高压直流输电系统基本设计若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于我国能源资源与需求呈逆向分布,客观上决定了我国要实行“西电东送、南北互供、全国联网”的电力资源优化配置,以实现能源的大范围转移,而直流输电技术在远距离、大容量输电方面的优势决定了其是最好的选择。虽然我国在直流输电技术方面起步较晚,但发展迅速,为了进一步提高直流工程的国产化水平,全面推动自主研发和科技创新,开发具有自主知识产权的高压直流输电基本设计软件包是其重要内容之一,本论文主要研究了高压直流输电基本设计中的几个关键问题,主要研究内容如下:
     (1)研究了换流变压器参数的确定方法。根据换流阀的浪涌电流水平,结合交流侧最大三相短路容量和直流系统的额定直流电压、电流等参数,应用数学解析公式计算最低要求的换流变压器短路阻抗,避免了工程上反复迭代的过程,并基于确定的短路阻抗值计算其他参数。以整流侧定电流逆变侧定电压控制方式为研究对象,考虑系统参数及相关的测量误差,研究了换流变压器分接头级数的计算。
     (2)论述了高压直流输电主回路稳态参数计算需要的基础参数,包括运行方式、约束条件和原始数据。接着讨论了与主回路稳态参数计算密切相关的换流变压器分接头控制,包括其功能、分类以及各自的优缺点。然后在考虑这些基础参数,并基于整流侧定电流逆变侧定电压,两侧换流变压器分接头角度控制方式,具体研究了主回路稳态参数计算的过程,并制定了详细的计算流程。
     (3)论述了无功设备的投切原则和高压直流输电无功管理需要考虑的因素。根据系统参数及无功设备容量,并基于主回路稳态参数计算结果和保持交直流系统间无功交换量在一定范围内的原则,详细研究了无功设备投切点的计算,并为确定和校验换流站无功设备投切顺序以及绘制无功投切曲线制定了详细的计算流程。
     (4)基于主回路稳态参数计算结果,研究了在考虑各种非理想条件下采用确定性算法计算三脉动谐波电压源,包括特征与非特征谐波。计算时采用时域分段算法,该算法根据各三脉动组中三个阀的状态,将三脉动电压波形在一个周波内分为六段。根据计算获得的分段区间将交流基频电压与各次谐波电压作用下的三脉动电压按此六个分段区间分别进行傅立叶分解,然后再将同次谐波合并获得最终三脉动源各次电压。
     (5)以计算高压直流输电工程的等效干扰电流衡量直流滤波器性能为目的,研究了在给定两侧三脉动谐波电压源条件下,线路采用全相耦合模型并结合网络分序模型计算沿线各次谐波电流的算法,包括直接流过直流极导线、接地极线路的谐波电流和感应到直流线路、接地极线路地线中的谐波电流。并基于直流侧谐波电流论述了等效干扰电流的计算过程。
     (6)研究了一种基于滤波器等效原则并且适用于工程实际的直流滤波器设计方法。通过将多调谐滤波器等效成对应个单调谐滤波器,以多调谐滤波器的主电容值和调谐次数为限制条件,先计算各个单调谐滤波器参数,再经过等效公式得到多调谐滤波器的参数。根据该方法,可以方便地通过调整等效单调谐滤波器的参数而改变多调谐滤波器的参数,同时能保持多调谐滤波器的主电容值和调谐次数的不变,提高了直流滤波器设计的效率。
The fact that there is a reverse distribution between the energy resources and the demands determines our country has to implement the power optimal configuration, e.g. west-to-east power transmission, power exchange between south and north and nationwide interconnection. The advantages of HVDC in the field of long distance and large capacity transmission determine HVDC is the best choice. Although the HVDC technology starts relatively late in our country, it develops rapidly. In order to make further improvement in the localization of HVDC, and promote independent development and technological innovation comprehensively, developing HVDC design software package with independent intellectual property is an important content. This thesis makes researches on several important issues in basic design of HVDC and the main works are organized as follows:
     (1) According to the valve's surge current level, in combination with three-phase AC maximal short-circuit capacity, rated DC voltage and DC current, the determination of minimal short-circuit impedance of the converter transformer is carried out through analytical formulas, avoiding the procedure of iteration in practical engineering. Based on the actual impedance, the other parameters of converter transformer are calculated. Considering the system's parameters and measuring tolerances, tap range of converter transformer is calculated in detail.
     (2) The basic parameters for the calculation of main-circuit steady state's parameters in HVDC transmission are discussed, including operation modes, constraint conditions and original data. Then the tap changer control of converter transformer which has close relation with steady state's parameters is introduced, including its functions, categories, advantages and disadvantages. Based on the basic parameters and tap changer control, as well as the system's control, the flow for calculation of main-circuit steady state's parameters is established in detail.
     (3) The switch principle of reactive power equipments and the factors influencing the reactive power management for HVDC transmission are discussed. According to the system's parameters, the capacity of reactive power equipments and the results of main-circuit steady state's parameters, as well as the switch principle that keeping the exchange of reactive power between AC and DC system within a certain range, the calculation process for reactive power management is established in detail.
