配电系统可靠性评估方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配电系统将输变电系统与用户连接起来,向用户分配和供应电能,包括配电变电站、高低压配电线路、馈线等网络和设备。作为直接与用户相连的部分,配电系统直接影响着用户正常供电,其在安全、可靠以及经济供电方面发挥着重要作用。随着社会的发展和经济结构的调整,信息工业等对供电要求更高的产业比重越来越大,用户对供电可靠性的要求越来越高,如何向用户提供高可靠性的电力是电力工作者不容回避的现实,也是电力系统发展的必然要求。
     低压用户供电可靠性是反映电力企业供电能力和供电质量的最主要指标之一,是供电系统的规划、设计、设备选型、施工、生产、运行及供电服务等方面水平的综合体现。开展低压用户供电可靠性统计工作最大难点在于低压用户的数量众多和分布广泛,其基础数据量很大且运行数据难以全面采集。探索一种既可以有效统计低压用户供电可靠性、投资又可接受的方法,为整个配电系统可靠性与经济性的评估提供依据,具有重要理论意义和实用价值。
     与发电和输电系统研究相比,配电系统可靠性研究起步较晚。由于缺乏必要的统计数据和行之有效的分析方法,发展较为缓慢。近年来,随着国民经济的飞速发展,城市用电负荷迅速增长,供需矛盾日益突出,配电可靠性在生产管理工作中所占的位置也越来越重要。为使有限的资源取得最大的收益,迫切需要对配电系统进行科学合理的规划,从而促进配电系统供电可靠性评估的发展。
     绝大多数电力系统输变电设备都暴露于外部气候条件下,主设备易受气象事件影响是电力系统运行的重要特征之一。大气湿度、污浊程度、大风、冰雪冻雨、雷暴、大雾等偶发性气象事件都会影响到元件的故障率;严重气候事件会导致聚集性故障,严重影响系统的可靠性水平。研究大风等气候条件对高压配电系统可靠性影响的模拟方法,有助于深入理解不利气候条件下聚集性故障对系统可靠性的影响,从而从微观、细粒度层面揭示气候的作用,具有重要理论意义。
     本文围绕低压用户供电系统可靠性评估方法与应用、基于成功概率的配电系统可靠性评估方法、考虑大风气候影响的高压配电系统可靠性评估等内容,从多个层面对配电系统可靠性进行了深入研究,并将部分成果应用于多家电力公司。主要工作和取得的成果如下:
     (1)低压用户供电系统可靠性评估方法与应用
     提出了基于概率统计模型检验的低压用户供电系统可靠性统计评价方案,开发了相关软件系统,并应用于实际电网。根据概率统计理论的计算分析结果,在统计范围内按测量精度要求设置相应的低压用户供电可靠性监测点,将监测点采集的运行数据传输到计算分析中心,实现指标的自动计算分析。该方案有效克服了目前我国低压用户供电可靠性统计投资大、统计结果误差大的问题。开发了低压用户可靠性评估仿真模拟系统,可用于校核所采用评估方法的有效性,对提高配电系统可靠性评估管理水平、改进可靠性评估精度具有重要作用。在多家电力公司的应用取得了良好效果。
     (2)基于成功概率的配电系统可靠性评估方法
     如何提高配电系统供电可靠性并尽可能降低投资是电力系统的一个重要课题。在分析一些常用的配电系统可靠性评估方法的基础上,引入元件平均成功运行概率的概念,提出了一种基于成功概率的配电系统可靠性评估方法。该可靠性评估方法不会因为配网分支馈线的增多而变得复杂,在对网络进行拓扑分析的基础上只需要一次遍历,即可同时得到负荷点的故障率和成功运行概率,进而可直接得到负荷点的故障持续时间。其优点在于故障率和成功运行概率并行计算,且网络模型不会因为分支馈线的增多而变得复杂,可以通过简单的加法和乘法运算即可快速准确地得到可靠性指标,具有原理清晰、编程简单、结果准确、计算快速等特点。
     (3)考虑大风气候的高压配电系统可靠性评估方法
     分析了气候条件对配电系统可靠性影响的规律和研究现状,针对大风不利气候条件影响电网的特征,提出了大风不利气候对高压配电系统可靠性影响的模拟方法,基于蒙特卡罗抽样原理随机产生故障场景,并通过详细的时域仿真工具进行分析计算。该方法能够模拟大风天气下聚集性故障特征,并弥补了仅从静态、宏观层面进行可靠性分析的不足。开发了考虑大风气候的高压配电系统可靠性评估系统,针对山东电网实际规划数据,进行了大量仿真,分析了系统在给定外部大风条件下的可靠性。算例仿真表明系统能够处理实际电网数据,给出量化可靠性评价指标;大量的模拟抽样仿真可以揭示电网结构的潜在问题,为电网规划提供参考。
Distribution system, linking transmission system and users together, distributes and supplies electricity to users. It includes distribution substation, high and low voltage distribution lines, feeder lines and other networks as well as devices. As a part connected directly to users, the reliability of distribution system directly affects the normal power users. Therefore, it plays an important role in the safety, reliability and economy of power supply. With the restructuring of economy and growing proportion of demanding industries such as information industry, security requirement of users becomes higher and higher. How to supply users with high-safety electricity is an unavoidable reality of electricity workers, and a necessary requirement for the development of power systems.
