芍药设施栽培品种筛选指标和评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芍药(Paeonia lactiflora Pall.)在中国有悠久的栽培历史,是深受大众喜爱的传统名花。近年来在国际市场上芍药的销量逐年增长,成为一种新兴的商品花卉。发展芍药的设施栽培是实现周年供花的必经之路。以10个芍药品种为对象,在中国北方使用面积最广的日光温室中进行栽培实验。系统考察了芍药在温室弱光环境下的生长表现,针对花朵产量和成花质量等相关性状进行品种评价;对比研究了芍药不同品种在设施栽培条件下光合生理、形态结构等方面的差异,探讨芍药对弱光环境的适应机制;研究了与芍药生长开花情况显著相关的生理生化及形态指标,用多个综合评价数学模型进行筛选体系的研究。为了解决芍药设施栽培模式中全光越夏光抑制的问题,通过比较三种不同越夏管理方式对芍药的光合作用影响研究,选择全光喷雾的方式帮助芍药适应从弱光向全光的转换。
     主要结果如下:
     1.对大田栽培初选的36个芍药品种进行生长情况和开花性状的调查,初步筛选‘紫凤羽’、‘桃花飞雪’、‘大富贵’、‘铁杆紫’、‘春晓’、‘晴雯’、‘多叶紫’、‘东京女郎’、‘万寿红’、‘东方红’10个品种进行设施栽培测试,不同品种表现差异明显,筛选出两个在设施生长和开花较好的芍药品种‘大富贵’和‘桃花飞雪’。
     2.设施测试的10个芍药品种生长和开花表现与表观量子效率、光系统Ⅱ最大光化学效率(Fv/Fm)、饱和光强下的最大净光合速率、叶绿素a/b、类胡萝卜素含量密切相关。‘桃花飞雪’和‘大富贵’这两个生长和开花好的品种设施栽培下Fv/Fm的值都大于0.8,生长和开花差的品种Fv/Fm都不足0.8;
     3.对比10个芍药品种设施栽培与大田栽培的差异,其中18个指标设施与大田的比值(变异系数)能反映芍药品种对设施栽培条件的适应能力差异,变异系数小的品种适应能力更强,生长和开花表现更好。
     4.设施栽培的芍药由设施转向全光栽培在夏季容易发生光抑制,午后14:00的高温和强光导致叶片气孔关闭,光系统Ⅱ实际量子效率的下降,在设施中适应能力差的品种光抑制更为严重。14:00全光照条件下‘铁杆紫’的净光合速率只有1μmol·m-2·s-1,而‘大富贵’的净光合速率为4μmol·m-2·s-1。
     5.对进入全光栽培的芍药进行遮荫处理能够避免光抑制的发生,但叶片的净光合速率也受到抑制,全光下喷雾可以缓解叶片的光抑制发生,起到降低叶片温度增加气孔导度的作用,喷雾处理从光抑制中恢复的时间比不喷雾的全光栽培恢复时间短,与此同时喷雾的叶片净光合速率比遮荫处理高,有利于花后的物质积累;
     6.找到反映光能利用效率的形态或生理指标共10个,与芍药品种生长开花呈显著正相关;反应设施栽培适应性的变异系数指标9个,与芍药品种生长开花呈显著负相关。用层次分析法建立的评价模型对芍药品种的排序与实际生长观察的结果较为接近。
     本研究提出了设施芍药品种筛选方法:第一步,在大田进行品种调查,用9个指标选择生长性状和开花性状较好的品种作为设施栽培的测试品种:第二步,将测试品种的一年生分株苗放入设施进行栽培,进行抗病性测试;同时于第一年生长季测定9个反映光能利用效率的指标,和9个反映设施栽培适应性的指标;用1个指标,病情指数,衡量不同品种在设施栽培中的抗病性。第三步,排除抗病性弱的品种,用层次分析法和28个指标进行品种排序,得到适合进行设施栽培的芍药品种。该方法结合设施栽培试验可较有效地筛选出适用于设施栽培的芍药品种。
Herbaceous peony (Paeonia lactiflora Pall.) is a traditional and popular flower in China, which has a long history of cultivation. With the growing sales in the international markets in recent years, it has become an emerging commercial flower. Protected cultivation has been the key way to supply herbaceous peony all the year round. This study was carried out on10varieties of herbaceous peony in greenhouse which were widely grown in the north of China. In this research, growth performances of10varieties cultivated in low-light condition were systematic observed and characters such as flower production, quality and etc. were evaluated; the changes on photosynthetic physiology, morphology structure and etc. were studied to inquire into the adaptation mechanism to low-light conditions; furthermore, indicators of physiology and morphology which were significant associated with the growth and flowering, were used for comprehensive evaluation models to build scanning system. Also, after comparing effects of three different over-summering managements on photosynthesis which were designed to solve the full-light photoinhibition, the full light cultivation with atomization was considered to be the most helpful for peony's adaption from low-light to full-light.