     (4) An algorithm for calculating the three-pulse harmonic voltages in the DC side is researched. In the algorithm, various asymmetries in firing angle, commutation reactance and transformer winding as well as the imbalance of ac voltage are considered. According to the states of valves, the waveform of the three-pulse voltage is divided into 6 segments in one cycle. In each segment, the voltage of the three-pulse model is calculated by considering the AC fundamental and harmonic voltages respectively. Then, through applying Fourier decomposition to the results of three-pulse voltage and merging the same orders of the harmonics, each harmonic order of the three-pulse voltage is obtained.
     (5) Based on the three-pulse model, an approach for calculating the DC side harmonic currents in HVDC systems is presented, including the harmonic currents flowing directly in the DC line and the grounding electrode line, as well as the harmonic currents induced in their screening wires. The DC transmission line is treated as a network element, and its coupled phase model is used to form the network nodal admittance matrix. The harmonic currents along the DC line are calculated in positive and zero sequence respectively, and then the whole harmonic currents along the DC line are synthesized by the two sequences. The calculation of equivalent disturbing current is also described.
     (6) For the purpose of designing DC filter more effectively, a DC filter design method which is based on the equivalent principle and is suitable for practical engineering is presented. By transforming multi-tuned filter to several single tuned filters, first the parameters of single tuned filters are calculated according to the restrictions of the multi-tuned filter's main capacitor value and the tuned frequencies. Then transforming the single tuned filters back, the parameters of multi-tuned filter can be calculated. With this method the parameters of multi-tuned filter can be adjusted freely, meanwhile, the main capacitor value and the tuned frequencies can be kept unchanged.
引文
[1]S. Cole, R. Belmans. Transmission of bulk power[J]. Industrial Electronics Magazine, IEEE. 2009,3(3):19-24.
    [2]M. Henderson, J. Gagnon, D. Bertagnolli, et al. Building a plan for HVDC[J]. Power and Energy Magazine, IEEE,2007,5(2):52-60.
    [3]陈鸿飞.±800kV云广特高压直流输电工程换流站主接线选择[硕士学位论文].广州:华南理工大学,2009.
    [4]李侠,G. Sachs, M. Uder±800 kV特高压直流输电用6英寸大功率晶闸管换流阀[J].高压电器,2010,46(6):1-5.
    [5]W. Long, S. Nilsson. HVDC transmission:yesterday and today[J]. Power and Energy Magazine, IEEE,2007,5(2):22-31.
    [6]Rudervall R, Charpentier J P, Sharma R. High voltage direct current (HVDC) transmission systems technology review paper[C]. Presented at Energy Week Washington, DC,2000.
    [7]M. P. Bahrman. HVDC transmission overview[C]. IEEE PES Transmission and Distribution Conference and Exposition,2008, Chicago, USA:1-7.
    [8]K. Meah, S. Ula. Comparative Evaluation of HVDC and HVAC Transmission Systems[C]. IEEE PES General Meeting,2007, Tampa, USA:1-5.
    [9]Jinhua Zhang. Optimization Study on Voltage Level and Transmission Capacity[J]. IEEE Transactions on Power Systems,2009,24(1):193-197.
    [10]刘振亚,舒印彪,张文亮,等.直流输电系统电压等级序列研究[J].中国电机工程学报,2008,28(10):1-8.
    [11]张文亮,周孝信,郭剑波,等.±1000kV特高压直流在我国电网应用的可行性研究[J].中国电机工程学报,2007,27(28):1-5.
    [12]郭强,张运洲,吕健.我国未来同步电网构建研究[J].电网技术,2005,29(22):14-18+60.
    [13]岑凯辛.高压直流输电在我国的新发展[J].广东输电与变电技术,2006,10(6):34-37.
    [14]黄道春,魏远航,钟连宏,等.我国发展特高压直流输电中一些问题的探讨[J].电网技术,2007,31(8):6-12.
    [15]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,30(11):11-12.
    [16]张运洲.对我国特高压输电规划中几个问题的探讨[J].电网技术,2005,29(19):11-14.
    [17]舒印彪,张文亮.特高压输电若干关键技术研究[J].中国电机工程学报,2007,27(31):1-6.
    [18]舒印彪.中国直流输电的现状及展望[J].高电压技术,2004,30(11):1-2+20.
    [19]袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,29(14):1-3.
    [20]苏宏田,齐旭,吴云.我国特高压直流输电市场需求研究[J].电网技术,2005,29(24):1-4+41.
    [21]常浩.我国高压直流输电工程国产化回顾及现状[J].高电压技术,2004,30(11):3-4+36.
    [22]常浩,樊纪超.特高压直流输电系统成套设计及其国产化[J].电网技术,2006.30(16):1-5.
    [23]李岩,黎小林,饶宏,等.贵广二回直流输电工程自主创新成果[J].南方电网技术,2008,2(6):36-40.
    [24]韩晓东.翟亚东.高压直流输电用换流变压器[J].高压电器,2002,38(3):5-6.
    [25]李勇.±500kV天广直流换流变总体运行情况分析[J].电网技术.2008,32(S2):75-77.