     The power supply reliability of low-voltage users is one of the main indexes that reflect the ability and quality of power supply utilities. It embodies the comprehensive level of power system in terms of plan, design, device selection, construction, production, operation and service. However, it is difficult to get the statistic reliability of low-voltage users, because such users are numerous and widely distributed, which means the basic data is too large and operating data is hard to collect. Therefore, exploring an investable method that can calculate the statistical reliability of low-voltage users and provide the basis for evaluation of the entire distribution system reliability and economy has important theoretical significance and value.
     Comparing to generation and transmission system, the study of distribution system reliability started late. Due to lack of necessary statistical data and effectively analytical method, development was relatively slow. In recent years, with the rapid development of the national economy, the urban power load has been increasing quickly so that the conflict between supply and demand has become very prominent. Consequently, the reliability of power distribution has been becoming more and more significant in producing management. In order to achieve maximum benefit based on limited resource, we urgently need a kind of scientific and rational plan of distribution system, which will contribute to the development of reliability assessment of distribution system.
     Most power transmission and transforming equipments are exposed to external environment. In addition, the main equipments are susceptible to weather events, which is an important feature of power system. Atmospheric humidity, pollution level, strong wind, snow as well as ice rain, thunderstorms, fog and other occasional weather events will affect the fault rate of components; severe weather events may even lead to a cluster of failures, seriously affecting the level of system reliability. Studying the method that can simulate the effect of strong wind and other climatic conditions on the reliability of high-voltage distribution system will contribute to a better understanding of faults aggregation under extreme weather conditions, and then it becomes possible to reveal the role of climate from a micro, fine-grained level, which has theoretical significance.
     Focusing on assessment method of low-voltage power system reliability, new evaluation method of system as well as distribution network reliability, and assessment of high-voltage distribution system reliability considering the effect of strong wind, this dissertation studies the reliability of power distribution in detail, mainly including:
     (1) Reliability assessment method and application of low-voltage power supply systems
     A statistical evaluation scheme of power supply reliability of low-voltage users based on a test of probabilistic and statistical model is proposed, and relative software is developed and applied to actual power system. According to the calculation as well as analysis results of probabilistic and statistical theory, and precision requirements within the statistical range, corresponding reliability monitoring points of low-voltage users are set. Then operating data collected from monitoring points are transferred to a computer center, which calculates and analyzes indexes automatically. This scheme effectively overcomes the problem that the investment of reliability statistics of low-voltage users in China and the problem that statistics results have big errors.
     (2) Reliability assessment method of distribution system based on success probability
     How to improve the distribution network reliability and minimize the investment is an important topic in modern power system operation and control. With reviewing some general used reliability assessment methods of distribution system, by introducing the concept of average success operating probability of component, a new method is proposed based on success probability. The method will not become more complex with the number of branch feeder lines increasing. Therefore, based on the network topology analysis, only one traversal is required, and then the fault rate as well as success operating probability of a load point can be obtained. Further, the fault duration can be determined. This method has several advantages. The failure rate and success operating probability can be calculated in parallel; the network model will not become more complex when the number of branch feeder lines increases; the reliability index can be obtained quickly and accurately by simple calculations such as addition and multiplication; it has clear principles, accurate results, fast computation and can be programmed easily.