     The main results of this research are as follows:
     1.After the examinations on growth performances and blossom characters of36peony varieties grown in field,10varieties which were'Zi Feng Yu','Tao Hua Fei Xue','Da Fu Gui','Tie Gang Zi','Chun Xiao','Qing Wen','Duo Ye Zi','Dong Jing Nv Lang','Wan Shou Hong'and'Dong Fang Hong'were selected preliminarily and shifted into greenhouse. The performance of10varieties showed significant difference under two cultivation conditions. Among them,'Da Fu Gui'and'Tao Hua Fei Xue'were selected as excellent varieties in flower production and quality under protected cultivation condition;
     2. The growth and blossom performances of10peony varieties tested in protected cultivation were found closely correlated with indexes such as the apparent quantum yield (AQY), the maximal photochemical efficiency of PSII (Fv/Fm), the maximum net photosynthesis rate under light saturation intensity, chlorophyll a/b and carotenoids contents. For instance, the Fv/Fm of'Tao Hua Fei Xue' and 'Da Fu Gui'which had better growth and flower performances were greater than0.8, while, all the other varieties are less than0.8;
     3. After comparison difference of10peony varieties between cultivated in greenhouse and field, the ratio of18indexes (coefficient variation) were able to reflect the different acclimation capacity towards protected cultivation. The smaller coefficient variation was, the better growth and flower performances peony varieties showed;
     4. The photoinhibition happened in summer when shifting the peony varieties from greenhouse to full-light cultivation. High temperature and light intensity after14:00would cause the closure of stomata in leaves as well as the decline of the actual quantum efficiency in PS Ⅱ. The varieties which were badly acclimated in greenhouse suffered worse photoinhibiton. In full-light condition at14:00, net photosynthetic rate of 'Tie Gan Zi'was only1μmol·m-2·s-1while 'Da Fu Gui'had4μmol·m-2·s-1
     5. Providing shading treatment for varieties in full-light can avoid the occurrence of light inhibition, however the net photosynthetic rate of leaves was also restrained. Full light cultivation with atomization can reduce leaves'heat and increase stomata conductance which was capable to ease the extent of light inhibition. And also it can help peony's leaves to recover from it in a shorter time. The net photosynthetic rate of recovered leaf was higher than shading treatment which was more benefit for growth accumulation after flowering;
     6. Correlation analysis on indicators of physiology and morphology and growth performances demonstrated that10of them had significant positive correlation with growth and flowering of herbaceous peony while9were significant negative correlated. Analytic hierarchy process has been considered to be the best due to that sequencing of different peony varieties most closely correlated with their actual growth observation.
     In summary, this research proposed a protocol for peony varieties scanning in protected cultivation:first step is to investigate in field. Varieties that with better growth performance and blossom characters were selected using9indexes can be tested in protected cultivation; secondly, after cultivating annual plant division in greenhouse for disease resistant test,9indexes which reflect light use efficiency as well as9indexes that reflects acclimation capacity towards protected cultivation were measured during growing season in first year; third step is after ruling out weak disease resistant ones, other varieties were sequenced using28index through analytic hierarchy process to determine which varieties grew better in protected environment. This protocol combined with protected cultivation experience can select varieties suitable grown in greenhouse efficiently.
引文
1. 艾希珍,郭延奎.弱光条件下日光温室黄瓜的需光特性及叶绿体超徽结构[J].中国农业科学,2004,37(2):268-273.
    2. 艾希珍,邢禹贤,陈利平.日光温室黄瓜叶片光合作用对光和CO2浓度的响应[J].农业工程学报,2002,(增刊):119-123.
    3. 白仲奎.板栗幼树光合特性研究[J].、河北果树,1994,(03):23-25.
    4. 陈青华,姜全,郭继英,等.五个短需冷量桃品种在北京温室的表现[J].北方园艺,2009,(04):139-140.