    [26]G. M. Bastos, J. C. Brandao, J. Santelli, et al. HVDC Converter Transformer Performance on ITAIPU System[C]. CIGRE,2006, Paris, France:1-8.
    [27]G. Bhuvaneswari, B. C. Mahanta. Analysis of Converter Transformer Failure in HVDC Systems and Possible Solutions[J]. IEEE Transactions on Power Delivery,2009,24(2):814-821.
    [28]CIGRE Joint Working Group A2/B4.28. HVDC Converter Transformers-Guidelines for Conducting Design Reviews for HVDC Converter Transformers[R]. Paris:CIGRE,2010.
    [29]CIGRE Joint Working Group A2/B4.28. HVDC Converter Transformers-Design Review, Test Procedures, Ageing Evaluation and Reliability in Service[R]. Paris:CIGRE,2010.
    [30]U. Astrom, L. Weimers, V. Lescale, et al. Power Transmission with HVDC at Voltages Above 600 kV[C]. IEEE PES Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005, Dalian, China:1-7.
    [31]U. Astrom, V. Lescale. Converter Stations for 800 kV HVDC[C]. International Conference on Power System Technology,2006, Chongqing, China:1-7.
    [32]孙振权,赵学风,李继胜,等.直流电压下油纸绝缘结构气隙模型的局部放电特性[J].电工技术学报,2010,25(9):20-27.
    [33]李琳、纪锋,刘刚.油-纸绝缘结构瞬态电场计算的状态空间有限元法[J].中国电机工程学报,2010,30(36):111-116.
    [34]刘泽洪,郭贤珊.特高压变压器绝缘结构[J].高电压技术,2010,36(1):7-12.
    [35]郑劲,文闿成.换流变压器阀侧套管出线装置绝缘分析[J].高电压技术,2010,36(5):1184-1190.
    [36]王彦峰.换流变压器国产化方案探讨[J].电力科学与工程.2009,25(9):69-71.
    [37]刘宝宏,马为民,殷威扬.三沪直流输电系统主回路参数研究[J].电力建设,2007,28(11):1-4.
    [38]刘宝宏,殷威扬,杨志栋,等.±800kV特高压直流输电系统主回路参数研究[J].高电压技术,2007,33(1):17-21.
    [39]张燕秉,郑劲,汪德华,等.特高压直流换流变压器的研制[J].高电压技术,2010,36(1):255-264.
    [40]Zhu Weilu, Deng Huiqiong, Sun Kejun. Research on the Selection of Short Circuit Impedance of Converter Transformer in Extra-High Voltage[C]. International Conference on Electrical and Control Engineering,2010, Wuhan, China:4164-4167.
    [41]ABB. Main Circuit Parameters-The Three Gorges-Changzhou ±500 kV DC Transmission Project[R]. Beijing:ABB,1998.
    [42]CSG. Main circuit parameters-Guizhou-Guangdong Ⅱ line ±500 kV DC transmission project[R]. Guangzhou:CSG. 2005.
    [43]M. Szechtman, T. Wess, C. V. Thio. A benchmark model for HVDC system studies[C]. International Conference on AC and DC Power Transmission,1991, London, UK:374-378.
    [44]M. Szechtman, T. Wess. C. V. Thio. First benchmark model for HVDC control study[J]. Electra, 1991,135:55-73.
    [45]M. O. Faruque, Zhang Yuyan, V. Dinavahi. Detailed modeling of CIGRE HVDC benchmark system using PSCAD/EMTDC and PSB/SIMULINK[J]. IEEE Transactions on Power Delivery, 2006,21(1):378-387.
    [46]D. Jovcic, N. Pahalawaththa, M. Zavahir. Inverter controller for HVDC systems connected to weak AC systems[J]. IEE Proceedings-Generation, Transmission and Distribution,1999,146(3): 235-240.
    [47]D. Jovcic, N. Pahalawaththa, M. Zavahir. Investigation of the use of inverter control strategy instead of synchronous condensers at inverter terminal of an HVDC system[J]. IEEE Transactions on Power Delivery,2000,15(2):704-709.
    [48]Shen Dazhong, A. Kraemer, D. Dohnal. Vacuum Switching Technology Improves the Switching Capacity of On-Load Tap-Changers in HVDC Applications[C]. International Conference on Power System Technology,2006, Chongqing, China:1-6.
    [49]李标俊.天广直流输电系统换流变压器有载分接头控制特性分析[J].电力设备,2004,5(9):44-46.
    [50]王明新,呙虎.一种背靠背直流输电系统换流变压器分接开关控制[J].电力系统自动化.2010,34(6):61-64+78.
    [51]刘崇茹,张伯明,孙宏斌.交直流系统潮流计算中换流变压器分接头的调整方法[J].电网技术,2006,30(9):22-27.
    [52]杜治.龙泉-政平直流输电工程主电路参数简介[J].湖北电力,2003,27(S1):6-9.
    [53]马为民.西北-华中联网背靠背直流工程一次系统设计[J].高电压技术,2004,30(11):5-7.
    [54]Task Force 03.01 of Committee 38. Reactive Power Compensation Analyses and Planning Procedure[R]. Paris:CIGRE,1989.
