Fe/Cu共掺杂TiO_2协同脉冲放电处理模拟活性黑废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高压汞灯为激发源,用自制Fe、Cu共掺杂的TiO2纳米粉体在紫外光照射下降解活性黑溶液。综合考虑了Fe、Cu掺杂量,煅烧温度以及煅烧时间联合作用对该催化剂活性的影响,并采用二次回归通用旋转组合设计,对不同条件下活性黑的浓度随时间的变化用一级动力学进行了研究,得出了一个四元二次方程,对方程进行规划求解,得出制备该催化剂的最佳条件。
     将上述条件下制备的TiO2协同脉冲放电对模拟活性黑废水进行了处理,考虑了电器参数、溶液参数、催化剂加入对活性黑废水处理的影响,并对中间产物进行了间接测定。
     得出主要结论如下:
     (1)掺杂的TiO2对活性黑的光催化降解反应为一级反应,活性黑降解脱色速率常数k近似为活性黑溶液初始浓度。
     (2)考虑了Fe、Cu掺杂量,煅烧温度以及煅烧时间联合作用对该催化剂活性的影响,并采用二次回归通用旋转组合设计,得出制备该催化剂的最佳条件为煅烧时间为3.55h,煅烧温度为453℃,铜掺杂量为1.89%,铁掺杂量为1.62%。
     (3)随着催化剂TiO2投加量的升高,活性黑降解率逐渐增大。但当催化剂量过多时,活性黑降解率开始出现减小趋势。
     (4)掺杂少量的Fe和Cu能够提高TiO2光催化活性,但是当掺量较大时,则会使TiO2光催化活性降低。
     (5)在脉冲放电条件下,掺杂TiO2比不加催化剂和不掺杂TiO2的降解效果要好。
     (6)TiO2降解活性黑紫外光谱分析表明,在脉冲放电下催化剂TiO2能降解活性黑溶液并使其完全脱色,将其中的偶氮结构破坏分解。
This article take the high pressure mercury lamp as the stimulation source, The organic contaminant, REACTIVE Black 5 (RB5) was degraded by Fe/Cu co-doped TiO2 nano-particles under mercury lamp. In the present study, the combined effects of Fe/Cu doping amount, calcination temperature and calcination time on catalyst activity were investigated, and through quadratic regression general rotation design, Using First-level dynamics to research the density of Black 5 change along with time, has obtained three Yuan quadratic equations, carries on the plan solution to the equation the optimal condition for preparing the catalyst was obtained as follows: calcination time,3.55h; calcination temperature,453℃; Cu doping amount,1.89%; Fe doping amount,1.62%.
     The TiO2 coordination impulsive discharge which prepares the above condition under to simulated the active black waste water to carry on processing, had considered the electric appliance parameter, the solution parameter, the catalyst joined to activeness black wastewater disposal influence, and has carried on the synopsis determination to the intermediary product.
     Draws the main conclusion to be as follows:
     (1) Doping's TiO2 to the active black photochemical catalysis degradation reaction is the first-level response, active black degeneration decolorization speed constant k is approximate for the active black solution initial density.
     (2) Had considered Fe, the Cu doping quantity, the calcining heat as well as the calcine time joint action to this catalyst active influence, and uses two return general revolving unitized design, obtains prepares this catalyst the optimum condition for the calcine time is 3.55h, the calcining heat for 453℃, the copper doping quantity is 1.89%, the hard doping quantity is 1.62%.
     (3) Throws the increment along with catalyst TiO2 elevation, the active black degeneration rate increases gradually. But works as the catalyzed dosage to be excessively many, the active black degeneration rate starts to appear reduces the tendency.
     (4) Doping few Fe and Cu can enhance the TiO2 photochemical catalysis activeness, but when mixes the quantity is big, will then cause the TiO2 photochemical catalysis activeness to reduce.
     (5) Under the impulsive discharge condition, dopes TiO2 to compare does not add the catalyst and does not dope TiO2 the degeneration effect to be friends with.
     (6) The Spectral analysis of black under TiO2 degeneration indicated that catalyst TiO2 can degrade the active black solution under the impulsive discharge and cause it to decolorize completely, azo structure, benzene ring and fused ring disarrangement of the structure decomposition.
引文
[1]N Barka, A Assabbane, A Nounah, et al. Photoeatalytic degradation of indigo Carmine in aqueous solution by TiO2-eoated non-woven fibres[J]. Journal of Hazardous Materials, 2008,152(3):1054-1059.
    [2]Noureddine Bark, SamirQourzal, Ali Assabbane, et al. Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper.Journal of Photochemistry and Photobiology[J]. A:Chemistry,2008,195(2-3):346-351.