    5. 陈青君,张福墁,王永健,等.黄瓜对低温弱光反应的生理特征研究[J].中国农业科学,2003,(01):77-81.
    6. 陈荣敏,杨学举,梁凤山,等.利用隶属函数法综合评价冬小麦的抗旱性[J].河北农业大学学报,2002,(2):7-9.
    7. 陈士宁.设施栽培芍药灰霉病和根腐病的初步研究[D].北京:北京林业大学,2011.
    8. 陈一,赵杭苹,傅巧娟,等.一串红区域品比试验[J].杭州农业与科技,2008,(6):32-34.
    9. 陈智忠.牡丹、芍药混作园土壤生化性质研究[J].土壤肥料,2000,(3):41-45.
    10.杜庆平,孙燕,李成忠,等.扬州地区2个芍药品种光合生理生态特性比较[J].安徽农业大学学报,2011,(06):935-939.
    11.封培波,胡永红,张启翔,等.上海露地宿根花卉景观价值的综合评价[J].北京林业大学学报,2003,(6):84-87.
    12.付喜玲.芍药茎插繁殖技术及生根机理研究[D].泰安:山东农业大学,2009.
    13.傅巧娟,孙瑶.三色堇品比试验[J].北方园艺,2006,(5):130-131.
    14.郭先锋,王莲英.观赏芍药应用研究的进展[J].山西农业大学学报(自然科学版),2004,(1):85-88.
    15.何小弟,张远兵,王静,等.芍药花芽形态分化的解剖学观察初探[J].安徽农业科学,2007,(3):719-720.
    16.和红云,薛琳,田丽萍,等.低温胁迫对甜瓜幼苗叶绿素含量及荧光参数的影响[J].北方园艺,2008,4:13-16.
    17.贺超兴,李建明,张志斌,等.水果型黄瓜春季大棚栽培优质高产品种筛选试验[J].中国瓜菜,2010,(01):21-23.
    18.侯兴亮,李景富,许向阳.弱光处理对番茄不同生育期形态和生理指标的影响[J].园艺学报,2002,(02):123-127.
    19.侯兴亮,李景富,许向阳.番茄耐弱光性的研究进展[J].中国蔬菜,1999,4:48-51.
    20.黄雪.芍药温室栽培品种的筛选及配套技术的研究[D].山东:山东农业大学,2010.
    21.黄义松,牛德奎,赵中华,等.3个油茶优良无性系光合作用及生理特性研究[J].江西农业大学学报,2007,29(2):209-214.
    22.黄永高,金飚,贾妮,等.芍药和牡丹部分品种茎叶器官的解剖学观察比较[J].江苏农业学报,2006,(4):447-451.
    23.简在友,王文全,孟丽,等.芍药组内不同类群间光合特性及叶绿素荧光特性比较[J].植物生态学报,2010,(12):1463-1471.
    24.蒋文伟,向其柏.层次分析法在干旱区园林树木评选中的应用[J].南京林业大学学报,2000,(6):63-67.
    25.焦婷,常根柱,周学辉,等.高寒草甸草场不同载畜量下土壤酶与土壤肥力的关系研究[J].草业学 报,2009,(6):98-104.
    26.颉敏华,颉建明,郁继华,等.弱光下辣椒光合色素的变化及其与品种耐性的关系[J].兰州大学学报(自然科学版),2008,2:12.
    27.金飚,何小弟,吴建华,等.芍药离体培养初步研究[J].江苏农业科学,2005,(4):69-71.
    28.康朝晖,何钢,唐开山,等.红壤丘陵区鲜食葡萄引种及品比试验研究[J].葡萄栽培与酿酒,1996,(2):19-21.
    29.孔芬.芍药光合特性研究[D]:扬州大学,2010.
    30.李成忠,陶俊,孙燕,等.喷钙对芍药花茎品质及叶片光合特性的影响[J].生态学杂志,2012,(11):2817-2822.
    31.李贵全,张海燕,季兰,等.不同大豆品种抗旱性综合评价[J].应用生态学报,2006,(12):2408-2412.
    32.李瑞梅,刘宁,庞冉琦,等.芍药切花品种筛选[J].安徽农业科学,2008,(08):3211-3213.
    33.李祚泳,丁晶,彭荔红.环境质量评价原理与方法[M].北京:化学工业出版社,2004.
