基于传递系统模型的在轨卫星故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
故障诊断技术是在轨卫星自主控制与管理的重要组成部分,它为卫星自主控制提供必要的支持,并为其在轨安全、可靠地运行提供保障。本论文以在轨卫星故障诊断技术为背景,根据卫星自主控制对故障诊断系统的要求以及当前故障诊断技术存在的问题,选择传递系统模型为主要研究对象,以第一原理诊断理论为诊断算法的基础,对基于该模型的诊断理论与应用技术进行了深入的研究。主要的研究内容及成果如下:
     针对在轨卫星自主诊断系统对算法实时性的要求,提出基于传递系统模型的诊断框架。通过在诊断框架中引入分离策略,减小诊断算法的在线计算量,提高算法的实时性;同时,对传统诊断理论中诊断与冲突的概念进行扩展,并提出状态记忆机制,通过利用历史的诊断结果,使得诊断系统具有记忆性,避免冗余的计算量。将诊断框架应用到某卫星一次电源系统上,通过与传统方法进行对比,验证提出的方法能够有效地提高诊断效率。
     为了提高诊断结果的准确性,对传递系统模型的结构和能够描述的知识类型进行研究。通过在原有的系统模型中增加表示因果关系的诊断知识,并采用分层结构对诊断知识进行组织,提出分层传递系统模型及相应的故障诊断方法。在诊断过程中,利用表示因果关系的诊断知识对推理过程进行指导,缩小状态匹配空间,在提高诊断模型中知识表示完备性的同时,提高诊断效率以及诊断结果的准确性和分辨率。将该诊断方法应用到某卫星测控系统上,验证该方法在诊断结果的准确性和效率上优于传统的诊断方法。
     针对传统的传递系统模型诊断方法无法处理由于状态不完全匹配而导致的诊断结果存在不确定性的问题,定义能够衡量两个状态之间接近程度的距离函数,对状态之间的相似度进行评价。同时,基于此距离函数提出模糊传递系统模型及相应的诊断方法,通过计算观测与目标状态之间的距离,对当前状态转移的趋势进行评估。以某卫星一次电源系统的典型故障模式为例,验证该诊断方法能够解决诊断过程中的不完全匹配问题,提高诊断结果的准确性。
     通过研究已有的可诊断性分析方法,针对其只根据系统的结构进行静态分析,导致对传递系统模型的分析结果不准确的问题,提出适用于传递系统模型的可诊断性分析方法。该方法保留系统的静态分析过程,并考虑系统运行的动态过程,从结构和功能两方面对传递系统模型的可诊断性进行讨论。利用提出的分析方法确认满足可诊断性的部件,在可检测性方面既保证其故障效果是可测量的,又保证故障效果不会被其它部件的功能结果所淹没。同时,在可分离性方面也可以保证各个故障模式之间的故障效果不会发生混淆。将某卫星一次电源系统作为实例,对其典型故障模式的可诊断性进行讨论,说明该分析方法的有效性。
Fault diagnosis technology is an important part of the spacecraft autonomouscontrol and management system, it may provide the necessary support for thespacecraft autonomous control, and the security for its safe and reliable on-boardoperation. In this thesis, based on the background of spacecraft fault diagnosistechnique, the diagnosis theory and its applications which focus on the transitionsystem model and the first principle diagnosis method were conducted deeply inorder to satisfy the demand for the fault diagnosis system from the spacecraftautonomous control and the existing problems. The main research contents andresults are as follows:
     According to the real-time requirements for the algorithm from the spacecraftautonomous diagnosis technique, the separation strategy of conflict recognition iscarried out and the calculation method of analytical redundancy is put forward, thatmakes the main calculation of the conflict recognition to be completed in theoff-line phase. Meanwhile, the state memory mechanism which introduces thehistorical diagnosis result is researched in the candidate generation process in orderto avoid unnecessary computation. Applying the diagnosis framework to a primaryelectrical power system, and compared with traditional methods, it is verified thatthe proposed method can effectively improve the efficiency of diagnosis.