     (3) Reliability assessment of high-voltage distribution network considering windy climate
     The principle and research status of the effect of climate on distribution network reliability are analyzed. According to the features of the impact of windy climate on the grid, a numerical simulation method of the effect of windy climate on power system is proposed. It generates random failure scenarios by Monte-carlo simulation method, carries out analysis and calculation through a detailed time-domain simulation tool. The proposed method can simulate the characteristics of fault aggregation under windy climate, which makes up the shortcoming caused by analyzing only from the steady-state view. A reliability evaluation system for high-voltage distribution system considering the windy climate is developed. Based on the actual data of Shandong power grid, a large number of simulations and reliability analysises have been done under the condition of a given external wind. Example simulations show that the system can handle actual grid data. A large number of analog sampling simulations can reveal potential problems, and provide the reliability level of system under the condition of fault aggregation.
引文
[1]郭永基.可靠性工程原理[M].北京:清华大学出版社,2002.
    [2]杨毅,韦钢,周冰,等.含分布式电源的配电网模糊优化规划[J].电力系统自动化,2010,34(13):18-23.
    [3]刘传铨.计及分布式电源的配电网供电可靠性[D].上海交通大学,2008.
    [4]王旭东,林济铿.基于网络化简的含分布式电源的配电网可靠性分析[J].电力系统自动化,2010,34(4):38-43.
    [5]解翔,袁越,李振杰.含微电网的新型配电网供电可靠性分析[J].电力系统自动化,2011,35(9):66-72.
    [6]侯慧,尹项根,陈庆前,等.南方部分500 kV主网架2008年冰雪灾害中受损分析与思考[J].电力系统自动化,2008,32(11):12-15,38.
    [7]陆佳政,蒋正龙,雷红才,等.湖南电网2008年冰灾事故分析[J].电力系统自动化,2008,32(11):16-19.
    [8]郭应龙,李国兴,尤传永.输电线路舞动[M].北京:中国电力出版社,2003.
    [9]黄经亚.架空送电线路导线舞动的分析研究[J].中国电力,1995,(2):21-26.
    [10]Freedman Jeff, Markus Michael, Penc Richard. Analysis of west texas wind plant ramp-up and ramp-down events[R]. Technical AWS Truewind, LLC:New York, USA,2008.
    [11]Beatrice Greaves, Jonathan Collins, Jeremy Parkes, etc. Temporal forecast uncertainty for ramp events[J]. Wind Engineering,2009, (33):309-319.
    [12]Kamath Chandrika. Understanding wind ramp events through analysis of historical data [C].2010 IEEE PES Transmission and Distribution Conference and Exposition Chicago, IL, USA,2010,1:1-6.
    [13]Zareipour Hamidreza, Huang Dongliang, Rosehart William. Wind power ramp events classification and forecasting:a data mining approach[C]. IEEE PES General Meering 2011, Detroit, Michigan, USA,2011,1:1-3.
    [14]Billinton R, Billinton J E. Distribution system reliability indices[J]. IEEE Transactions on Delivery,1989,4(1):561-568.
    [15]国家电网公司.国家电网公司企业标准-城市电力网规划设计导则[S].北京,中国:中国电力出版社,2006.
    [16]江北,刘敏,陈建福,等.应用自动装置提高地区电网供电可靠性[J].电力系统自动化,2001,25(6):66-68.
    [17]卢锦玲,栗然,刘艳,等.基于状态空间法的地区环式供电网可靠性分析[J].电力系统自动化,2003,27(11):21-24.
    [18]杨晓斌,张焰,周志超,等.中压配电网供电可靠性定量评估系统的开发与应用[J].电力系统自动化,2004,28(18):83-85,89.
    [19]丁磊,潘贞存,王宾.分散电源并网对供电可靠性的影响分析[J].电力系统自动化,2007,31(20):89-93.
    [20]陈丽娟,贾立雄,胡小正.2007年全国输变电设施和城市用户供电可靠性分析[J].中国电力,2008,41(5):1-8.