    34.粱镇林,梁慕勒,潘世元.大豆耐阴性研究,木同耐阴性大豆叶片叶绿素含量和比叶重研究[J].贵州农学院学报,1992,11(2):16-22.
    35.刘海琴,王康才,罗庆云,等.叶面喷施铜肥对芍药光合及荧光动力学参数的影响[J].江苏农业学报,2010,(05):982-986.
    36.刘利刚.芍药盆栽研究[D].北京:北京林工业大学,2009.
    37.刘瑞峰,贾桂霞,曹玲玲.温室弱光条件下6个百合品种光合性能的比较研究[C].中国宁夏银川,2011.
    38.刘晓丽,张伟,杜运鹏,等.5种百合抗寒性生理指标早期筛选的研究[C].中国宁夏银川,2011.
    39.刘燕,叶露莹.芍药栽培基质草炭减量及替代物研究[J].江西农业大学学报,2012,(06):1136-1141.
    40.刘玉梅.观赏芍药生态习性及栽培技术研究进展[J].安徽农业科学,2008,36(12):4965-4967,4969.
    41.龙芳,成仿云.芍药促成和抑制栽培研究进展[J].中国观赏园艺研究进展,2006.
    42.马丽茹.设施栽培方式下芍药不同品种光合特性研究[D].北京:北京林业大学,2012.
    43.马丽茹,高健洲,刘燕.芍药不同品种1,5-二磷酸核酮糖羧化酶活性差异研究[J].西南农业学报,2012,(02):439-443.
    44.马亚丽,阿不来提·阿不都热依木,李培英,等.7份新疆狗牙根材料品比试验[J].新疆农业大学学报,2006,(1):10-14.
    45.牛立军.芍药切花露地及设施生产栽培技术研究[D]:北京林业大学,2010.
    46.牛立军,刘燕,宗树斌.不同根部处理对芍药分株后生长的影响[J].山东林业科技,2007,(6):44-45.
    47.潘相文,李文滨,李艳华,等.主成分分析在大豆抗旱性评价上的应用[J].大豆科学,2006,(4):379-384.
    48.秦魁杰,李嘉珏.芍药[M].北京:中国林业出版社,2004.
    49.任秀荣,许海涛,吴德科,等.应用模糊数学综合评价夏大豆区试品种[J].安徽农业科学,2004,(2):228-229.
    50.尚晓倩.芍药花粉超低温保存研究[D].北京:北京林业大学,2005.
    51.佘祥威,王德斌,汪枚初.油茶叶片光合功能参数的测定[J].湖南林业科技,1980,2:4.
    52.宋碧琰.奥运用花一芍药高温抑制栽培研究[D].北京:北京林业大学,2007.
    53.宋焕芝.芍药光合特性及碳水化合物代谢研究[D].北京:北京林业大学,2012.
    54.眭晓蕾,张宝玺,张振贤,等.不同品种辣椒幼苗光合特性及弱光耐受性的差异[J].园艺学 报,2005,(02):222-227.
    55.孙海霞,周莲.大青叶质量的主成分分析和系统聚类分析[J].安徽农业科学,2009,37(34):16847-16848.
    56.陶新宇,杨海兰,李莉.芍药种子萌发特性的研究[J].赤峰学院学报(自然科学版),2005,(6):13-19.
    57.王程璐.大棚薄皮甜瓜品种筛选及栽培密度与施肥量研究[D].吉林:吉林农业大学,2012.
    58.王观.扬州芍药谱[M].北京:北京商务印书馆,1959:634-639.
    59.王吉凤.芍药组织培养研究[D].北京:北京林业大学,2009.
    60.王建国,张佐双.中国芍药[M].北京:中国林业出版社,2005.
    61.王历慧,郑黎文,于晓南.中西方芍药切花应用与市场趋势分析[J].黑龙江农业科学,2011,(2):147-150.
    62.王秋玲,魏胜利,王文全.野生和栽培芍药植株形态特征与光合生理特性的比较研究[J].中国中药杂志,2012,(01):32-36.
    63.王瑞,陈永忠,王湘南,等.油茶无性系新稍生长期光合特性的研究[J].林业科学研究,2010,23(3):405-410.
    64.王晓菡,黄雪,张姗姗,等.芍药盆栽品种的初步筛选[J].山东林业科技,2010,(03):50-51.
    65.王艳.模糊概率值法在晒烟品种(系)综合评价中的应用[J].延边大学农学学报,2002,24(1):20-22.