    [55]N. Rostamkolai, A. G. Phadke. A predictive control strategy for improving HVDC converter voltage profile[J]. IEEE Transactions on Power Systems,1989,4(1):37-43.
    [56]O. B. Nayak, A. M. Gole, D. G. Chapman, et al. Dynamic performance of static and synchronous compensators at an HVDC inverter bus in a very weak AC system[J]. IEEE Transactions on Power Systems,1994,9(3):1350-1358.
    [57]G. Jang, S. Oh, B. M. Han, et al. Novel reactive-power-compensation scheme for the Jeju-Haenam HVDC system[J]. IEE Proceedings-Generation, Transmission and Distribution, 2005,152(4):514-520.
    [58]N. J. Murray, J. Arrillaga, Liu Yong He, et al. Flexible Reactive Power Control in Multigroup Current-Sourced HVDC Interconnections[J]. IEEE Transactions on Power Delivery,2008,23(4): 2160-2167.
    [59]Lin Cheng, Zhengyu Zhang, Shuanbao Niu, et al. Modeling of Reactive Power Control System of HVDC[C]. Power and Energy Engineering Conference, Asia-Pacific,2010. Chengdu, China: 1-4.
    [60]Guo Xiaojiang, Ma Shiying, Long Jinzhuang, et al. Strategy of Active and Reactive Power Inter-coordination Control Among HVDCs[C]. Power and Energy Engineering Conference, Asia-Pacific,2010, Chengdu, China:1-4.
    [61]殷威扬,文俊,刘洪涛,等.葛-南直流输电工程无功及电压控制的研究[J].高电压技术,2006,32(9):62-66.
    [62]殷威扬,刘宝宏,马世英,等.中俄背靠背换流站直流系统与静止无功补偿器的协调运行[J].电网技术,2007,31(12):57-62.
    [63]颜伟,张海兵,田甜,等.交直流系统的动态无功优化[J].电力系统自动化,2009,33(10):43-46.
    [64]肖鸣,傅闯.云广±800kV直流低负荷无功优化功能运行分析[J].南方电网技术,2010,4(4):44-47.
    [65]殷威扬,杨志栋.特高压直流工程无功平衡和补偿策略[J].高电压技术,2006,32(9):50-54.
    [66]郭小江,卜广全,马世英,等.西南水电送华东多送出多馈入直流系统稳定控制策略[J].电网技术,2009,33(2):56-61.
    [67]郭小江,马世英,卜广全,等.上海多馈入直流系统的无功控制策略[J].电网技术.2009. 33(7):30-35.
    [68]戴熙杰.直流输电基础[M].北京:水利电力出版社,1990.
    [69]E.W.Kimbark. Direct Current Transmission[M]. New York:Wiley-Interscience,1971.
    [70]N. L. Shore, G Andersson, A. P. Canelhas, et al. A three-pulse model of DC side harmonic flow in HVDC systems[J]. IEEE Transactions on Power Delivery,1989,4(3):1945-1954.
    [71]T. F. Garrity,I. D. Hassan, K. A. Adamson, et al. Measurement of harmonic currents and evaluation of the DC filter performance of the New England-Hydro-Quebec Phase I HVDC project[J]. IEEE Transactions on Power Delivery,1989,4(1):779-786.
    [72]D. L. Dickmander, K. J. Peterson. Analysis of DC harmonics using the three-pulse model for the Intermountain Power Project HVDC transmission[J]. IEEE Transactions on Power Delivery, 1989,4(2):1195-1204.
    [73]IEEE Power Engineering Society the Transmission & Distribution Committee. IEEE Std 1124TM-2003 Guide for Analysis and Definition of DC Side Harmonic Performance of HVDC Transmission[J]. New York, USA:The Institute of Electrical and Electronics Engineers,2003.
    [74]E. V. Larsen, M. Sublich, S. C. Kapoor. Impact of stray capacitance on HVDC harmonics[J]. IEEE Transactions on Power Delivery,1989,4(1):637-645.
    [75]周长春、徐政.直流侧谐波计算的3脉动换流器模型[J].高电压技术,2002,28(3):9-10+13.
    [76]J. Reeve, J. A. Baron. Harmonic DC Line Voltages Arising from HVDC Power Conversion[J]. IEEE Transactions on Power Apparatus and Systems,1970, PAS-89(7):1619-1624.
    [77]史丹,任震,余涛.高压直流输电系统的谐波分析方法综述[J].电力自动化设备,2006,26(4):93-97.
    [78]A. Sarshar, M. R. Iravani, J. Li. Calculation of HVDC converter noncharacteristic harmonics using digital time-domain simulation method[J]. IEEE Transactions on Power Delivery,1996, 11(1):335-344.
    [79]P. Caramia, G Carpinelli, F. Rossi, et al. Probabilistic iterative harmonic analysis of power systems[J]. IEE Proceedings-Generation, Transmission and Distribution,1994,141(4):329-338.
    [80]J. Arrillaga, C. D. Callaghan. Three phase AC-DC load and harmonic flows[J]. IEEE Transactions on Power Delivery,1991,6(1):238-244.