    [21]吕春泉,贾伟.供电可靠性统计向低压网络扩延的研究及其实现[J].电网技术,2000,24(3):53-54,65.
    [22]肖狄,郭永基,席勇健,等.一种评估大规模电力系统可靠性的新算法[J].清华大学学报,1999,39(1):12-15.
    [23]别朝红,王锡凡.蒙特卡罗法在评估电力系统可靠性中的应用[J].电力系统自动化,1997,21(6):68-75.
    [24]石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡罗方法[J].中国电机工程学报,2008,28(4):9-15.
    [25]赵渊,周家启,刘志宏.大电网可靠性的序贯和非序贯蒙特卡罗仿真的收敛性分析及比较[J].电工技术学报,2009,24(11):127-133.
    [26]杨京燕,马昕,周波,等.用时序模拟法评估超高压输电网络运行的可靠性[J].中国电力,2000,33(2):21-24.
    [27]任震,何建军,谌军,等.交直流网络系统可靠性评估的Monte Carlo-FD混合法[J].电网技术,2000,24(5):13-19,51.
    [28]汪穗峰,张勇军,任倩,等.配电网可靠性定量分析研究综述[J].继电器,2008,36(3):79-83.
    [29]Billinton R, Wang P. Reliability network equivalent approach to distribution system reliability evaluation[J]. IEE Procedings Generation, Transmission and Distribution,1998,145(2):149-153.
    [30]别朝红,王秀丽,王锡凡.复杂配电系统的可靠性评估[J].西安交通大学学报,2000,34(8):9-13.
    [31]别朝红,王锡凡.配电系统的可靠性分析[J].中国电力,1997,30(5):10-13.
    [32]Xie Kaigui, Zhou Jiaqi, Billinton R. Reliability evaluation algorithm for complex medium voltage electrical distribution networks based on the shortest path[J]. IEE Procedings - Generation, Transmission and Distribution,2003,150(6):686-690.
    [33]郭慧敏.应用最小路一广度优先搜索的配电系统可靠性评估[J].继电器,2007,35(22):14-17.
    [34]沈宏,付广春.改进最小路法在配电系统可靠性评估中的应用[J].中国电力,2010,43(10):20-22.
    [35]Ozdemir A, Caglar R, Mekic E. A new active failure simulation approach for dstribution system reliability assessment[C]. Proceedings of International Conference on Power System Technology(PowerCon 1998), Bei Jing, China,1998,1:237-240.
    [36]万国成,任震,田翔.配电网可靠性评估的网络等值法模型研究[J].中国电机工程学报,2003,23(5):48-52.
    [37]李可,马孝义,邢化玲,等.基于网络等值的复杂中压配电网修正的可靠性评估模型[J].电力学报,2010,25(2):103-106.
    [38]卫志农,周封伟,肖川凌,等.基于简化网络模型的复杂中压配电网分析可靠性评估算法[J].电网技术,2006,30(15):72-75,80.
    [39]张鹏,王守相.大规模配电系统可靠性评估的区间算法[J].中国电机工程学报,2004,24(3):77-84.
    [40]束洪春,张静芳,刘宗兵.基于馈线分区的复杂配电网可靠性区间分析[J].电网技术,2008,32(19):37-41.
    [41]崔坤台.配电系统可靠性的区间分析[D].天津:天津大学,2006.
    [42]莫海勇.基于最小路与区间运算相结合的配电系统可靠性[D].天津:天津大学,2007.
    [43]张鹏,王守相,王海珍.配电系统可靠性评估的改进区间分析方法[J].电力系统自动化,2003,27(17):50-55.
    [44]谢开贵,周平,周家启,等.基于故障扩散的中压配电系统可靠性评估算法[J].电力系统自动化,2001,25(4):45-48.
    [45]李卫星,李志民,刘迎春.复杂辐射状配电系统的可靠性评估[J].中国电机工程学报,2003,23(3):69-73,79.
    [46]刘柏私,谢开贵,马春雷,等.复杂中压配电网的可靠性评估分块算法[J].中国电机工程学报,2005,25(4):40-45.