    66.王雁,苏雪痕,彭镇华.植物耐荫性研究进展[J].林业科学研究,2002,(03).
    67.王永健,姜亦巍,吴国胜,等.黄瓜光补偿点与低温弱光耐受性关系初探[J].园艺学报,1998,(02).
    68.王永健,张海英,张峰,等.低温弱光对不同黄瓜品种幼苗光合作用的影响[J].园艺学报,2001,(03).
    69.王郁铨,李卫民,郭连芬.温室辣椒品种筛选试验[J].天津农业科学,1990,(02):17-18.
    70.魏民,贺超兴,张志斌,等.温室越夏长季节高产甜椒品种筛选[J].北方园艺,2003,(06):44-45.
    71.邬正祥.芍药设施栽培常见病害及防治[J].中国花卉园艺,2005,(10):28-29.
    72.吴衍涛.日光温室番茄、西葫芦新品种筛选及施肥技术研究[D].山东:山东农业大学,2004.
    73.吴月燕.高湿和弱光对葡萄叶片某些光合特性的影响[J].园艺学报,2003,(04):443-445.
    74.徐慧,罗超,刘志刚.层次分析法评价指标筛选方法探讨[J].中国海上油气,2007,(6):415-418.
    75.徐梅.扬州芍药[J].中国园林,2005,(4):52-54.
    76.许大全,徐宝基,沈允钢.C3植物光合效率的日变化[J].植物生理学报,1990,16(1):1-5.
    77.薛超群,刘迎昌.模糊概率值法在烤烟品种(系)综合评价中的应用探讨[J].烟草科技,2000,(4):37-38.
    78.杨崇瑞.模糊数学及其应用[M]:北京:农业出版社,1994.
    79.杨爽.设施百合品种筛选与“叶烧病”发生机理的研究[D]:北京林业大学,2012.
    80.杨洋.芍药种子萌发的生物学特性及破眠技术的研究[D].哈尔滨:东北林业大学,2009.
    81.姚君平,杨新道.光照强度对花生苗期和花针期植株生育的影响[J].花生学报,1992,4:22-24.
    82.姚苗笛.芍药切花品种引种及繁殖技术研究[D].北京:北京林业大学,2009.
    83.伊艳杰,袁王俊,董美芳,等.运用AHP法综合评价河南部分桂花品种[J].河南大学学报(自然科学版),2004,(4):60-64.
    84.于英川.现代决策理论与实践[M]:北京:科学出版社,2005.
    85.郁继华,舒英杰,吕军芬,等.低温弱光对茄子幼苗光合特性的影响[J].西北植物学报,2004,24(5):831-836.
    86.岳桦,时春红.芍药‘粉玉奴’与野生种主要光合特性的比较[J].北方园艺,2010,(06):127-130.
    87.韵敏,王四清.植物叶片气体交换和叶绿素荧光动力学在抗温度胁迫中的研究[J].北方园 艺,2010,(01):223-225.
    88.战吉宬,黄卫东,王利军.植物弱光逆境生理研究综述[J].植物学通报,2003,20(1):43-50.
    89.张海燕,李贵全.大豆抗旱性与生理生态指标关系的研究[J].中国农学通报,2005,(8):140-142.
    90.张慧丽.新引进牡丹、芍药品种的生物学特性及生长习性的观察研究[D].杨凌:西北农林科技大学,2007.
    91.张建军.切花芍药栽培技术[J].甘肃农业科技,2006,(8):64-65.
    92.张淑云,徐继忠,陈海江,等.设施内外早露蟠桃光合特性的比较研究[J].河北农业大学学报,2002,(03).
    93.张玉,李霞,郭绍霞.芍药光合特性研究[J].青岛农业大学学报(自然科学版),2011,(01):24-27.
    94.张运涛,王桂霞,董静,等.草莓5个品种的果实香味成分分析[J].园艺学报,2008,(03):433-437.
    95.张振贤,艾希珍,邹琦,等.生姜光合效率日变化的研究[J].园艺学报,2000,(02):107-111.
    96.张志刚,尚庆茂,王立浩,等.亚适温、弱光照及盐胁迫下辣椒叶片活性氧代谢特征[J].园艺学报,2009,36(11):1603-1610.
    97.赵蓉.芍药愈伤组织诱导及增殖研究[D].北京:北京林业大学,2009.
    98.郑鹏,李金铭,赖晓燕,等.主成分分析法与逐步聚类法在树种分类中的应用[J].福建电脑,2006,(2):20-21.
