴强度分析[J].机床与液压,2009(10):96-98.
    [14].Dr Nelik.Focus On Gear Pumps.WORLD PUMPS,DECEMBER 1998.
    [15].甘学辉,吴晓铃,侯东海.液压齿轮泵的性能研究[J].机械设计与制造,2001(3):69-70.
    [16].侯东海.全齿廓啮合斜齿齿轮泵流量脉动特性[J].石油化工设备,2002,3(5):8-10.
    [17].张展,朱景梓,秦立高.渐开线内啮合圆柱齿轮传动[M].北京:国防工业出版社,1991.
    [18].李壮云,葛宜远.液压元件与系统[M].北京:机械工业出版社, 1999.
    [19].王晓军,王强.可降低齿轮传动噪声的有效方法.机械,2001,28卷增刊:138.
    [20].胡志强.泵技术发展趋势[J].通用机械2003,8.
    [21].Choosing the right gear pumps applications. World Pumps August, 1999.
    [22].FrankPi.Betweengearsandpistons.Hydraulics&pneumaties.March,2007,50-51.
    [23].俞云飞.液压泵的发展展望[J].液压气动与密封,2002(1):2-6.
    [24].GIULIO FANTI,ROBERTO BASSO,MICHELE BERNARD etc.An Innovative Technique For Quality.Reliability ,Quality and Safety Engineering,2002,9(4):383-392.
    [25].Stefan Kalt.Retrofitting High-pressure Polymer Gear Pumps For A Cost-effective Advantage.WORLD PUMP,August 2004:36-39.
    [26].马云,李岚.齿轮泵噪声的机理分析与控制[J].组合机床与自动化加工技术,2002(11).
    [27].殷国富等.计算机辅助设计技术与应用[M].北京:科学技术出版社,2000,2.
    [28].王定标,郭茶秀,向飒.CAD/CAE/CAM技术与应用[M].北京:化学工业出版社2005,1.
    [29].王青,邬义志,夏冠华.三维CAD/CAM系统二次开发技术[J].机械制造与自动化2001,N0.4:183-185.
    [30].熊勇刚,吴吉平等.机械CAD参数化设计技术.机械科学与技术.1999,第18卷,第6期.
    [31].Daniel S Pipkinsay,Satya N Atlurib.Applications of the three dimensional method finite element alternating method[J].Finite Element s in Analysis and Design,1996(23)133-153.
    [32].赖高良等.精通SolidWorks[M].北京:中国青年出版社,2007,4.
    [33].谢昱北.许晔.SolidWorks2007中文版机械设计与典型范例[M].北京,电子工业出版社,2007.
    [34].徐慧平.基于特征的三维实体生成方法.计算机工程图形的探索与实践,1994.
    [35].杜明侠等.基于SolidWorks的三维CAD系统二次开发方法[J].华北水利水电学院学报.2003年(2):59-61.
    [36].叶炜威,余才佳编著.Solidworks2006实体建模与二次开发教程[M].北京:国防工业出版社,2006.
    [37].Nguyen Dang Hung,Tran Thanh Ngoc.Analysis of cracked plates and shells using“metis”finite element model[J].Finite Elements in Analysis and Design,2004(40),855-878.
    [38].Daniel S Pipkinsay,Satya N Atlurib.Applications of the three dimensional method finite element alternating method[J].Finite Element s in Analysis and Design,1996(23),133-153.
    [39].唐兴伦.ANSYS工程应用教程[M].北京:中国铁道出版社.2003.
    [40].LiLin,CuiXiang.Analysis of 3D nonlinear current problem using the field Varubles Hand Edireetly[J].IEEET ranson MAG.1997,33(2):1179一1183.
    [41].韩西,钟厉,李博.有限元分析在结构分析和计算机仿真中的应用[J].重庆交通学院学报.2001(3),124-126.
    [42].李宏伟,张方晓.内啮合齿轮泵齿形干涉的研究[J].机床与液压,2006.3.
    [43].孙玉福,刘新田,赵靖宇.贝氏体抗磨球墨铸铁热处理工艺研究[J].金属热处理,2002,(3):37-39.
    [44].石子源,吴庆记.机械工程材料[M].北京:中国铁道出版社,1998.
    [45].张博.球墨铸铁—基础·理论·应用[M].北京:机械工业出版社,1999.
    [46].辜祖勋.铸铁件中白口缺陷的产生与防止[J].铸造,2008 (12):1312-1315.
    [47].谭真,郭广文.工程合金热物性[M] .北京:冶金工业出版社, 1994: 140-150.
    [48].樊东黎,王广生,等.热处理手册[M].北京:机械工业出版社,2001.
    [49].薛守义.有限单元法[M].北京,中国建筑工业出版社.2005.
    [50].胡国良,任继文.ANSYS11.0有限元分析入门与提高[M].北京:国防工业出版社,2009.
    [51].商跃进.有限元原理与ANSYS应用指南[M].北京,清华大学出版社.2005,7-10.
    [52].韩西,钟厉,李博.有限元分析在结构分析和计算机仿真中的应用[J].重庆交通学院学报.2001(3),124-126.
    [53].李宏伟,杨成.基于ANSYS的内啮合齿轮泵壳体有限元分析及优化[J].液压与气动,2011(2):32-35.
    [54].刘存玉.齿轮泵及其应用[J].化工设备与管道, 2008, 45(4): 46-48.
    [55].王洪斌,陈琳辉,李尊荣.齿轮泵体制造的技术发展[J].工程机械,1998(7):27-28.
    [56].朱益盈.不锈钢手册[M] .宝新译文, 2003: 47-48.
    [57].王元清,袁焕鑫,石永久等.不锈钢结构及其应用和研究现状[J].钢结构,2010(2):1-13.
    [58].周小淞,张建.7005铝合金齿轮泵体型材挤压过程模拟[J].重型机械, 2005(6): 42-48.
    [59].肖亚庆,谢水生,刘静安,等.铝加工技术实用手册[M].北京:冶金工业出版社, 2005.
    [60].杨金利.铝合金空心型材挤压模设计[J].轻工机械, 2002, (1): 34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700