    [3]Hongyuan Wang, Junfeng Niu, Xingxing Longand Ya He. Sono Photoeatalytic degradation of methyl orange by nano-sized Ag/TiO2:Partieles in aqueous solutions[J]. Ultrasonics Sonoehemlstry,2008,15(4):386-392.
    [4]H.K.Singh, M.Saquib, M.M.Haque and M.Muneer. Heterogeneous Photoeatalysed deeolorization of two seleeted dye derivatives neutral red and toluidine blue in aqueous suspensions[J]. Chemical Engineering Joumal,2008,136(2-3):77-51.
    [5]S.Brosillon, H.Djelal, N.Merienne and A. Innovative integrated process for the treatment of azo dyes:coupling of photocatalysis and biological treatment[J]. Amrane. Desalination, 2008,222(1-3):331-339.
    [6]F.D.Mai, C.S.Lu, C.W.Wu, C.H.Huang, J.Y.Chen and C.C.Chen. Meehanisms of Photocatalytic degradation of Victoria Blue Rusing nano-TiO2[J]. SeParation and Purification Technology, 2008,62:424-437.
    [7]Arslanl, Baleioglu A, Bahnemann D W. Advanced chemical oxidation of reactive dyes in Simulated dye house effluents by ferrioxalate-Fenton/UVA and TiO2/UVA Proeesses[J]. Dyes and Piglnents,2000,47:207-218.
    [8]TanakaK, PadermPoleK, HisanagaT. Photoeatalytie degradation of commercial azo dyes[J].Water Researeh,2000,34:327-333.
    [9]Herrera F, LoPez A, Mascolo G, et al. Catalytic decomposition of the reaetive surface[J]. WaterReseareh,2001,35:750-760.
    [10]P.MohaPatra, K.M.Parida. Photocatalytic activity of sulfate modified titania3: Deeolorization of methylene blue in aqueous solution[J]. Journal of Moleeular Catalysis A: Chemieal,2006,25(1-2):118-123.
    [1 l]M.Qalnar, M.Saquib, M.Muneer. Semieonductor-mediated photoeatalytie degradation of anazo dye chrysoidine Y in aqueous suspensions[J]. Desalination,2005,17(2):185-193.
    []2]Akhmad Syoufian, Keniehi Nakashima. Degradation of methylene blue in aqueous dispersion of hollow titania photoeatalyst:Study of reaction enhaneement by various eleetron seavengers[J]. Journal of Colloid and Interface Seienee,2008,317(2):507-512.
    [13]Miehael M.Tauber, Georg M.Gubitz, Astrid Rehorek. Degradation of azo dyes by oxidative processes-Laccase and ultrasound treatment[J]. BioresourceTechnology, 2008,99(10):4213-4220.
    [14]顾玲,马宇锋,李政.聚硅酸铝铁絮凝剂的制备及其在印染废水处理中的应用[J].化工 环保.20]0,30(3):254-257.
    [15]孙艳娜.粉煤灰处理印染废水的试验研究[J].化工环保.2010,30(3):123-124.
    [16]高萌,陈玉成,谢倩,等.印染废水的混凝处理效果研究[J].西南大学学报.2010,32(7)88-92.
    [17]Jian-JunQin,MaungHtunOo,KiranA.Kekre. Nanofiltration forrecovering wastewater from a specific dyeing facility[J].Separation and Purification Technology,2007,56:199-203
    [18]Ince N H,Tezcanli Glyer G.Impacts of pH and molecular structure on ultrasonic degradation of azo dyes [J]. Ultrasonics,2004,42(1-9)-591-596
    [19]陈米宋,李聪.废弃聚苯乙烯泡沫塑料磺化制取絮凝剂的实验研究[J].贵州化工,2006,31(2):12-13
    [20]边凌风,高宝玉.BT-04复合混凝剂应用于活性染料印染废水的脱色研究[J].天津化工2006,20(4):53-55
    [21]陆雪梅,陈雷,赵浩,等.新型复合混凝剂BS的制备及其应用[J].印染,2006,(19):28-3]
    [22]祁梦蓝,郑自保,杜静,等.声化学—间歇式活性污泥法处理染料废水的研究[J].化工环保,1996,16(6):332-336
    [23]夏炎,张林生,陆继来,等MBR-N处理印染废水[J].化工环保,2010,30(1):52-55.
    [24]同帜,李宇,李倩.A/O工艺处理印染废水的探讨[J].西安工程大学学报,2010,24(4),444-447.
    [25]罗菊.用溶胶-凝胶法制备的纳米Ti02粉末结构[J].材料科学进展,1993,7(1):52-54.
