制造系统运行可靠性分析与维修保障策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化制造系统日益朝着大型化、自动化、柔性化、高效化和精密化方向发展,其组成设备单元的种类与数量迅速增加,结构也更为复杂,再加上复杂多变的使用工况与运行环境,使其发生故障的几率也会明显增加,因此如何保证制造系统的运行可靠性已成为用户制造企业面临的重大问题。现代化制造系统在运行过程中多样化的需求、动态不确定的制造环境以及异常复杂的内在退化机理使得传统的制造系统可靠性研究方法过于局限和单薄。针对现有研究工作中存在的不足之处,本文以制造系统服役阶段由各种广义外在环境随机事件与各组成设备内在退化机理引起的性能状态退化为切入点,将脆性理论和多状态系统理论引入制造系统运行可靠性分析与维修保障策略的研究中,研究了制造系统脆性效应的累积与传播机理,建立起基于“R-E”体系的制造系统运行可靠性分析技术框架与性能状态演变的预测模型,提出了考虑脆性效应的改进区间通用生成函数可靠性评估方法,在此基础上分析并制订了动态预测维修策略以保障制造系统的运行可靠性,并从维修相关性的角度以服役阶段效益产出最大为目标对该维修策略进行优化。本文提出的理论方法体系从微观和宏观两个方面对制造系统的运行可靠性进行评估,从定性和定量两个方面对制造系统维修策略进行分析,在一定程度上克服了传统制造系统可靠性分析方法与维修策略在用户实际应用中的困难与缺陷,并为制造系统运行可靠性分析与维修策略制订提供了一条新的思路。本文具体内容包括以下几个方面:
     (1)介绍了制造系统及其运行可靠性的相关理论知识,论述了制造系统可靠性与维修策略的发展历程及国内外的研究现状,说明了本论文的课题来源、主要研究内容及总体结构。针对制造系统层次结构复杂、故障源多、制造任务多变、状态多变等特点,论文将多状态可靠性理论、复杂系统脆性理论以及“人—机—环境”系统工程学引入制造系统服役阶段的运行过程中,探讨了制造系统多态性的形成机理,描述了制造系统故障演化与传递机理,分析了制造系统运行过程中的广义外在环境,并提出了基于“R-E”体系的制造系统运行可靠性分析技术框架,为制造系统运行可靠性的评估与维修保障策略的制订提供了理论支撑。
     (2)研究了广义外在环境下制造系统脆性效应的累积与传播模型。首先引入因素空间理论来描述广义外在环境中动态因素的物理脆性激发作用,构建了制造系统脆性效应与各动态外在因素之间的映射模型。然后引入脆性度指标来量化脆性激发因素直接与间接对制造系统性能状态退化程度的综合影响,并系统分析了脆性激发因素风险度与耦合度的计算流程。最后根据制造系统物理脆性的激发与过程脆性的激发两类脆性激发机制建立起制造系统设备单元层与制造系统层的脆性效应传播模型,并采用改进蚁群算法去搜寻给定制造任务下的制造系统最大脆性激发路径,为制造系统具体故障演化与传递机理的分析提供了一种新的思路。
     (3)研究了基于脆性效应的制造系统运行可靠性评估方法。首先引入状态空间模型,描述了脆性激发因素作用下制造系统的状态演变过程,建立起制造系统性能状态演变的预测模型。然后提出一种考虑脆性效应的改进通用生成函数法对制造系统运行可靠性进行分析,在此基础上借鉴区间分析理论以及仿射算术的思想对改进通用生成函数法进行区间扩展,对制造系统区间运行可靠性进行评估,不仅体现了不同制造任务下制造系统异质性与动态不确定性的存在,同时也使得运行可靠性评估结果更加准确可靠。
     (4)研究了广义外在环境下制造系统维修保障策略的选择算法。首先对制造系统维修保障及维修策略的基本知识进行了概述。其次针对广义外在环境下制造系统及其设备单元存在的异质性以及动态不确定性,给出了制造系统的主要维修决策属性,并归纳了制造系统最佳维修策略的选择流程。然后应用模糊层次分析主观赋权类方法和信息熵客观赋权类方法分别对制造系统维修策略进行排序选择,并采用模糊Borda法综合以上两种方法进行综合提取,有效地克服传统单一方法计算过程存在的主观性和模糊性问题,提高了维修策略排序选择的准确性和合理性。最后运用该方法得到制造系统关键设备单元——加工中心的最佳维修保障策略应为预测维修。
     (5)研究了因素驱动的制造系统动态预测维修策略。首先针对传统制造系统维修保障策略研究中未全面考虑动态环境事件影响制造系统性能状态退化的问题,并基于制造系统脆性效应的理论分析以及性能状态演变预测模型的建立,分析了广义外在环境下制造系统的预测维修策略,给出了维修策略的成本效益评价模型。然后在给定动态维修决策阈值、有限缓冲区容量以及维修资源等维修相关性约束条件下,以服役阶段效益产出最大为目标建立了基于遗传算法的制造系统维修策略寻优流程。最后以国内某制造企业的一套制造系统为例,通过对比分析证明了本文提出的动态预测维修策略的可用性与有效性,对于提升我国制造装备运行可靠性、经济性以及加工制造能力,具有潜在的借鉴价值。
As modern manufacturing systems developed towards larger size, higherautomation, more flexible, more efficient and higher precision continuously, the partsand equipments in systems greatly increase, and the structures are more complicated.As a result the probability of system failures will be increased significantly undercomplex working conditions and circumstances, and therefore how to ensure theoperational reliability of manufacturing systems has become a major problem facingthe users of manufacturing systems. Conventional reliability analysis methods formanufacturing systems are limited and weak, because of diverse manufacturingmissions, dynamic manufacturing environment and extremely complex degradationmechanism during the operation of modern manufacturing systems. For thedeficiencies that exist in the current researches, in this paper, various random events inthe universal external environment and performance degradation of manufacturingsystems caused by intrinsic degradation mechanism are treated as a starting point, thenbrittleness theory of complex system and theory of multi-state system are introduced instudy on operational reliability analysis and maintenance policy for manufacturingsystem, the mechanism of accumulation and