    [47]陈文高.配电系统可靠性实用基础[M].北京:中国电力出版社,1998.
    [48]管霖,冯壶,刘莎,等.大规模配电网可靠性指标的近似估测算法[J].中国电机工程学报,2006,26(10):92-98.
    [49]Sobol' llya M. A primer for the monte carlo method[M]. New York, USA:CRC Press, Inc,1994.
    [50]Yeh Wei-Chang, Lin Yi-Cheng, Chung Yuk Ying, Chih Mingchang. A particle swarm optimization approach based on Monte Carlo simulation for solving the complex network reliability problem[J]. IEEE Transactions on Reliability,2010,59(1):212-221.
    [51]Billinton R, Wangdee W. Delivery point reliability indices of a bulk electric system using sequential Monte Carlo simulation[J]. IEEE Transactions on Power Delivery,2006,21 (1):345-352.
    [52]Heydt G T, Graf T J. Distribution system reliability evaluation using enhanced samples in a Monte Carlo approach [J]. IEEE Transactions on Power Systems,2010,25(4):2006-2008.
    [53]Ou Y, Goel L. Using Monte Carlo simulation for overall distribution system reliability worth assessment[J]. IEE Proceedings-Generation Transmission and Distribution,1999,146(5):535-540.
    [54]Masood Ahmad M, Debs A, Wardi Y. Estimation of the derivatives of generation system reliability indices in Monte Carlo simulation[J]. IEEE Transactions on Power Systems,1993,8(4):1448-1454.
    [55]Wang Peng, Billinton Roy. Umeliabflity cost assessment of all electric power system using reliability network equivalent approaches[J]. IEEE Transactions on Power Systems,2002,17(3):549-556.
    [56]万国成,任震,吴日舁,等.混合法在复杂配电网可靠性评估中的应用[J].中国电机工程学报,2004,24(9):92-98.
    [57]别朝红,王秀丽,王锡凡.电力系统可靠性评估的混合法研究[J].中国电力,2001,34(3):25-28.
    [58]邓立华,陈星莺.配电系统可靠性分析综述[J].电力自动化设备,2004,24(4)74-77.
    [59]Amajady N, Ehsan M. Evaluation of power systems reliability by an artificial neural network[J]. IEEE Transactions on Power Systems,1999, 14(1):287-292.
    [60]张焰.电网规划中的模糊可靠性评估方法[J].中国电机工程学报,2000,20(11):77-80.
    [61]王峻峰,周家启,谢开贵.中压配电网可靠性的模糊评估[J].重庆大学学报(自然科学版),2006,29(2):45-49.
    [62]Belhomme R. Wind power developments in France [J]. IEEE Power Engineering Review,2002,1:357-358.
    [63]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107.
    [64]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微网技术研究综述[J].电网技术,2009,33(9):14-18,34.
    [65]Barker P P, Mello R W. Determining the impact of distributed generation on power systems:Part 1-Radial distribution systems [C]. IEEE 2000 Power Engineering Society Summer Meeting, Seattle, USA,2000,3:1645-1656.
    [66]随新鲜,王倩,杨亚强,等.分布式发电并网运行对配电网可靠性的影响研究[J].四川电力技术,2010,33(2):31-33,52.
    [67]钱科军,袁越,Zhou Chengke.分布式发电对配电网可靠性的影响研究[J].电网技术,2008,32(11):74-78.
    [68]别朝红,李更丰,王锡凡.含微网的新型配电系统可靠性评估综述[J].电力自动化设备,2011,31(1):1-6.
    [69]Fotuhi-Firuzabad M, Rajabi-Ghahnavie A. An analytical method to consider DG impacts on distribution system reliability[C]. Transmission and Distribution Conference and Exhibition:Asia and Pacific, Dalian, China, 2005,1:1-6.
    [70]Andrade W S, Borges C L T, Falcao D M. Modeling reliability aspects of distributed generation connected to distribution systems[C]. Power Engineering Society General Meeting, Montreal, Quebec, Canada,2006, 1:1-6.
    [71]陈云云.考虑分布式发电的配电系统可靠性评估[D].天津:天津大学,2006.