    [26]Maira A J, Yeung K L, Lee C Y, et al. Size effects in gas phase photo-oxidation of trichloroethylene using nanometer sized TiO2 catalysts[J]. Cataly,2000,192:185-188.
    [27]KeDai, HaoChen, TianyouPeng, DlngningKe, HuabingYi. Photoeatalytic degradation of methyal orange in aqueous suspension of mesoporous titania nanoparticles[J]. Chemosphere, 2007,69:1361-1367.
    [28]Prevot A B. Photoeatalytic degradation of acid blue 80 in aqueous solution containingTiO2 suspensions[J]. Environ Sci Technol,2001,35:971-976.
    [29]Maria Stylidi, Dimitris I.Kondarides, XenoPhanE.Verykios. Visible light-induced Photocatalytic degradation of Acid orange7 inaqueous TiO2 suspensions[J]. Applied Catalysis B:Environmental,2004,47:189-201.
    [30]M.Karkrnaz, E.Puzenat, C.Guillard, J.M.Hemnann. Photocatalytie degradation of the alimentary azo dye amaranth MineraliZation of the azo group to nitrogen[J]. Applied Catalysis B: Environmental,2004,51:183-194.
    [31]王九,张鹏会,韩迪,等.B,N和Ce共掺杂Ti02催化剂光催化活性研究[J].环境工程学报.2010,4(2):305-308
    [32]吴树新,尹燕华,何菲,等.掺铜Ti02光催化剂光催化氧化还原性能的研究[J].感光科学与光化学.2005,23(5):333-339.
    [33]冯勇,薛卫东,王建华,等.钒铁掺杂Ti02微球的制备及其光催化性能研究[J].材料 导报,2009,23(10):88-92.
    [34]杨华滨,段月琴,别利剑,等Fe3+, Zn2+共掺杂高效纳米TiO2光催化剂的制备表征及光催化性能[J].天津理工大学学报,2008,24(6):22-25
    [35]杨秋文,刘素琴,黄可龙,等.Fe(Ⅲ)掺杂介孔TiO2的溶剂热法合成与表征[J].湘潭大学 自然科学学报,2009,31(1):71-76.
    [36]朱亦仁,解恒参,孟庆华,等.掺Fe3+纳米TiO2的制备及在造纸废水处理中的应用[J].中国造纸学报,2008,23(1):43-47.
    [37]陈俊水,刘梅川,张继东,等.Cu(Ⅱ)掺杂纳米TiO2的制备及其应用研究[J].水处理技术,2004,30(3):140-143.
    [38]黄稚丽,李旦振,付贤智.稀土掺杂TiO2光催化剂的制备及其光催化活性的研究[J].闽江学院学报,2005,26(5):48-50.
    [39]齐蕾,郑经堂,曲降伟.La-N共掺杂改性TiO2光催化性能研究[J].应用化工,2009,38(7):933-936.
    [40]顾凌燕,王玉萍,彭盘英.S与金属共掺杂TiO2催化剂的制备及其光催化性能[J].中国有色金属学报,2009,19(5):910-917.
    [41]Hansheng Li, Yaping Zhang, ShiyingWang, et al. Study on nanomagnets supported TiO2 photocatalysts prepared by a sol-gel process in reverse microemulsion combining with solvent-thermal technique[J].2009,169:1045-1053.
    [42]Chih-Chieh Chan, Chung-Chieh Chang,Wen-Chia Hsu,et al. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films[J].2009,152:492-49.
    [43]Xiangying Xu, Dehong Yin, Shufeng Wu,et al. reparation of oriented SiO32- doped TiO2 film and degradation of methylene blue under visible light irradiation[J]. Ceramics International 2010,36:443-450
    [44]Beata Tryba. Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water[J]. Journal of Hazardous Materials,2008,151:623-627.
    [45]Lei Hana, Yanjun Xina,c, Huiling Liu,et al. Photoelectrocatalytic properties of nitrogen doped TiO2/Ti photoelectrode prepared by plasma based ion implantation under visible light[J]. Journal of Hazardous Materials,2010,175:524-531.
    [46]Xingwang Zhang, Lecheng Lei. Effect of preparation methods on the structure andcatalytic performance of TiO2/AC photocatalysts[J]. Journal of Hazardous Materials,2008,153:827-833.
    [47]Fangfei Li, Shenmei Sun, Yinshan Jiang. Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral[J]. Journal of Hazardous Materials, 2008,152:1037-1044.
    [48]Juan Yanga,Jun Dai,Chuncheng Chen,et al. Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes[J]. Journal of Photochemistry and Photobiology A:Chemistry,2009,208:66-77.