     In order to improve the accuracy of the diagnosis system, the structure of thetransition system model and types of the diagnostic knowledge are studied. Byintroducing the causality diagnosis knowledge into the model and using thehierarchical structure to organize the diagnosis knowledge, the hierarchicaltransition system model and the corresponding diagnosis method are proposed.When diagnosing through this method,the causality diagnosis knowledge is used toimprove the the completeness of the model and guide the reason process in order toreduce the state matching space, and it will cause the improvement of the efficiencyof diagnosis, the accuracy and the resolution of the diagnosis result. Applying thismethod to the telemetry and command subsystem of a satellite, the accuracy of thediagnosis and efficiency of diagnosis are verified better than those of the traditionaldiagnosis method.
     Aiming at the fuzzy problem of the diagnosis result due to the fact that thetraditional diagnosis method based on transition system model cannot match theobservation and the target state completely, the distance function based on theviewpoint of energy is defined to evaluate the similarity between the two states.Based on the distance function, the fuzzy transtion system model and the corresponding diagnosis method are proposed, and the distance function is used tocalculate the distances between the observation and each target state in order toevaluate the current trend of state transition. Using the typical failure modes of theprimary electrical power system as example, the effectiveness for solving theproblem of incomplete matching and the improvement of the accuracy of thediagnosis result are verified.
     Through the research of the existing analysis method for the diagnosability ofmodel, aiming at the problem that these methods are only limited to the staticanalysis based on the sensor layout and structure of the model which causes that theanalysis for the transition system model is accurate, a diagnosability analysismethod for the transition system model is proposed. This method carries on thediscussion about diagnosability from the structure and the function of model,preserves the static analysis process and the dynamic process of system operation isalse considered. Using this method, if a component is confirmed that satisfies thediagnosability, that means, the failure effect can be detectable, and withoutannihilation producted by the functional outcome of other components. In addition,it can also ensure that the failure effect among the various failure modes cannot beconfused for the function. This method is applied on the primary electrical powersystem, and its effectiveness can be verified.
引文
[1]段中林,代增刚.航天器的分类研究[J].指挥技术学院学报,2001,12(2):42-46.
    [2]刘豪.2010年国外卫星故障综述[J].国际太空,2011,5,2-7.
    [3]刘豪.2011年国外航天故障综述[J].国际太空,2012,2,49-55.
    [4]龙兵,宋立辉,荆武兴,姜兴渭.航天器故障诊断技术回顾与展望[J].导弹与航天运载技术.2003,3:31-38.
    [5]邵永哲,杨健,李小将等.航天器近地空间环境效应综述[J].航天器环境工程,2009,26(5):419-423.
    [6]姜连祥,李华旺,杨根庆等.航天器自主故障诊断技术研究进展[J].宇航学报,2009,30(4):1320-1326.
    [7] Schetter T, Campell M, Surka D. Multiple agent-based autonomy forsatellite constellations [J]. Artificial Intelligence,2003,145(1):147-180.
    [8]高黎,沙基昌.分布式卫星系统自主运行技术研究进展[J].船舰电子工程,2007,27(1):4-9.
    [9]代树武,孙辉先.航天器自主运行技术的进展[J].宇航学报,2003,24(1):17-22.
    [10] Venkatasubramanian V,Rengaswamy R,Surya N. Kavuri S N. A review ofprocess fault detection and diagnosis Part III: Process history based methods[J].Computers and Chemical Engineering2003,27:327-346.
    [11]吴丽娜,张迎春.离散小波变换在卫星姿控系统故障诊断中的应用[J].2006,27(6):407-409.
    [12] Shen C Q,Wang D,Kong F R et al. Fault diagnosis of rotating machinerybased on the statistical parameters of wavelet packet paving and a genericsupport vector regressive classifier[J]. Measurement,2013,46(4):1551-1564.
    [13]苏林,尚朝轩.基于多元统计的卫星姿态控制系统故障诊断[J].2010,22(8):1981-1985.