    [72]Chowdhury A A, Agarwal S K, Koval D O. Reliability modeling of distributed generation in conventional distribution systems planning and analysis [J]. IEEE Industry Applications Society,2002,39(5):1493-1498.
    [73]Boujen M H J, Sun Y, Ault G W. Reliability of distribution networks with DER including intentional islanding[C]. International Conference on Future Power Systems, Amsterdam, Holland,2005,1:1-6.
    [74]周家启,任震.电力系统可靠性评估[M].重庆:科学技术文献出版社重庆分社,1984.
    [75]彭鹄,谢开贵,王进,等.含风力发电的发输配电系统可靠性综合评估[J].电气应用,2009,28(17):44-48,67.
    [76]吴义纯,丁明.基于蒙特卡罗仿真的风力发电系统可靠性评价[J].电力自动化设备,2004,24(12):70-73.
    [77]刘威,赵渊,周家启,等.计及风电场的发输配电系统可靠性评估[J].电网技术,2008,32(13):69-74.
    [78]马立克,王成山.计及风能/光能混合发电系统的配电系统可靠性分析(英文)[J].电力系统自动化,2005,29(23):33-38,79.
    [79]Ferreira C, Gama J, Matias L, al et. A survey on wind power ramp forecasting[R]. Technical Argonne National Laboratory:New York, USA, 2010.
    [80]李可,马孝义,邢化玲.基于分块算法的复杂配电网修正的可靠性评估模型[J].电力学报,2009,24(6):451-454.
    [81]潘仲立.可靠性分析的理论基础[M].北京:水利电力出版社,1988.
    [82]中华人民共和国国家发展和改革委员会.中华人民共和国电力行业标准DL/T861-2004:电力可靠性基本名词术语[S].北京:中国电力出版社,2004.
    [83]Allan R N, Billinton R. A reliability test system for educational purposes-basic distribution system data and results[J]. IEEE Transactions on Power Systems,1991,6(2):813-821.
    [84]Lauritzen S L, Spiegelhalter D J. Local computations with probabilities on graphical structures and their applications to expert systems [J]. Proceedings Of the Royal Statistical Society, Series B,1988, 50(1):154-227.
    [85]郭永基.电力系统可靠性原理和应用(上)[M].北京:清华大学出版社,1983.
    [86]The Institute of Electrical and Electronics Engineers. IEEE tria-use guide for electric power distribution reliability indices(IEEE Std 1366-1998)[S]. New York:American National Standards Institute,1999.
    [87]The Institute of Electrical and Electronics Engineers.IEEE tria-use guide for electric power distribution reliability indices(IEEE Std 1366-2003)[S]. New York:American National Standards Institute,2004.
    [88]李玉生,赵凯,左晓文,等.1999年全国电力可靠性统计分析[J].中国电力,2000,33(5):7-14.
    [89]周小波,宗明.低压用户供电可靠性统计评价系统的功能与实现[J].上海电力,2004,3(3):216-219.
    [90]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003.
    [91]W.费勒著(刘文译).概率论及其应用[M].北京:科学出版社,1979.
    [92]巴克利(Buckley F.),勒文特(Lewinter M.).图论简明教程[M].北京:清华大学出版社,2005.
    [93]帕帕李米特里乌.计算复杂性(影印版)[M].北京:清华大学出版社,2004.
    [94]贾春娟.低压供电可靠性故障模拟算法研究[J].电力系统自动化,2004,28(2):76-78.
    [95]张腾,张波.基于概率统计的低压用户供电可靠性评估算法[J].电网技术,2004,28(17):81-84.
    [96]戴雯霞,吴捷.基于最小路的配电网可靠性快速评估法[J].电力自动化设备,2002,22(7):29-31.
    [97]丁明,张静,李生虎.基于序贯蒙特卡罗仿真的配电网可靠性评估模型[J].电网技术,2004,28(3):38-42.
    [98]徐珍霞,周江昕.复杂配电网可靠性评估的改进故障遍历法[J].电网技术,2005,29(14):64-67.
    [99]周念成,谢开贵,周家启,等.基于最短路的复杂配电网可靠性评估分块算法[J].电力系统自动化,2005,29(22):39-44.