propagation of brittleness effect inmanufacturing systems is studied, the technical framework of operational reliabilityanalysis and the predictive model of performance degradation for manufacturingsystems based on R-E system are established, and the improvement interval universalgenerating function for reliability evaluation is proposed considering brittleness effect.According to the operational reliability analysis above, the dynamic predictivemaintenance policy is formulated to ensure the operational reliability of manufacturingsystems, and the maintenance policy is optimized with the largest benefit output in theoperational phase as target in the end. The theoretical method system presented in thispaper evaluates operational reliability of manufacturing systems from micro and macroaspects, analyses maintenance policies of manufacturing systems from qualitative andquantitative aspects, overcomes the difficulties and deficiencies of conventionalreliability analysis methods and maintenance policies in the applications to someextent, and provides a new approach for analysis of operational reliability andformulation of maintenance strategy for manufacturing systems. Topics covered in thispaper are as follows:
     (1) Some basic theories about manufacturing system and its operational reliabilityare introduced, the development and the status of researches on reliability andmaintenance policy of manufacturing system are discussed, and the source, the mainworks and frame of this paper are illustrated here. For the characteristics of morecomplicated structure, more failure sources, varied manufacturing missions, and variedperformance, multi-state reliability theory, brittleness theory of complex system andsystem engineering of man-machine-environment are introduced to discuss theformation mechanism of multi-state during the operation phase, describe themechanism of failure evolution and propagation, analyze the universal externalenvironment of manufacturing systems, and propose technical framework ofoperational reliability analysis for manufacturing system based on R-E system. Theseworks provide a theoretical support for evaluation of operational reliability andformulation of maintenance strategy for manufacturing system.
     (2) The accumulation and propagation model of brittleness effect inmanufacturing systems under universal external environment is studied. Firstly, thetheory of factor space is introduced to describe the physical stimulation of dynamicfactors in universal external environment, and the mapping model between brittlenesseffect in manufacturing systems and the dynamic external factors is constructed. Then,brittleness degree is given to express the direct and indirect impact of each brittlenessmotivators on system degradation, and the algorithms for risk degree and couplingdegree of brittleness motivators are analyzed systematically. Finally, according to thebrittleness mechanism of physical stimulation and flow stimulation, the brittlenesspropagation models of equipment layer and manufacturing system layer are established,and the improved ant colony algorithm is used to search propagation path of brittlenesseffect with maximum intensity. These works provide a new method for analysis ofevolution and propagation mechanism of concrete failures in manufacturing systems.