    [49]Xuanyong Liu,Xiaobing Zhao,Baoe Li,et al. UV-irradiation-induced bioactivity on TiO2 coatings with nanostructural surface[J]. Acta Biomaterialia,2008,4:544-552
    [50]XinWang,Huimin Zhao,Xie Quan,et al. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation[J]. Journal of Hazardous Materials,2009,166:547-552.
    [51]S. Anandan, P.Sathish Kumar, N.Pugazhenthiran, et al. Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88[J]. Solar Energy Materials & Solar Cells, 2008,92:929-937.
    [52]侯亚奇,庄大明,张弓,等.磁控溅射制备Ag/TiO2复合薄膜的光催化降解性能[J].清华大学学报(自然科学版).2004,44(5):589-608.
    [53]Zhang xin, Zhang Feng, Chan Kongyu. The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating,their chamctefi 柏 tion and"sible-light photocatalytic properties[J]. Materials Chemistry and Physics,2006,97(3):384-389.
    [54]杨莉,姚秉华,吴少林.金属离子掺杂与贵金属沉积对TiO2光催化性能的影响[J].南昌航空工业学院学报,2004,18(1):74:78.
    [55]Yanting Li, Xiuguo Sun, Huiwan Li, et al. Preparation of anatase TiO2 nanoparticles with high thermal stability and specific surface area by alcohothermal method[J]. Powder Technology,2009,194:149-152.
    [56]苏碧桃,董娜,慕红梅,等Fe3+-CdS/TiO2复合半导体的光催化性能[J].化学试剂,2007,29(9):537-538.
    [57]周秀文,朱祖良,赵君科,等TiO2/CdS复合半导体光催化剂降解甲基橙的实验研究[J].环境污染治理技术与设备,2006,7(1):106-109.
    [58]孙剑辉,王永奎,董淑英,等.负载型纳米复合半导体WO3-TiO2/A光催化降解刚果红废水[J].环境工程学报,2009,3(1):77-80.
    [59]程刚,周孝德ZnO-TiO2复合半导体的制备与光催化性能[J].西安理工大学学报,2009,25(1):8-12.
    [67]邵颖,薛宽宏,陈巧玲.纳米管的光催化应用[J].纳米材料与应用,2005,20(5):433-435
    [61]徐效圣,傅力,邓启华等.采用二次回归正交旋转组合设计对核桃渣磨浆工艺的条件优化[J].食品工业科技,2010,31(1):213-216.
    [62]张井,李燕,徐静,等.应用二次回归正交旋转组合设计优化中国毛虾蒸煮液酶解工艺的研究[J].食品工业科技,2010,31(7):167-170.
    [63]王惠,吴兆亮,童应凯,等.应用二次回归正交旋转组合设计优化黄霉素发酵培养基[J].食品研究与开发,2006,127(6):19-22.
    [64]邢东旭,廖森泰,刘吉平,等.应用二次回归正交旋转组合设计提取桑叶多糖的研究[J].食品工业科技,2007,28(6):145-147.
    [65]朱彩平,曹慧.应用二次回归旋转正交组合设计提取平菇多糖的工艺研究[J].中药材.20]0,33(9):1490-1494.
    [66]王晓玲,马美湖,蔡朝霞,等.二次正交旋转组合设计法优化咸蛋清酶解条件[J].食品工业科技,2010,31(1):227-230.
    [67]马婧,韩伟,胡贤卿.二次正交旋转组合设计优化微波辅助提取桑椹总黄酮的研究[J].安徽农业科学,2010,38(11):5877-5878.
    [68]梁志芳,李午申,王迎娜.二次正交旋转组合实验设计孵化器[J].哈尔滨工业大学学报:2004,36(11):156]-1563.
    [69]梁英,何雯娟,韩鲁佳.二次回归正交旋转组合设计对黄芩多糖提取工艺的优化[J].食品科学,2009,30(24):104-107.
    [70]徐静,张井,李燕,等.二次回归正交旋转组合设计在鳀鱼蒸煮液酶解工艺中的应用研究[J].食品科学,2009,30(22):221-225.
    [71]彭晓霞,张振巍.二次正交旋转组合设计法优化赤芍醇提工艺[J].中药材,2010,33(6):991-994.
    [72]张波,杨峰,王成敏,等.高压脉冲放电处理KN-B染料废水的试验[J].江苏大学学报,2009,30(4):410-414.
    [73]胡祺昊,王黎明,黄兴华,等.高压脉冲放电降解染料废水的实验研究[J].清华大学学报,2002,42(9):1148-1150.
    [74]董冰岩,柯伟,张大超,等.单针-板脉冲放电处理染料废水的实验研究[J].化学工程,2009,37(1):62-65.
    [75]张丽,孙冰,朱小梅.脉冲放电等离子体技术处理偶氮染料废水[J].大连海事大学学报,2007,33(2):67-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700