    [14] Du J,Wang S P,Zhang H Y. Layered clustering multi-fault diagnosis forhydraulic piston pump[J]. Mechanical Systems and Signal Processing,2013,36(2):487-504.
    [15] Sina S,Tayarani-Bathaie,Sadough Vanini Z N,Khorasani K. Dynamic neuralnetwork-based fault diagnosis of gas turbine engines[J]. Neurocomputing,2013.
    [16] Wang H Q,Chen P. Intelligent diagnosis method for rolling element bearingfaults using possibility theory and neural network[J]. Computers&IndustrialEngineering,2011,60(4):511-518.
    [17] Simani S,Fantuzzi C. Fault diagnosis in power plant using neural networks[J].Information Sciences,2000,127(3–4):125-136.
    [18] Zhang J,Morris J. Process modelling and fault diagnosis using fuzzy neuralnetworks[J]. Fuzzy Sets and Systems,1996,79(1):127-140.
    [19]罗晓军,文莹,方甲永.复杂航空电子装备故障诊断规则提取[J].计算机测量与控制,2012,20(2):294-296.
    [20] Wang Q H,Li J R. A rough set-based fault ranking prototype system for faultdiagnosis[J]. Engineering Applications of Artificial Intelligence,2004,17(8):909-917.
    [21] Geng Z Q,Zhu Q X. Rough set-based heuristic hybrid recognizer and itsapplication in fault diagnosis[J]. Expert Systems with Applications,2009,36(2):2711-2718.
    [22] Zhang X Y,Zhou J Z,Guo J,Zou Q,et al. Vibrant fault diagnosis forhydroelectric generator units with a new combination of rough sets and supportvector machine[J]. Expert Systems with Applications,2012,39(3):2621-2628.
    [23] Kankar P K,Sharma S C,Harsha S P. Fault diagnosis of ball bearings usingmachine learning methods[J]. Expert Systems with Applications,2011,38(3):1876-1886.
    [24] Lv G Y,Cheng H Z,Zhai H B,et al. Fault diagnosis of power transformerbased on multi-layer SVM classifier[J]. Electric Power Systems Research,2005,75(1):9-15.
    [25] Fernández-Francos D, Martínez-Rego D, Fontenla-Romero O, et al.Automatic bearing fault diagnosis based on one-class ν-SVM[J]. Computers&Industrial Engineering,2013,64(1):357-365.
    [26] Karim S, Mojtaba K, Majid S K. Fault detection and diagnosis of anindustrial steam turbine using fusion of SVM (support vector machine) andANFIS (adaptive neuro-fuzzy inference system) classifiers[J]. Energy,2010,35(12):5472-5482.
    [27]郭朝有,欧阳光耀,李雁飞.基于人工免疫系统的电路小样本故障诊断方法[J].电子测量与仪器学报,2010,24(5):425-429.
    [28] Lau H,Wong V. An immunity approach to strategic behavioral control[J].Engineering Applications of Artificial Intelligence,2007,20(3):289-306.
    [29] Dipankar D,Yu S,Fernando N. Recent Advances in Artificial Immune Systems:Models and Applications[J]. Applied Soft Computing,2011,11(2):1574-1587.
    [30] Timmis J,Hone A,Stibor T,et al. Theoretical advances in artificial immunesystems[J]. Theoretical Computer Science,2008,403(1):11-32.
    [31]姬东朝,肖明清,贺中武.基于模糊论的复杂系统故障诊断专家系统设计[J].火力与指挥控制,2003,28(5):70-73.
    [32] Chen Y C,Hsu C Y,Liu L,et al. Constructing a nutrition diagnosis expertsystem[J]. Expert Systems with Applications,2012,39(2):2132-2156.
    [33] Qian Y,Li X X,Jiang Y R,et al. An expert system for real-time fault diagnosisof complex chemical processes[J]. Expert Systems with Applications,2003,24(4):425-432.
    [34] Yang Z L,Wang B,Dong X H,et al. Expert System of Fault Diagnosis for GearBox in Wind Turbine[J]. Systems Engineering Procedia,2012,4:189-195.