    99.周美艳.芍药组织培养及遗传转化的初步研究[D].扬州:扬州大学,2008.
    100.周生地,赵孝庆.芍药在北方的冬季促成栽培[J].园林,2002,(11):28-29.
    101.周逸龄.芍药花芽分化与需冷址研究[D].北京:北京林业大学,2012.
    102.周友.芍药不同品种瓶插水养生理生化研究[D].北京:北京林业大学,2005.
    103.朱旭云,苑红霞,周保国,等.芍药盆花促成栽培技术研究[J].山东林业科技,2002,(5):7-10.
    104.邹成勇.春石斛品种早期筛选研究[D].北京:北京林业大学,2010.
    105. Agriculture U S D O. United States Standards for Grades of Cut Peonies in the Bud [S]:Service A M,1938.
    106. Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist,2005,165(2):351-372.
    107. Ainsworth E A, Rogers A, Nelson R, et al. Testing the "source-sink" hypothesis of down-regulation of photosynthesis in elevated CO2 in the field with single gene substitutions in Glycine max[J]. Agricultural and Forest Meteorology,2004,122(1):85-94.
    108. Anderson J M, Chow W S, Park Y. The grand design of photosynthesis:acclimation of the photosynthetic apparatus to environmental cues[J]. Photosynthesis Research,1995,46(1):129-139.
    109. Anderson J M, Osmond C B. Shade-sun responses:compromises between acclimation and photoinhibition[J]. Photoinhibition,1987,9:1-38.
    110. Aoki N, Yoshino S. Effedts of the duration of cold storage on the growth and the quality of cut flower of forced Tree Peony[J]. Japan.Soc.Hort.Sci,1984,52(4):450-457.
    111. Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant physiology,1949,24(1):1.
    112. Aro E, Virgin I, Andersson B. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1993,1143(2):113-134.
    113. Auer J D, Holloway P S. Peonies field cut flower production [R]. Fairbanks:Agriculture & Forestry Experiment Station of the University of Alaska Fairbanks,2008.
    114. Austin R B, Bingham J, Blackwell R D, et al. Genetic improvements in winter wheat yields since 1900 and associated physiological changes[J]. Journal of Agricultural science,1980,94(3): 675-689.
    115. Backhausen J E, Scheibe R. Adaptation of tobacco plants to elevated CO2:influence of leaf age on changes in physiology, redox states and NADP-malate dehydrogenase activity[J]. Journal of experimental botany,1999,50(334):665-675.
    116. Bailey S, Walters R G, Jansson S, et al. Acclimation of Arabidopsis thaliana to the light environment:the existence of separate low light and high light responses[J]. Planta,2001,213(5): 794-801.
    117. Ballare C L. Keeping up with the neighbours:phytochrome sensing and other signaling mechanisms[J]. Trends in plant science,1999,4(3):97-102.
    118. Barber J. Molecular basis of the vulnerability of photosystem Ⅱ to damage by light[J]. Functional Plant Biology,1995,22(2):201-208.
    119. Bjorkman O, Demmig B. Photon yield of CO2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta,1987,170(4):489-504.
    120. Cheng F, Zhong Y, Long F, et al. Chinese herbaceous peonies:Cultivar selection for forcing culture and effects of chilling and gibberellin (GA 3) on plant development[J]. Israel Journal of Plant Sciences,2009,57(4):357-367.
    121. Chow W S, Melis A, Anderson J M. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis.[J]. Proceedings of the National Academy of Sciences,1990,87(19):7502-7506.
    122. Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, (33):317-345.
    123. De la Torre W R, Burkey K O. Acclimation of barley to changes in light intensity:chlorophyll organization[J]. Photosynthesis research,1990a,24(2):117-125.
    124. De la Torre W R, Burkey K O. Acclimation of barley to changes in light intensity:photosynthetic electron transport activity and components [J]. Photosynthesis Research,1990b,24(2):127-136.
    125. Demmig-Adams B, Adams Iii W W. Photoprotection and other responses of plants to high light stress[J]. Annual review of plant biology,1992,43(1):599-626.
    126. Drake B G, Gonzalez-Meler M A, Long S P. More efficient plants:a consequence of rising atmospheric CO2[J]. Annual review of plant biology,1997,48(1):609-639.