     (3) Operational reliability evaluation of manufacturing system based onbrittleness effect is studied. Firstly, state space model is introduced to describe the stateevolution of manufacturing system under the impact of brittleness motivators,following the establishment of state evolution predictive model of manufacturingsystem. Moreover, the improved universal generating function for reliability evaluationof manufacturing is proposed considering brittleness effect, and the interval extensionof reliability value is made on the basis of the interval analysis theory and affinearithmetic to evaluate the interval-valued operational reliability. The result shows the heterogeneity and dynamic uncertainty of manufacturing systems under differentmanufacturing missions, and makes reliability evaluation more accurate and reliable.
     (4) The selection algorithm for maintenance policies of manufacturing systemunder universal external environment is studied. Firstly, the basic theory ofmaintenance and its policies of manufacturing system are summarized. Secondly, forthe heterogeneity and dynamic uncertainty existed in manufacturing systems underuniversal external environment, decision-making attributes for maintenance are given,and the selection process of optimum maintenance policy is summarized. Then, themaintenance policies of manufacturing system are ranked by fuzzy AHP (subjectiveweighting) and information entropy method (objective weighting), and the optimummaintenance policy is selected by the fuzzy Borda method combining with fuzzy AHPand information entropy. This method effectively overcomes the problems aboutsubjectivity and ambiguity existed in conventional selection algorithms, and improvesthe accuracy and rationality of ranking selection of maintenance policies. Finally, usingthis method, the optimum maintenance policy for machining center that is keyequipment in manufacturing system should be predictive maintenance.
     (5) The factor-driven dynamic predictive maintenance policy for manufacturingsystem is studied. Firstly, in view of incomplete consideration to the influence ofdynamic environment events on manufacturing system degradation in conventionalmaintenance policies, the predictive maintenance policy under universal externalenvironment is analyzed and the cost-effective evaluation model of maintenance policyis established based on brittleness theory and state evolution predictive model ofmanufacturing system. In addition, as the dynamic maintenance decision thresholdvalue was given and the buffer contents and the maintenance sources were limited, themaintenance policy optimization flow of the manufacturing system based on GeneticAlgorithm is built with the largest benefit output in the operational phase as target.Finally, an example of manufacturing system in one domestic manufacture enterprise istaken to prove the usability and validity of the method mentioned after thebenchmarking analysis. This study of maintenance policy has potential reference valueto improve the operational reliability, economical efficiency and capability ofmanufacturing equipments in China.
引文
[1]张根保.自动化制造系统[M].北京:机械工业出版社,2010.
    [2] Adamyan A, He D. Analysis of sequential failures for assessment of reliability and safety ofmanufacturing systems[J]. Reliability Engineering and System Safety,2002,76(3):227-236.
    [3] Guan X, He J, Jha R, et al. An efficient analytical Bayesian method for reliability and systemresponse updating based on Laplace and inverse first-order reliability computations[J].Reliability Engineering and System Safety,2012,97(1):1-13.
    [4] Lin Y K. Two-commodity reliability evaluation of a stochastic-flow network with varyingcapacity weight in terms of minimal paths[J]. Computers and Operations Research,2009,36(4):1050-1063.
    [5] Regattieri A, Manzini R, Battini D. Estimating reliability characteristics in the presence ofcensored data: a case study in a light commercial vehicle manufacturing system[J]. ReliabilityEngineering and System Safety,2010,95(10):1093-1102.
    [6] Savsar M. Reliability analysis of a flexible manufacturing cell[J]. Reliability Engineering andSystem Safety,2000,67(2):147-152.
    [7] Weber P, Jouffe L. Complex system reliability modelling with Dynamic Object OrientedBayesian Networks (DOOBN)[J]. Reliability Engineering and System Safety,2006,91(2):149-162.