    [35] Venkatasubramanian V,Rengaswamy R,Yin K. A review of process faultdetection and diagnosis Part I: Quantitative model-based methods[J].Computers and Chemical Engineering,2003(27):293-311.
    [36] Hu D,Sarosh A, Dong Y F. A novel KFCM based fault diagnosis method forunknown faults in satellite reaction wheels[J]. ISA Transactions,2012,51(2):309-316.
    [37] Patton R J,Uppal F J,Simani S,et al. Robust FDI applied to thruster faultsof a satellite system[J]. Control Engineering Practice,2010,18(9):1093-1109.
    [38] Bellali B, Hazzab A,Bousserhane I K,et al. Parameter Estimation forFault Diagnosis in Nonlinear Systems by ANFIS[J]. Procedia Engineering,2012,29:2016-2021.
    [39] Venkatasubramanian V,Rengaswamy R,Kavuri S N. A review of process faultdetection and diagnosis Part II: Qualitative models and search strategies[J].Computers and Chemical Engineering,2003,27:313-326.
    [40]邵继业.基于模型的故障诊断方法研究及在航天中的应用[D].哈尔滨:哈尔滨工业大学,2009:7-11.
    [41]宋其江.基于有向图的航天器故障诊断方法研究[D].哈尔滨:哈尔滨工业大学,2010:4-10.
    [42] Weisbin C R,Saussar G D,Barhen J. Minimal cut-set methodology forartificial intelligence applications[C]. Conference on artificial intelligenceapplications1984.
    [43] Narayanan N,Viswanadham N. Methodology for knowledge acquisition andreasoning in failure analysis of systems[C]. IEEE Transactions on System,Man,and Cybernetics,1987,17(2):274-288.
    [44] Sugumaran V,Ramachandran K I. Automatic rule learning using decision treefor fuzzy classifier in fault diagnosis of roller bearing. Mechanical Systemsand Signal Processing,2007,21(5):2237-2247.
    [45] Sun W X,Chen J,Li J Q. Decision tree and PCA-based fault diagnosis ofrotating machinery. Mechanical Systems and Signal Processing,2007,21(3):1300-1317.
    [46] Yang B S,Lim D S,and Tan C C. VIBEX: an expert system for vibrationfault diagnosis of rotating machinery using decision tree and decision table.Expert Systems with Applications,2005,28(4):735~742.
    [47] Wang Y Y,Li Q J,Chang M,et al. Research on Fault Diagnosis ExpertSystem Based on the Neural Network and the Fault Tree Technology[J].Procedia Engineering,2012,31:1206-1210
    [48] Chang S Y,Lin C R,Chang C T. A fuzzy diagnosis approach using dynamicfault trees[J]. Chemical Engineering Science,2002,57(15):2971-2985.
    [49] Yiannis P. Model-based system monitoring and diagnosis of failures usingstatecharts and fault trees[J]. Reliability Engineering&System Safety,2003,81(3):325-341.
    [50] Tran V T,Yang B S,Oh M S,Tan A C C. Fault diagnosis of induction motorbased on decision trees and adaptive neuro-fuzzy inference[J]. Expert Systemswith Applications,2009,36(2):1840-1849.
    [51]周忠宝,周经伦,董豆豆.动态事件树的导弹安全自毁系统安全性评估[J].火力与指挥控制,2008,33(4):37-40.
    [52]曾士勇,龚时雨.基于主逻辑图的安全风险建模研究[J].中国安全科学学报,2003,13(10):66-68.
    [53] Wu J N,Yan S Z, Xie L Y. Reliability analysis method of a solar array byusing fault tree analysis and fuzzy reasoning Petri net[J]. Acta Astronautica,2011,69(11-12):960-968.
    [54] Wu J N,Yan S Z,Xie L Y,et al. Reliability apportionment approach forspacecraft solar array using fuzzy reasoning Petri net and fuzzy comprehensiveevaluation[J]. Acta Astronautica,2012,76:136-144.