    [100]国家能源局.中华人民共和国电力行业标准-供电系统用户供电可靠性评价规程[S].北京:中国电力出版社,2010.
    [101]Chang N E. Evaluate distribution system design by cost reliability indices[J]. IEEE Transactions on Power Apparatus and Systems,1977, 96(5):1480-1490.
    [102]IEEE Power Systems Relaying Committee Report. Distribution protection and restoration systems:design verification by reliability indices [J]. IEEE Transactions on Power Apparatus and Systems,1974,93(2):564-570.
    [103]Billinton R, Wojczynski E. Dstributional variation of distribution system reliability indices [J]. IEEE Transactions on Power Apparatus and Systems, 1985,104(11):3152-3160.
    [104]Teng-Fa Tsao, Hong-Chan Chang. Composite reliability evaluation model for different types of distribution systems [J]. IEEE Transactions on Power Systems,2003,18(2):924-930.
    [105]Carpaneto E, Chicco G. Evaluation of the probability density functions of distribution system reliability indices with a characteristic functions-based approach[J]. IEEE Transactions on Power Systems,2004, 19(2):724-734.
    [106]Jamali S, Afari L. A fast approach for evaluating reliability indices of radial distribution systems[C]. The 42nd International Universities Power Engineering Conference(UPEC 2007), Brighton, UK:IEEE,2007, 1:938-941.
    [107]笠鸿兴,尹积军,李红梅,袁明军.2000-2003年山东电力供电可靠性规划[J].中国电力,2000,33(11):5-9.
    [108]中华人民共和国电力行业标准.供电系统用户供电可靠性评价规程(DL\\T836-2003)\[S].北京:中国电力出版社,2003.
    [109]沈培祖,黄祥瑞.GO法原理及应用:一种系统可靠性分析方法[M].北京:清华大学出版社,2004.
    [110]徐荆州,李扬.基于GO法的复杂配电系统可靠性评估[J].电工技术学报,2007,22(1):149-153.
    [111]Wood D E, Becar N J. Risk analysis of a spent fuel received and storage facility using the GO methodology[R]. Technical Kaman Sciences Corporation:1979.
    [112]Gateley W Y, Williams R L. GO methodology-overview[R]. Technical EPRI NP-765, Kaman Sciences Corporation, May,1978.
    [113]Gateley W Y, Williams R L. GO methodology-system reliability assessment and computer code manual[R]. Technical EPRI NP-766, Kaman Sciences Corporation, May,1978.
    [114]Chu B B. GO methodology-fault sequence identification and computer code manual [R]. Technical EPRI NP-767, Kaman Sciences Corporation:May,1978.
    [115]镇启明.基于GO-FLOW的核电厂可靠性监测方法研究[D].哈尔滨:哈尔滨工程大学,2009.
    [116]王超,高鹏,徐政,等.GO法在继电保护可靠性评估中的初步应用[J].电力系统自动化,2007,31(24):52-56,85.
    [117]王超,张雪松,徐政,等.基于GO法的特高压直流输电可靠性研究[J].浙江大学学报(工学版),2009,43(1):159-165.
    [118]彭巧玲.基于GO法的配电网可靠性评估[D].华北电力大学(北京),2008.
    [119]沈祖培,郑涛.复杂系统可靠性的GO法精确算法[J].清华大学学报(自然科学版),2002,42(5):569-572.
    [120]沈祖培,黄祥瑞.GO法原理及应用[M].北京:清华大学出版社,2004.
    [121]Billinton R, Jonnavithula S. A test system for teaching overall power system reliability assessment[J]. IEEE Transactions on Power Systems, 1996,11 (4):1670-1676.
    [122]The Star Phoenix (New paper), Fri.Dec 7,2001, Saskatoon, PgA13.
    [123]Hydro Ontario. Ice storm 98-a report on the electricity supply impacts of the January 1998 ice storm in eastern Ontario[R]. Technical Toronto, Ontario, Canada,1998.
    [124]蒋兴良.贵州电网冰灾事故分析及预防措施[J].电力建设,2008,29(4):1-4.
    [125]章叔昌.江西电网典型冰害事故调查及分析[J].江西电力,2008,32(2):26-29.