    [8]路甬祥.坚持科学发展,推进制造业的历史性跨越[J].机械工程学报,2007,43(11):1-6.
    [9]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势[J].机械工程学报,2006,42(1):1-5.
    [10]郑力,江平宇,乔立红等.制造系统研究的挑战和前沿[J].机械工程学报,2010,46(21):124-136.
    [11] Zeng S W. Discussion on maintenance strategy, policy and corresponding maintenancesystems in manufacturing[J]. Reliability Engineering and System Safety,1997,55(2):151-162.
    [12] Dehayem Nodem F I, Kenné J P, Gharbi A. Simultaneous control of production,repair/replacement and preventive maintenance of deteriorating manufacturing systems[J].International Journal of Production Economics,2011,134(1):271-282.
    [13]苏春.制造系统建模与仿真[M].北京:机械工业出版社,2008.
    [14] Mansfield E. New evidence on the economic effects and diffusion of FMS[J]. IEEETransactions on Engineering Management,1993,40(l):76-79.
    [15] Buzacott J A. A Perspective on new paradigm in manufacturing system[J]. Journal ofmanufacturing system,1995,14(2):118-125.
    [16] Noaker P M. The search for agile manufacturing[J]. Manufacturing Engineering,1994,113(5):40-43.
    [17] Koren Y, Heisel U, Jovane F, et al. Reconfigurable manufacturing systems[J]. Annals of theCIRP,1999,48(2):527-540.
    [18] Mehrabi M G, Ulsoy A G, Koren Y. Reconfigurable manufacturing systems: Key to futuremanufacturing[J]. Journal of Intelligent Manufacturing,2000,11(4):403-419.
    [19] Rao S S, Reddy C P. Reliability analysis of machine tool structures[J]. Journal of Engineeringfor Industry,1977,99(4):882-888.
    [20] Montgomery D C. Introduction to statistical quality control[M]. New York: John wiley&Sons,1985.
    [21] Shawn B. Object-oriented expert system architectures for manufacturing qualitymanagement[J]. Journal of Manufacturing System,1992,11(1):50-60.
    [22] Jiang R, Murthy D N P. Modelling failure data by mixture of two Weibull distributions: agraphical approach[J]. IEEE Transactions on Reliability,1995,44(3):477-488.
    [23] Rausand M, H yland A. System reliability theory: models, statistical methods, andapplications (second edition)[M]. New Jersey: John wiley&Sons,2003.
    [24] Jones J A, Hayes J A. Use of a field failure database for improvement of product reliability[J].Reliability Engineering and System Safety,1997,55(2):131-134.
    [25]武小悦,陈忠贵.柔性制造系统的可靠性技术[M].北京:兵器工业出版社,2000.
    [26] Chirkov A L, Makarov N V, Gavryushin A I, et al. Enhancing the reliability of NC machinesand FMMS by running them in at the manufacturers works[J]. Soviet Engineering Research,1989,9(3):114-115.
    [27] Vasilev V S. Cost efficiency approach to the selection of NC machine tool reliability standards[J]. Soviet Engineering Research,1985,5(9):49-50.
    [28] Vershinin B V, Sharin Y S. Ways of increasing the reliability of NC equipment[J]. SovietEngineering Research,1987,7(5):71.
    [29] Keller A Z, Kamath A R R, Perera U D. Reliability analysis of CNC machine tools[J].Reliability Engineering,1982,3(6):449-473.
    [30] Lapidus A S, Portman V T, Megavoryan L G. Estimating the reliability of NC machine tools inoperation[J]. Machines and Tooling,1978,49(10):9-11.
    [31] Ansell J I, Phillips M J. Practical Reliability Data Analysis[J]. Reliability Engineering andSystem Safety,1990,28(3):337-356.
    [32] Gupta Y P, Somers T M. Availability of CNC machines: multiple-input transfer-functionmodeling[J]. IEEE Transaction on Reliability,1989,38(3):285-295.
    [33] Arts R H P M, Saxena A, Knapp G M. Estimation of distribution parameters of mixed failuremode data[J]. Journal of quality in maintenance engineering,1997,3(2):120-135.