    127. Evans L T. Crop evolution, adaptation and yield[M]:Cambridge University Press,1996.
    128. Fishman S, Erez A, Couvillon G A. The Temperature Dependence Of Dormancy Breaking In Plants:Comptuer Simulation Of Processes Studies Under Controlled Temperatures [J]. Theor Biol, 1987, (126):309-321.
    129. Fitzgerald, Doreen. Peony-a future crop for Alaska[R]. Fairbanks:Agriculture & Forestry Experiment Station of the University of Alaska Fairbanks,2003.
    130. Gast K. Production and Postharvest Evaluations of Fresh-Cut Peonies[R]. Manhattan:Kansas Agr.Exp.Station,1995.
    131. Gray G R, Savitch L V, Ivanov A G, et al. Photosystem Ⅱ excitation pressure and development of resistance to photoinhibition (Ⅱ. Adjustment of photosynthetic capacity in winter wheat and winter rye)[J]. Plant Physiology,1996,110(1):61-71.
    132. Greenberg J, Geier H, Holloway P, et al. Production and transpiration considerations in the export of peonies from Fairbanks, Alaska[R]. Fairbanks:Agriculture & Forestry Experiment Station of the University of Alaska Fairbanks,2002.
    133. Guo X, Fu X, Zang D, et al. Effect of auxin treatments, cuttings' collection date and initial characteristics on Paeonia 'Yang Fei Chu Yu'cutting propagation[J]. Scientia Horticulturae,2009, 119(2):177-181.
    134. Gutierrez-Rodriguez M, Reynolds M P, Larque-Saavedra A. Photosynthesis of wheat in a warm, irrigated environment:Ⅱ. Traits associated with genetic gains in yield[J]. Field Crops Research, 2000,66(1):51-62.
    135. Halevy A H, Levi M, Cohen M, et al. Evaluation of methods for flowering advancement of herbaceous peonies[J]. HortScience,2002,37(6):885-889.
    136. Hall A J, Catley J L, Walton E F. The effect of forcing temperature on peony shoot and flower development[J]. Scientia horticulturae,2007.113(2):188-195.
    137. Hay R K, Porter J R. The physiology of crop yield [M]:Blackwell Publishing,2006.
    138. Holloway P S, Hanscom J T, Matheke G E. Peonies field cut flower production first-year growth[R]. Fairbanks:Agriculture & Forestry Experiment Station of the University of Alaska Fairbanks,2003.
    139. Holloway P S, Hanscom J T, Matheke G E. Peonies field cut flower production second-year growth[R]. Fairbanks:Agriculture & Forestry Experiment Station of the University of Alaska Fairbanks,2004.
    140. Holloway P S, Hanscom J T, Matheke G E. Peonies field cut flower production [R]. Fairbanks: Agriculture & Forestry Experiment Station of the University of Alaska Fairbanks,2005.
    141. Hosoki T, Ando M, Kuraba T. In vitro ProPagation of herbaceous peony by a longitudinal shoot split method[J]. Plant Cell Report,1989,(8):243-246.
    142. Hubbart S, Peng S, Horton P, et al. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966[J]. Journal of experimental botany,2007,58(12): 3429-3438.
    143. Jones H. Plants and microclimate[M]:Cambridge University Press,1992:420-428.
    144. Kamenetsky R, Barzilay A, Erez A, et al. Temperature requirements for floral development of herbaceous peony 'Sarah Bernhard'[J]. Scientia Horticulturae,2003,(97):309-320.
    145. Kim J H, Glick R E, Melis A. Dynamics of photosystem stoichiometry adjustment by light quality in chloroplasts[J]. Plant Physiology,1993,102(1):181-190.
    146. Kimball B A. Carbon dioxide and agricultural yield:an assemblage and analysis of 430 prior observations[J]. Agronomy journal,1983,75(5):779-788.
    147. Kunneman B, Albers M. Tissue culture of Peony is not yet Producing Plants[J]. Bloembollencultuur,1989,100(23):16-17.
    148. Leong T, Anderson J M. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes[J]. Photosynthesis Research,1984a,5(2):105-115.
    149. Leong T, Anderson J M. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities.11. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis[J]. Photosynthesis research,1984b,5(2):117-128.
    150. Long S P, Zhu X G, Naidu S L, et al. Can improvement in photosynthesis increase crop yields?[J]. Plant, Cell & Environment,2006a,29(3):315-330.
    151. Long S P, Zhu X G, Naidu S L, et al. Can improvement in photosynthesis increase crop yields?[J]. Plant, Cell & Environment,2006b,29(3):315-330.