    [81]G. Carpinelli, F. Gagliardi, M. Russo, et al. Generalised convertor models for iterative harmonic analysis in power systems[J]. IEE Proceedings-Generation, Transmission and Distribution,1994, 141(5):445-451.
    [82]R. Carbone, M. Fantauzzi, F. Gagliardi, et al. Some considerations on the iterative harmonic analysis convergence[J]. IEEE Transactions on Power Delivery,1993,8(2):487-493.
    [83]R. Yacamini, J. W. Resende. Harmonic generation by HVDC schemes involving converters and static VAr compensators[J]. IEE Proceedings-Generation, Transmission and Distribution.1996, 143(1):66-74.
    [84]B. C. Smith, J. Arrillaga, A. R. Wood, et al. A review of iterative harmonic analysis for AC-DC power systems[J]. IEEE Transactions on Power Delivery,1998,13(1):180-185.
    [85]Xia Daozhi, G. T. Heydt. Harmonic Power Flow Studies Part Ⅰ-Formulation and Solution[J]. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(6):1257-1265.
    [86]Xia Daozhi, G. T. Heydt. Harmonic Power Flow Studies-Part Ⅱ Implementation and Practical Application[J]. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(6): 1266-1270.
    [87]李战鹰,黄莹,李建华,等.基丁非特征谐波潮流统一算法的±800kV特高压直流输电系统 非特征谐波分析[J].电力自动化设备,2009,29(1):11-14.
    [88]张继东,李建华,方万良,等.云广±800kV特高压直流线路通信干扰计算[J].西安交通大学学报,2009,43(4):106-110+115.
    [89]L. Hu, R. Yacamini. Harmonic transfer through converters and HVDC links[J]. IEEE Transactions on Power Electronics,1992,7(3):514-525.
    [90]M. Sakui, H. Fujita, M. Shioya. A method for calculating harmonic currents of a three-phase bridge uncontrolled rectifier with DC filter[J]. IEEE Transactions on Industrial Electronics,1989, 36(3):434-440.
    [91]M. Sakui, H. Fujita. An analytical method for calculating harmonic currents of a three-phase diode-bridge rectifier with DC filter[J]. IEEE Transactions on Power Electronics,1994,9(6): 631-637.
    [92]Hu Lihua, R. E. Morrison. The use of modulation theory to calculate the harmonic distortion in HVDC systems operating on an unbalanced supply[J]. IEEE Transactions on Power Systems. 1997,12(2):973-980.
    [93]L. Hu, R. Yacamini. Calculation of harmonics and interharmonics in HVDC schemes with low DC side impedance[J]. IEE Proceedings-Generation, Transmission and Distribution,1993, 140(6):469-476.
    [94]L. Hu, L. Ran. Direct method for calculation of AC side harmonics and interharmonics in an HVDC system[J]. IEE Proceedings-Generation, Transmission and Distribution,2000,147(6): 329-335.
    [95]A. R. Wood, J. Arrillaga. HVDC convertor waveform distortion:a frequency-domain analysis[J]. IEE Proceedings-Generation, Transmission and Distribution.1995,142(1):88-96.
    [96]A. R. Wood, J. Arrillaga. The frequency dependent impedance of an HVDC converter[J]. IEEE Transactions on Power Delivery,1995,10(3):1635-1641.
    [97]P. Riedel. Harmonic voltage and current transfer, and AC-and DC-side impedances of HVDC converters[J]. IEEE Transactions on Power Delivery,2005,20(3):2095-2099.
    [98]R. Carbone, F. De Rosa, R. Langella, et al. A new approach for the computation of harmonics and interharmonics produced by line-cotmmutated AC/DC/AC converters[J]. IEEE Transactions on Power Delivery,2005,20(3):2227-2234.
    [99]王钢,李志铿,李海锋,等.HVDC换流器等值谐波阴抗的计算方法[J].中国电机工程学报,2010,30(19):64-68.
    [100]B. C. Smith, N. R. Watson, A. R. Wood, et al. Steady state model of the AC/DC convertor in the harmonic domain[J]. IEE Proceedings-Generation. Transmission and Distribution,1995,142(2): 109-118.
    [101]B. C. Smith, N. R. Watson, A. R. Wood, et al. Newton solution for the steady-state interaction of AC/DC systems[J]. IEE Proceedings-Generation, Transmission and Distribution,1996,143(2): 200-210.
    [102]B. C. Smith, N. R. Watson, A. R. Wood, et al. A Newton solution for the harmonic phasor analysis of AC/DC converters[J]. IEEE Transactions on Power Delivery,1996,11(2):965-971.
    [103]G. N. Bathurst, B. C. Smith, N. R. Watson, et al. Modelling of HVDC transmission systems in the harmonic domain [J]. IEEE Transactions on Power Delivery,1999,14(3):1075-1080.
    [104]G. N. Bathurst, N. R. Watson, J. Arrillaga. Modeling of bipolar HVDC links in the harmonic domain[J]. IEEE Transactions on Power Delivery,2000.15(3):1034-1038.