    [34] Kuo W, Prasad V R. An annotated overview of system-reliability optimization[J]. IEEETransactions on reliability,2000,49(2):176-187.
    [35] McGoldrick P F, Kulluk H. Machine tool reliability-a critical factor in manufacturing systems[J]. Reliability Engineering,1986,14(3):205-221.
    [36] Freiheit T, Jack H S. Impact of machining parameters on machine reliability and systemproductivity[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME,2002,124(2):296-304.
    [37] Khodabandehloo K, Sayles R S. Production reliability in flexible manufacturing systems[J].Quality and Reliability Engineering International,1986,2(3):171-182.
    [38] Miriyala K, Viswanadham N. Reliability analysis of flexible manufacturing systems[J].International Journal of Flexible Manufacturing Systems,1989,2(2):145-162.
    [39] Yuandis P, Styblinski M A, Smith D R, et al. Reliability modeling of flexible manufacturingsystems[J]. Microelectronics and Reliability,1994,34(7):1203-1220.
    [40] Wang K S, Wan E H. Reliability consideration of a FMS from fuzzy information[J]. Journal ofQuality and Reliability Management,1993,10(7):44-57.
    [41]沙基昌,武小悦,郭波. FMS可靠性研究工作回顾[J].国防科技参考,1995,16(2):1-5.
    [42]胡华平.柔性制造系统多任务可靠性建模与分析[D].长沙:国防科学技术大学,1995.
    [43] Epstein S, Rauzy A. Can we trust PRA?[J]. Reliability Engineering and System Safety,2005,88(2):195-205.
    [44] Zio E. Reliability engineering: old problems and new challenges[J]. Reliability Engineeringand System Safety,2009,94(1):125-141.
    [45]武小悦,沙基昌.柔性制造系统可靠性分析的GOOPN模型[J].计算机集成制造系统,2000,6(2):65-69.
    [46] Jiang Z B, He J M. Stochastic object-oriented Petri nets (SOPNS) and its application inmodeling of manufacturing of system reliability[J]. Chinese Journal of Mechanicalengineering,2003,16(3):272-276.
    [47] Volovoi V. Modeling of system reliability Petri nets with aging tokens[J]. ReliabilityEngineering and System Safety,2004,84(2):149-161.
    [48]谢楠,李爱平.基于扩展随机Petri网的可重组制造系统建模与分析方法[J].机械工程学报,2006,42(12):224-231.
    [49]张君一.基于GSPN与ESPN的制造系统可靠性模块化建模与分析[D].沈阳:东北大学,2007.
    [50]张君一,谢里阳,王正.基于ESPN的制造系统多任务可靠性研究[J].东北大学学报(自然科学版),2008,29(7):1029-1032.
    [51]张君一,谢里阳,李兵,等.基于Petri网的非串行制造系统的可靠性分析[J].机械工程学报,2009,45(12):95-101.
    [52]苏春.基于GSPN模型的系统动态可靠性仿真研究[J].中国机械工程,2008,19(1):1-5.
    [53] Chew S P, Dunnett S J, Andrews J D. Phased mission modeling of systems withmaintenance-free operating periods using simulated Petri nets[J]. Reliability Engineering andSystem Safety,2008,93(7):980-994.
    [54] Sun J W, Xi L F, Du S C, et al. Reliability modeling and analysis of serial-parallel hybridmulti-operational manufacturing system considering dimensional quality, tool degradation andsystem configuration[J]. International Journal of Production Economics,2008,114(1):149-164.
    [55]孙继文,奚立峰,潘尔顺,等.面向产品尺寸质量的制造系统可靠性建模与分析[J].上海交通大学学报,2008,42(7):1100-1105.
    [56]高振清,孙厚芳,吴琼.基于GO法的制造系统可靠性分析[J].机械科学与技术,2007,26(3):320-323.
    [57]尹晓伟,钱文学,谢里阳.基于贝叶斯网络的多状态系统可靠性建模与评估[J].机械工程学报,2009,45(2):206-212.
    [58] Das K, Lashkari R S, Sengupta S. Reliability consideration in the design and analysis ofcellular manufacturing systems[J]. International Journal of Production Economics,2007,105(1):243-262.