    152. Maenpaa P, Andersson B. Photosystem H heterogeneity and long-term acclimation of light-harvesting[J]. Zeitschrift fur Naturforschung. Section C, Biosciences,1989,44(5-6):403-406.
    153. Miralles D J, Slafer G A. Radiation interception and radiation use efficiency of near-isogenic wheat lines with different height[J]. Euphytica,1997,97(2):201-208.
    154. Mitchell P L, Woodward F I, Sheehy J E. Potential yields and the efficiency of radiation use in rice[M]:International Rice Research Institute,1998.
    155. Moore B D, Cheng S H, Sims D, et al. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2[J]. Plant, Cell & Environment,1999,22(6):567-582.
    156. Peng S, Laza R C, Visperas R M, et al. Grain yield of rice cultivars and lines developed in the Philippines since 1966[J]. Agronomy--Faculty Publications,2000:98.
    157. Powles S B. Photoinhibition of photosynthesis induced by visible light[J]. Annual Review of Plant Physiology,1984,35(1):15-44.
    158. Powles S B, C C. Photoinhibition of photosynthesis induced by visible light[J]. Ann Rev Plant physiol,1984,(35):15-44.
    159. Reynolds M P, van Ginkel M, Ribaut J M. Avenues for genetic modification of radiation use efficiency in wheat[J]. Journal of Experimental Botany,2000,51(suppl 1):459-473.
    160. Satty T, Bennett J. A theory of analytical hierarchies app lied to political candidacy [J]. Behavioral Sci,1977, (22):237-245.
    161.Seemann J R. Light adaptation/acclimation of photosynthesis and the regulation of ribulose-1, 5-bisphosphate carboxylase activity in sun and shade plants[J]. Plant physiology,1989,91(1): 379-386.
    162. Seyring M. Loss rate is still too high[J]. TASPO Gartenbaumagazin,2000,10(2):30-31.
    163. Shearman V J, Sylvester-Bradley R, Scott R K, et al. Physiological processes associated with wheat yield progress in the UK[J]. Crop Science,2005,45(1):175-185.
    164. Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene[J]. Proceedings of the National Academy of Sciences,2002, 99(13):9043-9048.
    165. Strand A, Hurry V, Gustafsson P, et al. Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates[J]. The Plant Journal,1997,12(3):605-614.
    166. Syvertsen J P, Smith Jr M L. Light acclimation in citrus leaves. I:Changes in physical characteristics, chlorophyll, and nitrogen content[J]. Journal of the American Society for Horticultural Science,1984,109(6):807-812.
    167. Tg B, Halevy A H. Forcing herbaceous peonies[J]. Amer.Soc.Hort.Sci,1986, (111):379-383.
    168. Dymova O V, Golovko T K. Light adaptation of photosynthetic apparatus in Ajuga reptans L.,a shade-tolerant plant as example[J]. Russian Journal Of Plant Physiology,1998,45(4):440-446.
    169. W K. Stress and stress recovery by grapevines[J]. Botanica Helvetica,1996,106(1):73-84.
    170. Walters R G, Horton P. Acclimation of Arabidopsis thaliana to the light environment:changes in composition of the photosynthetic apparatus[J]. Planta,1994,195(2):248-256.
    171. Wang L, Dai H B. Application of Kernel Independent Component Analysis for Multivariate Statistical Process Monitoring[J]. Journal of Donghua University,2009, (5):461-466.
    172. Watanabe N, Evans J R, Chow W S. Changes in the photosynthetic properties of Australian wheat cultivars over the last century[J]. Functional Plant Biology,1994,21(2):169-183.
    173.Weston E, Thorogood K, Vinti G, et al. Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants[J]. Planta,2000, 211(6):807-815.
    174. Oda Y. Effects of light intensity, CO2 concentration and leaf temperature on gas exchange of strawberry Plants feasibility studies on CO2 enrichment in Japanese conditions. [J]. Horticultruae, 1997, (439):563-573.
    175. Yang D, Webster J, Adam Z, et al. Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem Ⅱ in response to elevated light intensities[J]. Plant Physiology,1998,118(3):827-834.
    176. Zadeh L A. Fuzzy sets[J]. Inf Cont,1965, (8):338-358.
    177. Zhu X, Long S P, Ort D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?[J]. Current opinion in biotechnology,2008,19(2):153-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700