    [105]G. N. Bathurst, N. R. Watson, J. Arrillaga. A harmonic domain solution for systems with multiple high-power AC/DC converters[J]. IEE Proceedings-Generation, Transmission and Distribution, 2001,148(4):312-318.
    [106]C. D. Collins. G. N. Bathurst, N. R. Watson, et al. Harmonic domain approach to STATCOM modelling[J]. IEE Proceedings-Generation, Transmission and Distribution,2005,152(2): 194-200.
    [107]C. Collins, N. Watson, A. Wood. UPFC modeling in the harmonic domain[J]. IEEE Transactions on Power Delivery,2006,21(2):933-938.
    [108]A. V. Johansson, A. Ekstrom. Telephone interference criteria for HVDC transmission lines[J]. IEEE Transactions on Power Delivery,1989,4(2):1408-1421.
    [109]陈东,张凌,熊万洲.特高压直流滤波器滤波标准初步研究[J].高电压技术,2006,32(9):125-128+139.
    [110]熊万洲.±800 kV直流输电等效干扰电流指标分析[J].电网技术,2008,32(2):81-84.
    [111]黄莹,孙帮新,黎小林,等.云广±800kV直流输电工程直流等效干扰电流限值研究[J].南方电网技术,2007,1(1):32-36.
    [112]张万荣,任军辉,王蔚华.±800 kV特高压直流输电工程直流滤波器设计研究[J].高压电器,2007,43(6):431-433+443.
    [113]张万荣,黄莹,苟锐锋,等.±800kV特高压直流工程直流滤波器设计关键问题研究[J].南方电网技术,2009,3(6):35-39.
    [114]任震,吴国沛,戴英筠.高压直流输电系统平波滤波网络的综合优化[J].中国电机工程学报,1999,19(6):65-67+73.
    [115]赵东元,于歆杰,陈建业,等.高压直流输电系统直流侧滤波装置的多目标规划设计[J].电网技术,2004,28(4):34-37+75.
    [116]宋蕾.特高压直流输电直流滤波系统综合优化设计[硕士学位论文].北京:华北电力大学,2007.
    [117]N. L. Shore, K. Adamson, P. Bard, et al. DC side filters for multiterminal HVDC systems[J]. IEEE Transactions on Power Delivery,1996,11(4):1970-1984.
    [118]Karl-Werner Kanngiesser. HVDC Systems and Their Planning[M]. Erlangen, Germany:Siemens AG,1994.
    [119]刘艳华.云广直流特高压换流变压器短路阻抗的选择[J].高电压技术,2006,32(9):100-102.
    [120]杨汾艳.直流输电系统主回路和控制器参数优化选择研究[博士学位论文].杭州:浙江大学,2007.
    [121]杨汾艳,徐政.直流输电系统换流变压器短路阻抗的选择[J].高电压技术,2008,34(8):1628-1632.
    [122]董凌,韩民晓,文俊,等.特高压直流输电稳态参数的分析与计算[c].中国电工技术学会电力电子学会第十届学术年会论文集,西安:2006.
    [123]史秋娟.特高压直流输电换流变分接头计算[C].中国高等学校电力系统及其自动化专业第十三届学术年会论文汇编,合肥:2007.
    [124]汪洋,李书勇,宋述波,等.真空有载分接开关在云广特高压直流的应用[J].高电压技术,2010.36(1):285-289.
    [125]K. Eckholz, P. Heinzig. HVDC-transformers-a technical challenge[C]. International Conference on Power System Technology,2002, Kunming, China:547-551.
    [126]J. Holweg, H. P. Lips. B. Q. Tu, et al. Modern HVDC thyristor valves for China's electric power system[C]. International Conference on Power System Technology,2002, Kunming, China: 520-527
    [127]Virgiliu Botan, Jurg Waldmeyer. Magnus Kunow, et al.6英寸超高压直流输电用晶闸管[J].电力电子,2010,40(5):48-50.
    [128]刘振亚.特高压直流输电技术研究成果专辑(2005)[M].北京:中国电力出版社,2006.
    [129]朱韬析,欧开健.高压直流线路电压异常波动对分接开关控制的影响[J].电力系统保护与控制,2009,37(22):152-155+159.
    [130]温家良,查鲲鹏,高冲,等.特高压直流输电晶闸管阀成套运行试验装置研制[J].电网技术,2010,34(8):1-5.
    [131]吴宏波,宋述波,袁鹏,等.肇庆换流站换流变分接头控制原理介绍[J].高电压技术,2006.32(9):160-162.
    [132]张志朝,刘涛,宋述波.云广特高压直流工程换流变分接头切换控制研究[J].电力系统保护与控制,2010,38(20):205-208.
    [133]张跃锋,颜伟,朱蕾蕾,等.交直流混合输电系统的换流变压器分接头控制[J].中国电力,2008,41(4):20-24.
    [134]舒印彪,刘泽洪,高理迎,等.±800kV 6400MW特高压直流输电工程设计[J].电网技术,2006,30(1):1-8.
    [135]马为民,聂定珍,曹燕明.向家坝—上海±800kV特高压直流工程中的关键技术方案[J].电网技术,2007,31(11):1-5.