    [59] Lin L, Ni J. Reliability estimation based on operational data of manufacturing systems[J].Quality and Reliability Engineering International,2008,24(7):843-854.
    [60] Barton R M, Damon W W. Reliability in a multi-state system[C]. The Sixth AnnualSoutheastern Symposium on Systems Theory, Louisiana, USA,1974.
    [61] Murchland J. Fundamental concepts and relations for reliability analysis of multi-state systemsreliability and fault tree analysis[M]. Theoretical and Applied Aspects of System Reliability,Philadelphia: SIAM,1975,581-618.
    [62] El-Neveihi E, Proschan F, Setharaman J. Multi-state coherent system[J]. Journal of AppliedProbability,1978,15:675-688.
    [63] Barlow R E, Wu A S. Coherent systems with multi-state components[J]. Mathematics ofOperations Research,1978,3(4):275-281.
    [64] Ross S M. Multivalued state component systems[J]. Annals of Probability,1979,7(2):379-383.
    [65] Levitin G, Lisnianski A, Ben-Haim H. Redundancy optimization for series-parallel multi-statesystems[J]. IEEE Transactions on Reliability,1998,47(2):165-172.
    [66] Levitin G, Lisnianski A. Joint redundancy and maintenance optimization for multi-state series-parallel systems[J]. Reliability Engineering and System Safety,1998,64(1):33-42.
    [67] Levitin G, Lisnianski A. A new approach to solving problems of multi-state system reliabilityoptimization[J]. Quality and Reliability Engineering International,2001,47(2):93-104.
    [68] Levitin G. Optimal allocation of multi-state retransmitters in acyclic transmission network[J].Reliability Engineering and System Safety,2002,75(1):73-82.
    [69] Levitin G. A universal generating function approach for the analysis of multi-state systemswith dependent elements[J]. Reliability Engineering and System Safety,2004,84(3):285-292.
    [70] Levitin G. Block diagram method for analyzing multi-state systems with uncovered failures[J].Reliability Engineering and System Safety,2007,92(6):727-734.
    [71] Ramirez-Marquez J E, Levitin G. Algorithm for estimating reliability confidence bounds ofmulti-state systems[J]. Reliability Engineering and System Safety,2008,93(8):1231-1243.
    [72] Levitin G, Amari S V. Multi-state systems with multi-fault coverage[J]. ReliabilityEngineering and System Safety,2008,93(11):1730-1739.
    [73] Levitin G. Optimal structure of multi-state systems with uncovered failures[J]. IEEETransactions on Reliability,2008,57(1):140-148.
    [74] Lisnianski A, Levitin G. Multi-state system reliability assessment, optimization, applications
    [M]. Singapore: World Scientific,2003.
    [75] Natvig B, Streller A. The steady-state behavior of multistate monotone systems[J]. JournalApplied Probability,1984,21(4):826-835.
    [76] Aven T, Jensen U. Stochastic models in reliability[M]. New York: Springer-Verlag,1999.
    [77] Xue J, Yang K. Dynamic reliability analysis of coherent multistate systems[J]. IEEETransactions on Reliability,1995,44(4):683-688.
    [78] Brunelle R D, Kapur K C. Review and classification of reliability measures for multi-state andcontinuum models[J]. IIE Transactions,1999,31(12):1171-1180.
    [79] Lisnianski A, Ding Y. Redundancy analysis for repairable multi-state system by usingcombined stochastic processes methods and universal generating function technique[J].Reliability Engineering and System Safety,2009,94(11):1788-1795.
    [80] Billinton R, Li W Y. Hybrid approach for reliability evaluation of composite generation andtransmission systems using Monte-Carlo simulation and enumeration technique[J]. IEEProceedings-C: Generation, Transmission and Distribution,1991,138(3):233-241.
    [81] Zio E, Marella M, Podofillini L. A Monte Carlo simulation approach to the availabilityassessment of multi-state systems with operational dependencies[J]. Reliability Engineeringand System Safety,2007,92(7):871-882.
    [82] Ramirez-Marquez J E, Coit D W. A Monte-Carlo simulation approach for approximatingmulti-state two-terminal reliability[J]. Reliability Engineering and System Safety,2005,87(2):253-264.