    [55]曹喜滨,杨家军,马兴瑞.用模糊Petri网表示小卫星在轨故障诊断知识[J].系统工程与电子技术,1998,10:20-24.
    [56]邢晓辰,蔡远文,任江涛等.基于粗糙概率Petri网的在轨服务目标航天器故障检测[J].计算机测量与控制,2012,20(4):865-868.
    [57] Zhang Z Q,Wu C G,Zhang B K,et al. SDG multiple fault diagnosis byreal-time inverse inference[J]. Reliability Engineering&System Safety,2005,87(2):173-189.
    [58] Lv N,Wang X. SDG-Based HAZOP and Fault Diagnosis Analysis to theInversion of Synthetic Ammonia[J]. Tsinghua Science&Technology,2007,12(1):30-37
    [59] Enrique E T,Nicolás J. Scenna N J. Fault diagnosis for MSF dynamic statesusing a SDG and fuzzy logic[J]. Desalination,2004,166(15):93-101.
    [60]宋其江,徐敏强,王日新.模糊概率SDG模型及故障推理方法[J].控制与决策,2009,24(5):692-696.
    [61] Hossain A,Ray K S. An extension of QSIM with qualitative curvature[J].Artificial Intelligence,1997,96(2):303-350.
    [62]白方周,霍鑫,鲍忠贵.动态系统的定性推理:定性模型的建立与定性仿真方法[J].信息与控制,1995,24(4):222-228.
    [63] Kuipers B J. Qualitative Simulation:Reasoning with Qualitative Models. ArtifIntell,1993,59:28-32.
    [64] Zohar M,Amir P. The temporal logic of reactive and concurrent systems[M].New York:Springer,1992.
    [65] Norihiro K. Bounded linear-time temporal logic: A proof-theoreticinvestigation[J]. Annals of Pure and Applied Logic,2012,163(4):439-466.
    [66] Norihiro K, Heinrich W. Combining linear-time temporal logic withconstructiveness and paraconsistency[J]. Journal of Applied Logic,2010,8(1):33-61.
    [67] Sergey B,Vladimir R. Unification in linear temporal logic LTL[J]. Annals ofPure and Applied Logic,2011,162(12):991-1000.
    [68] Alexander R. Arity hierarchy for temporal logics[J]. Theoretical ComputerScience,2008,403(2–3):373-381.
    [69] Kleer J D,Williams B C. Diagnosing multiple faults[J]. Artificial Intelligence.
    [70] Reiter R. A theory of diagnosis from first principles [J]. ArtificialIntelligence,1987,32(1):57-95.
    [71] Pantelides C C,Renfro J G. The online use of first-principles models inprocess operations: Review, current status and future needs[J]. Computers&Chemical Engineering,2013,51(5):136-148.
    [72] Clarke E M. Automatic Verification of Finite State Concurrent System UsingTemporal Logical Specification[J]. ACM transaction on ProgrammingLanguage and Systems,1986,8(2):244-263.
    [73] Tang Z S. Temporal logic programming and software engineering[M].Beijing:Science Press,2002.
    [74] Alur R,et al. A theory of timed automata[J]. Theor. Comp.Sci.1994,126:183-235.
    [75] Li G Y. LTLC:A continuous-time temporal Logic for real-time and Hybridsystem[D]. Beijing:Doctor's Degree Papers of Institute of Software,theChinese Academy of Sciences,2001.
    [76]蒋屹新,林闯,邢栩嘉.基于线性时态逻辑的Petri网模型检测[J].系统仿真学报,2003,15:6-10.
    [77] Manna Z,Pnueli A. Temporal Verification of Reactive Systems:Safety[M].New York:Springer,1995.
    [78] Clarke,Burch,Jerry R. Symbolic model checking for sequential circuitverification[J]. IEEE Transactions on Computer-Aided Design of IntegratedCircuits and Systems,1994(4):401-424.