    [136]段玉倩,饶宏,黎小林.高压直流输电系统主回路参数稳态特性计算方法[J].电力系统自动化,2007,31(16):53-56+69.
    [137]李岩,黎小林,饶宏,等.高压直流输电技术自主化新进展[J].中国电力,2009,42(1):41-44.
    [138]马为民,聂定珍,曹燕明,等.特高压直流换流站系统优化设计[J].高电压技术.2010,36(1):26-30.
    [139]L. A. S. Pilotto, M. Roitman, J. E. R. Alves. Digital control of HVDC converters[J]. IEEE Transactions on Power Systems,1989.4(2):704-711.
    [140]马为民.±800 kV特高压直流系统换流器控制[J].高电压技术,2006,32(9):71-74+110.
    [141]杨彬,叶鹏,孙保功,等.多种控制方式下HVDC系统的潮流计算[J].电网技术,2010,34(6):139-143.
    [142]D. G. Chapman, J. B. Davies, F. L. Alvarado, et al. Programs for the study of HVDC systems[J]. IEEE Transactions on Power Delivery,1988,3(3):1182-1188.
    [143]T. Hasegawa, K. Yamaji, H. Irokawa, et al. Development of a thyristor valve for next generation 500 kV HVDC transmission systems[J]. IEEE Transactions on Power Delivery,1996,11(4): 1783-1788.
    [144]李建胜,宋志国,汪道勇.政平换流站的无功功率控制[J].商电压技术,2006,32(9):25-28.
    [145]张望,郝俊芳,曹森,等.直流输电换流站无功功率控制功能设计[J].电力系统保护与控制,2009,37(14):72-76.
    [146]戴国安,周君文.王亚非.特高压直流无功控制策略研究[J].电力系统保护与控制,2008,36(14):48-51.
    [147]杜忠明.贵广第二回直流输电工程换流站无功补偿的研究[J].电网技术,2006,30(10):69-74.
    [148]邱伟,钟杰峰,伍文城.±800kV云广直流换流站无功补偿与配置方案[J].电网技术,2010、34(6):93-97.
    [149]肖鸣,傅闯,梁志飞.高压直流低负荷无功优化功能运行分析[J].电力系统自动化,2010,34(15):91-95.
    [150]史秋娟.特高压直流输电无功补偿及其控制策略的研究[硕士学位论文].北京:华北电力大学,2008.
    [151]邱丽霓.特高压直流输电无功配置与电压稳定研究[硕士学位论文].北京:华北电力大学,2009.
    [152]H. K. Tyll. FACTS technology for reactive power compensation and system control[C]. IEEE PES Transmission and Distribution Conference and Exposition:Latin America,2004:976-980.
    [153]韩来文.呼伦贝尔—辽宁高压直流输电系统运行仿真[硕士学位论文].吉林:东北电力大学,2007.
    [154]赵贺,周孝信.受端系统负荷对高压直流输电的影响[J].中国电机工程学报,2007,27(16):1-6.
    [155]蔡希鹏.±500kV天广直流输电系统交流滤波器频繁投切分析[J].电网技术,2005,29(4):1-3+22.
    [156]K. Sadek, M. Pereira. Harmonic transfer in HVDC systems under unbalanced conditions[J]. IEEE Transactions on Power Systems,1999,14(4):1394-1399.
    [157]周长春,徐政,郑劲.三峡—广东直流线路电信干扰计算[J].电网技术,2003,27(1):13-17.
    [158]刘洪涛.三脉动模型在高压直流滤波器设计中的应用[硕士学位论文].北京:华北电力大学,2004.
    [159]李战鹰,任震.基于三脉波模型的高压直流输电系统直流侧谐波分析及滤波方案设计[J].继电器,2004,32(23):15-17+43.
    [160]闫金春.特高压直流输电三脉动换流器模型的研究[硕士学位论文].北京:华北电力大学,2007.
    [161]Arash Sarhar. Impact of Stray Capacitances of HVDC Converter on Telephone Interference Phenomenon[硕士学位论文]Toronto:University of Toronto,1990.
    [162]CIGRE Working Group 14.03 Task Force 02. DC Side Harmonics and Filtering in HVDC Transmission Systems[R]. Paris:CIGRE,1994.
    [163]陶瑜,马为民,马玉龙,等.特高压直流输电系统的控制特性[J].电网技术,2006,30(22):]-4+53.
    [164]Victor F.Lescale, Nigel Shore. DC Filter Design[R], Zurich:ABB,1988.
    [165]游广增.高压直流输电直流侧谐波计算及滤波器设计[硕士学位论文].杭州:浙江大学,2007.
    [166]J. G Mayordomo, A. Carbonero, L. F. Beites, et al. A Contribution Towards a General and Systematic Procedure for Modeling Line Commutated AC/DC Converters in the Harmonic Domain[J]. IEEE Transactions on Power Delivery,2009,24(4):2415-2427.
    [167]J. G Mayordomo, A. Carbonero, L. F. Beites, et al. Decoupled Newton Algorithms in the Harmonic Domain for the Harmonic Interaction of Line Commutated Converters With AC Systems[J]. IEEE Transactions on Power Delivery,2010,25(3):1721-1733.