    [83] Zio E, Podofillini L, Levitin G. Estimation of the importance measures of multi-state elementsby Monte Carlo simulation[J]. Reliability Engineering and System Safety,2004,86(3):191-204.
    [84] Zuo M J, Tian Z G. Performance evaluation for generalized multi-state k-out-of-n systems[J].IEEE Transactions on Reliability,2006,55(2):319-327.
    [85] Li W, Zuo M J. Reliability evaluation of multi-state weighted k-out-of-n systems[J].Reliability Engineering and System Safety,2008,93(1):160-167.
    [86] Sharma V K, Agarwal M, Sen K. Reliability evaluation and optimal design in heterogeneousmulti-state series-parallel systems[J]. Information Sciences,2011,181(2):362-378.
    [87] Levitin G, Liu D X. Reliability and performance of multi-state systems with propagatedfailures having selective effect[J]. Reliability Engineering and System Safety,2010,95(6):655-661.
    [88] Ushakov I. Universal generating function[J]. Soviet Journal Computer Systems Science,1986,24(5):118–129.
    [89] Lisnianski A, Levitin G, Ben-Haim H, et al. Power system structure optimization subject toreliability constraints[J]. Electrical Power Systems Research,1996,39(2):145-152.
    [90] Levitin G, Lisnianski A. Optimal multistage modernization of power system subject toreliability and capacity requirements[J]. Electrical Power Systems Research,1999,50(3):183-190.
    [91] Levitin G, Liu DX, Ben-Haim H, et al. Multi-state systems with selective propagated failuresand imperfect individual and group protections[J]. Reliability Engineering and System Safety,2011,96(12):1657-1666.
    [92]刘宇.多状态复杂系统可靠性建模及维修策略[D].成都:电子科技大学,2010.
    [93] Levitin G, Meizin L. Structure optimization for continuous production systems with buffersunder reliability constraints[J]. International Journal of Production Economics,2001,70(1):77-87.
    [94] Bae S T, Cho G S, Hwang H S. Multi-state availability model for manufacturing systemconsidering system cost[J]. International Journal of Information Systems for Logistics andManagement,2007,2(2):93-98.
    [95] Levitin G. Linear multi-state sliding-window system[J]. IEEE Transaction on Reliability,2003,52(2):263-269.
    [96] Van P D, Barros A, Bérenguer C. Importance measure on finite time horizon and applicationto Markovian multi-state production systems[J]. Journal of Risk and Reliability,2008,222(3):449-461.
    [97] Nourelfath M, Fitouhi M, Machani M. An integrated model for production and preventivemaintenance planning in multi-state systems[J]. IEEE Transactions on Reliability,2010,59(3):496-506.
    [98] Youssef A M A, Mohib A, Elmaraghy H A. Availability assessment of multi-statemanufacturing systems using universal generating function[J]. Annals of the CIRP,2006,55(1):445-448.
    [99] Youssef A M A, Elmaraghy H A. Performance analysis of manufacturing systems composedof modular machines using the universal generating function[J]. Journal of ManufacturingSystems,2008,27(2):55-69.
    [100]段建国,李爱平,谢楠,等.可重构制造系统多态可靠性建模与分析[J].机械工程学报,2011,47(17):104-111.
    [101] Barlow R E, Prochan F. Mathematical theory of reliability[M]. New York: Wiley,1965.
    [102] Wang H Z. A survey of maintenance policies of deteriorating systems[J]. European Journalof Operational Research,2002,139(3):469-489.
    [103] Garg A, Deshmukh S G. Maintenance management: literature review and directions[J].Journal of Quality in Maintenance Engineering,2006,12(3):205-238.
    [104] Jardine A K S, Lin D, Banjevic D. A review on machinery diagnostics and prognosticsimplementing condition-based maintenance[J]. Mechanical System and Signal Processing,2006,20(7):1483-1510.
    [105] Heng A, Zhang S, Tan A C C, et al. Rotating machinery prognostics: state of the art,challenges and opportunities[J]. Mechanical System and Signal Processing,2009,23(3):724-739.
    [106]王凌,郑恩辉,李运堂,等.维修决策建模和优化技术综述[J].机械科学与技术,2010,29(1):133-140.