    [79] Bultan, Tevfik. Applying infinite state model checking and other analysistechniques to tabular requirements specifications of safety-critical systems[J].Design Automation for Embedded Systems,2008(7):97-137.
    [80] McMillan. Symbolic model checking:an approach to the state explosionproblem [R]. Camegie-Mellon University, Department of ComputerScience,Report CMU–CS-92-131,1992.
    [81] Clarke,Grumberg. Model checking and abstraction[J]. ACM Transactions onProgramming Languages and System (TOPLAS),1994,16(5):1512-1542.
    [82] Clarke, Grumberg. Counter example guided abstraction refinement forsymbolic model checking[J]. Journal of the ACM,2003,50(5):752-794.
    [83]欧阳丹彤,焦玉,赵相福.基于ATMS的冲突识别及诊断测量方法[J].吉林大学学报(工学版),2009,39(6):1601-1606.
    [84]栾尚敏,戴国忠.利用结构信息的故障诊断方法[J].计算机学报,2005,28(5):801-808.
    [85]赵相福,欧阳丹彤.基于模型的诊断中产生所有极小冲突集的新方法[J].吉林大学学报:工学版,2007,37(2):413-418.
    [86]方敏.一种识别最小冲突集的实用方法[J].合肥工业大学学报(自然科学版),1999,22(1):39-43.
    [87]姜云飞,林笠.用对分-HS树计算最小碰集[J].软件学报,2002,13(22):2267-2274.
    [88]姜云飞,林笠.用布尔代数方法计算最小碰集[J].计算机学报,2003,26(8):919-924.
    [89]欧阳丹彤,欧阳继红,程晓春等.基于模型诊断中计算碰集的方法[J].仪器仪表学报,2004,25(4):605-608.
    [90]何士玉,刘志刚,徐建芳.求极小碰集的蛛网算法[J].计算机应用研究,2013,30(3):684-687.
    [91] Muscettola N,Nayak P P,Pell B,et al. Remote Agent:To boldly go where noAI system has gone before,Artificial Intelligence1998,103:5-47.
    [92] Bernard D,Dorais G,et al. Spacecraft Autonomy Flight Experience:The DS1Remote Agent Experiment,AIAA,1999,99-4512.
    [93] Hayden S,Sweet A,Christa S,et al. Advanced diagnostic system on EarthObserving One[C]. Proceedings of AIAA Space2004Conference and Exhibit,San Diego,California,Sep.28-30,2004.
    [94] Hayden S,Sweet A,Christa S. Livingstone model-based diagnosis of EarthObserving One[C]. Proceedings of AIAA Intelligent Systems Conference,Chicago,2004.
    [95] Schwabacher M,Samuels J,Brownston L. The NASA integrated vehicle healthmanagement technology experiment for X-37[C]. SPIE AeroSense,Florida,2002.
    [96] Meyer C, Cannon H, et al. Propulsion IVHM Technology ExperimentOverview[C]. IEEE Aerospace Conference,Big Sky,MT,2003.
    [97] Mackey R,James M,Park H,et al. BEAM:technology for autonomousself-analysis[C]. Aerospace Conference, IEEE Proceedings,2001,6,2989-3001.
    [98] James M,Dubon L. An autonomous diagnostic and prognostic monitoringsystem for NASA's Deep Space Network[C]. Aerospace ConferenceProceedings,IEEE,2000,2:403-414.
    [99] Bajwa A,Sweet A. The Livingstone Model of a Main Propulsion System[C],IEEE Aerospace Conference,2003,Big Sky,MT.
    [100]Williams B C,Nayak P P. A reactive planner for a model-based executive[C].Proceedings of the Fifteenth International Joint Conference on ArtificialIntelligence,Nagoya,Japan,August23-29,1997.
    [101]Kurien J,Nayak P P. Back to the future for consistency-based trajectorytracking[C]. The17th National Conference on Artificial Intelligence,Texas,USA,July30-August3,2000.
    [102]黄俊杰,张和明.复杂产品虚拟样机描述中的多粒度建模方法[J].系统仿真学报,2009,21(17):5445-5449.