    [168]李战鹰,李建华,夏道止.±800kV特高压直流输电系统特征谐波分析[J].电网技术,2006,30(24):6-9+30.
    [169]蒋国顺,李建华,夏道止.等.基于牛顿法的高压直流输电系统非特征谐波潮流统一算法[J].西安交通大学学报,2011,45(04):41-46.
    [170]李志铿,王钢,李海锋,等.交流不对称情况下交直流系统谐波分析计算方法[J].电力系统自动化,2010,34(6):42-47.
    [171]孟伟,文俊,郑劲,等.高压直流输电线路对通信明线影响的仿真研究[J].电工技术学报,2008,23(6):103-108.
    [172]R. Witzmann, W. Schultz, K. Krueger, et al. Analysis of non characteristic harmonics of a large HVDC transmission system and comparison with site tests[C]. International Conference on AC and DC Power Transmission 1991, London. UK:384-389.
    [173]徐政.耦合长线稳态分析的非解耦模型及其算法[J].中国电机工程学报,1995,15(5):342-346+353.
    [174]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波[M].北京:水利电力出版社,1994.
    [175]徐政.交直流电力系统分析计算的数学模型研究[博士学位论文].杭州:浙江大学,1993.
    [176]刘海峰,徐政,金丽成.直流输电线路等效干扰电流限值的研究[J].高电压技术,2001,27(4):16-17+37.
    [177]J. R. Abbott. HVDC system simplified method of harmonic coupling calculation and testing[J]. IEEE Transactions on Power Delivery,1988,3(2):839-844.
    [178]林良真,叶林.电磁暂态分析软件包PSCAD/EMTDC[J]电网技术,2000,24(1):65-66.
    [179]Manitoba HVDC Research Centre. PSCAD/EMTDC User's Manual Guide[M], Manitoba HVDC Research Centre,2004.
    [180]R. H. Lasseter, F. W. Kelley, Jr, et al. DC filter design methods for HVDC systems[J]. IEEE Transactions on Power Apparatus and Systems,1977,96(2):571-578.
    [181]K. A. Adamson, R. A. Lasseter, D. J. Melvold, et al. DC Side Filtering Studies for the Pacific HVDC Intertie Voltage Upgrading[J]. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(5):1061-1069.
    [182]H. Ooi, H. Irokawa, H. Ejiri, et al. Development of compact 250 kV DC filter for HVDC converter station[J]. IEEE Transactions on Power Delivery,1989,4(1):428-436.
    [183]郑劲,张小武,孙中明,等.特高压直流输电工程的谐波限制标准及滤波器的设计[J].电网技术,2007,31(13):1-6.
    [184]段玉倩,黎小林,饶宏,等.云广特高压直流输电系统直流滤波器性能的若干问题[J].电力系统自动化.2007,31(8):90-94.
    [185]宋蕾,文俊,闫金春,等.高压直流输电系统直流滤波器的设计[J].高电压技术,2008,34(4):647-651+677.
    [186]郭锦艳.高压直流输电系统直流滤波装置的优化设计[硕士学位论文].北京:华北电力大学,2005.
    [187]文俊,郭锦艳,刘洪涛,等.高压直流输电直流滤波系统综合优化设计[J].中国电机工程学报,2007,27(22):14-19.
    [188]任震,曾艳,戴保明.高压直流输电系统中C型阻尼滤波器的优化模型及其算法[J].中国电机工程学报,2002,22(12):123-126.
    [189]肖遥,尚春,林志波,等.低损耗多调谐无源滤波器[J].电力系统自动化,2006,30(19):69-72.
    [190]M. R. Iravani, E. D. Lavers, P. W. Lehn, et al. A benchmark system for digital time-domain simulation of an active power filter[J]. IEEE Transactions on Power Delivery,2005,20(1): 234-241.
    [191]Hao Pang, Zanji Wang, Jianye Chen. Study on the Control of Shunt Active DC Filter for HVDC Systems[J], IEEE Transactions on Power Delivery,2008,23(1):396-401.
    [192]周健,代保明.高压直流输电新技术在天广直流工程中的应用[J].广东电力,1997,(5):5-9.
    [193]吴国沛,仟震,唐卓尧.高压直流输电系统双调谐滤波器特性研究[J].电网技术,1999,23(8):32-34.
    [194]EPRI. High Voltage Direct Current Handbook, First Edition[M]. Electric Power Research Inst, 1994.
    [195]徐政,裘鹏,黄莹,等.采用时域仿真的高压直流输电直流回路谐振特性分析[J].高电压技术,2010,36(1):44-53.
    [196]朱大鹏,许斌,曾静.向家坝—上海特高压直流输电工程直流回路的谐振研究[J].电力建设,2008,29(5):1-4.
    [197]郭贤珊,马为民.向家坝—上海±800kV特高压直流示范工程的低频谐振分析[J].电网技术,2008,32(10):1-4+10.
    [198]李普明,徐政,黄莹,等.高压直流输电交流滤波器参数的计算[J].中国电机工程学报.2008,28(16):115-121.
    [199]吴竞昌.供电系统谐波[M].北京:中国电力出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700