    [126]陆佳政,蒋正龙,雷红才,等.湖南电网2008年冰灾事故分析[J].电力系统自动化,2008,32(11):16-19.
    [127]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34(2):215-219.
    [128]王藏柱,杨晓红.输电线路导线的振动和防振[J].电力情报,2002,(1):69-71.
    [129]刘连睿.我国高压架空线路舞动情况及分析[J].华北电力技术,1989,(9):40-43.
    [130]黄经亚.500kV输电线路中山口大跨越5次导线舞动的分析及探讨[J].电力技术,1990,(4):14-20.
    [131]Rawlins C B. Research on vibration of overhead ground wires[J]. IEEE Transactions on Power Delivery,1988,3(2):769-775.
    [132]Gupta S, Wipf T. Structural failure analysis of 345 kV transmission line[J]. IEEE Transactions on Power Delivery,1994,9(2):894-903.
    [133]Burns M R. Distribution line hazards that affect reliability and the conductor repairs and solutions to avoid future damage [C].2003 IEEE Rural Electric Power Conference, Raleigh-Durham, NC, USA,2003,1:1-6.
    [134]杨以涵,张东英,马骞,等.大电网安全防御体系的基础研究[J].电网技术,2004,28(9):23-27.
    [135]张伯明,吴素农,蔡斌,等.电网控制中心安全预警和决策支持系统设计[J].电力系统自动化,2006,30(6):1-5.
    [136]Nicholas Cutler, Merlinde Kay, Hugh Outhred, et al. High-risk scenarios for wind power forecasting in Australia[C]. European Wind Energy Conference & Exhibition 2007, Milan, Italy, EWEC,2007,1:1-6.
    [137]Potter C W, Grimit E, Nijssen B. Potential benefits of a dedicated probabilistic rapid ramp event forecast tool[C]. IEEE Power Systems Conference and Exposition-PSCE'09, Seattle, USA,2009,1:1-5.
    [138]Bradford Kristen T, Carpenter Richard L, Shaw Brent L. Forecasting southern plains wind ramp events using the WRF model at 3km[C]. in Proceedings of the AMS Student Conference, Atlanta, USA,2010,1:1-5.
    [139]NERC. Comments of the North American Electric Reliability corporation in response to the Federal Energy Regulatory Commission's January 21, 2010 notice of inquiry on the integration of variable energy resources[R]. Technical NERC, New York, USA,2010.
    [140]IEEE Committee. Proposed definitions of terms for reporting and analyzing outages of electrical transmission and distribution facilities and interruptions [J]. IEEE Transactions on Power Apparatus and Systems,1968, 87(5):1318-1323.
    [141]IEEE Standards Board. IEEE standard terms for reporting and analyzing outage occurrences and outage states of electrical transmission facilities[S]. New York, USA,1987.
    [142]Gaver D P, Montmeat F E, Patton A D. Power system reliability:i measures of reliability and methods of calculation [J]. IEEE Transactions on Power Apparatus and Systems 1964,83(7):727-737.
    [143]Billinton R, Bollinger K E. Transmission system reliability evaluation using markov processes[J]. IEEE Transactions on Power Apparatus and Systems 1968,87(2):538-547.
    [144]Billinton R, Wu Chenjian. Predictive reliability assessment of distribution systems including extreme adverse weather[C]. IEEE Canadian Conference on Electrical and Computer Engineering,2001(CCECE 2001), Toronto, ON, Canada,2001.
    [145]Billinton R, Singh Gagan Deep. Reliability assessment of transmission and distribution systems considering repair in adverse weather conditions[C]. IEEE Canadian Conference on Electrical and Computer Engineering(CCECE 2002), Toronto, ON, Canada,2002,1:88-93.
    [146]杨保东.线路舞动跳闸分析及抑制措施的探讨[J].华北电力技术,2001,(1):22-24.
    [147]Richard Gutman, Sharma Kolluri, Anant Kumar. Application of single phase switching on entergy system-three phase unbalance studies[C]. IEEE Power Engeneering Society Summer Meeting, Vancouver, Canada,2001,2:778-783.
    [148]ABB Grid Systems Consulting. Stability analysis for facility study of PID-226[R]. Feb.19,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700