    [103]Liu C F,Feng L. Construction and Application of Hierarchical KnowledgeGranularity[J]. Advanced Materials Research,2010,143-144:717-721.
    [104]单长胜,李于衡,王荔斌.在轨卫星异常报警和故障诊断方法研究[J].飞行器测控学报,2011,30(3):6-10.
    [105]Hou J C,Liang Y,Ren C Z. A multivariate discretization method forcontinuous attributes[J]. PR&AI,2011,24(6):792-797.
    [106]Gethsiyal Augasta M,Kathirvalavakumar T. A new discretization algorithmbased on range coefficient of dis-persion and skewness for neural networksclassifier[J]. Applied Soft Computing,2012,12(2):619-625
    [107]Ferreira A J,Figueiredo Mário A T. An unsupervised approach to featurediscretization and selection[J]. Pattern Recognition,2012,45(9):3048-3060.
    [108]Wilson D R,Martinez T R. Improved Heterogeneous Distance Functions[J].Journal of Artificial Intelligence Research,1997,6:1-34.
    [109]Pak K W,Lap M T,Ke L. Automotive engine power performance tuning undernumerical and nominal data[J]. Control Engineering Practice,2012,20:300-314.
    [110]Josep D F, Solanas A. A measure of variance for hierarchical nominalattributes[J]. Information Sciences,2008,178:4644-4655.
    [111]Cheng V,Li C H,Kwokb J T,Li C K. Dissimilarity learning for nominaldata[J]. Pattern Recognition,2004,37:1471-1477.
    [112]Dettmann E,Becker C,Schmei er C. Distance functions for matching in smallsamples[J]. Computational Statis-tics&Data Analysis,2012,55(5):1942-1960.
    [113]Chen Q F,Li G,Chen Y P P. Interval-based distance function for identifyingRNA structure candidates[J]. Journal of Theoretical Biology,2012,269(1):280-286.
    [114]Bhattacharya G,Ghosh K,Chowdhury A S. An affinity-based new localdistance function and similarity measure for kNN algorithm[J]. PatternRecognition Letters,2012,33(3):356-363.
    [115]Zhu Q, Liu S Y, Xu M. On conditional diagnosability of the foldedhypercubes[J]. Information Sciences,2008,178(4):1069-1077.
    [116]Yang E,Yang X F,Dong Q,Li J. Conditional diagnosability of hypermeshesunder the comparison model[J]. Information Processing Letters,2011,111(4):188-193.
    [117]Basile F,Chiacchio P,De Tommasi G. On K-diagnosability of Petri nets viainteger linear programming[J]. Automatica,2012,48(9):2047-2058.
    [118]Shigemasa T. Verification of robust diagnosability for partially observeddiscrete event systems[J]. Automatica,2012,48(8):1913-1919.
    [119]Gobbo D D,Napolitano M R.Issues in Fault Detectability for DynamicSystems[C]. American Control Conference,Chicago,lllinois,June,2000.
    [120]Xavier P, Trave-Massuyes L, Pencole Y. Another Point of View onDiagnosability[C]. The4th Starting AI Researchers’ Symposium,Patras,Greece,21-25,July,2008.
    [121]刘文静,刘成瑞,王南华.基于可诊断性约束的测点优化配置研究[J].空间控制技术与应用,2011,37(2):1-5.
    [122]Trave-Massuyes L,Escobet T,Xavier O. Diagnosability analysis based oncomponent-supported analytical redundancy relations[J]. IEEE Transactions onSystems,Man,and Cybernetics-Part A:Systems and Humans,2006,36(6):1146-1159.
    [123]Commault C,Dion J-M. Sensor location for diagnosis in linear structuredsystems with disturbances[C]. The42nd IEEE Conference on Decision andControl,Maui,Hawaii,USA,December2003,1443-1448.
    [124]Krasander M, Erik F. Sensor placement for fault diagnosis[J]. IEEETransactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2008,38(6):1398-1410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700