    [107] Ahmad R, Kamaruddin S. An overview of time-based and condition-based maintenance inindustrial application[J]. Computers and Industrial Engineering,2012,63(1):135-149.
    [108]王凌.维修决策模型和方法的理论与应用研究[D].杭州:浙江大学,2007.
    [109] Pham H, Wang H. Imperfect maintenance[J]. European Journal of Operational Research,1996,94(3):425-438.
    [110] Thomas L. A survey of maintenance and replacement models for maintainability andreliability of multi-item systems[J]. Reliability Engineering,1986,16(4):297-309.
    [111] Cho D I, Parlar M. A survey of maintenance models for multi-unit systems[J]. EuropeanJournal of Operational Research,1991,51(1):1-23.
    [112] Dekker R, Wildeman R E, Van Der Duyn Schouten F A. A review of multi-componentmaintenance models with economic dependence[J]. Mathematical Methods of OperationsResearch,1997,45(3):411-435.
    [113] Nicolai R P, Dekker R. Optimal maintenance of multi-component systems: a review[M].London: Springer,2008.
    [114] Lewis M W, Steinberg L. Maintenance of mobile mine equipment in the information age[J].Journal of Quality in Maintenance Engineering,2001,7(4):264-274.
    [115] Wang H, Pham H. Some maintenance models and availability with imperfect maintenance inproduction systems[J]. Annals of Operations Research,1999,91:305-318.
    [116] Radner R, Jorgenson D W. Opportunistic replacement of a single part in the present ofseveral monitored parts[J]. Management Science,1963,10(1):70-84.
    [117] McCall J J. Operating characteristics of opportunistic replacement and inspection policies[J].Management Science,1963,10(1):85-97.
    [118] Assaf D, Shanthikumar J G. Optimal group maintenance policies with continuous andperiodic inspections[J]. Management Science,1987,33(11):1440-1452.
    [119] Van Der Duyn Schouten F A, Vanneste S G. Two simple control policies for a multicomponent maintenance system[J]. Operations Research,1993,41(6):1125-1136.
    [120] Das K, Lashkari R S, Sengupta S. Machine reliability and preventive maintenance planningfor cellular manufacturing systems[J]. European Journal of Operational Research,2007,183(1):162-180.
    [121] Dekker R, Smit A C J M, Losekoot J A. Combining maintenance activities in an operationalplanning phase: a set-partitioning approach[J]. IMA Journal of Mathematic Applied inBusiness and Industry,1992,3(4):315-331.
    [122] Dekker R, Wildeman R E, Van Egmond R. Joint replacement in an operational planningphase[J]. European Journal of Operational Research,1996,91(1):74-88.
    [123] Wildeman R E, Dekker R, Smit A C J M. A dynamic policy for grouping maintenanceactivities[J]. European Journal of Operational Research,1997,99(3):530-551.
    [124] Zheng X, Fard N. A maintenance policy for repairable systems based on opportunistic failurerate tolerance[J]. IEEE Transactions on Reliability,1991,40(3):237-244.
    [125] Dagpunar J S. Maintenance model with opportunities and interrupt replacement options[J].Journal of the Operational Research Society,1996,47(11):1406-1409.
    [126] Wijnmalen D J D, Hontelez J A M. Coordinated condition-based repair strategy forcomponents of a multi-component maintenance system with discounts[J]. European Journalof Operational Research,1997,98(1):52-63.
    [127] Degbotse A T, Nachlas J A. Use of nested renewals to model availability under opportunisticmaintenance policies[C]. Proceedings Annual Reliability and Maintainability Symposium,2003:344-351.
    [128] Castanier B, Grall A, Bérenguer C. A condition-based maintenance policy with non-periodicinspections for a two-unit series system[J]. Reliability Engineering and System Safety,2005,87(1):109-120.
    [129] Cui L, Li H. Opportunistic maintenance for multi-component shock models[J]. MathematicalMethods of Operations Research,2006,63(3):493-511.
    [130]周晓军,沈炜冰,奚立峰,等.一种考虑修复非新的多设备串行系统机会维护动态决策模型[J].上海交通大学学报,2007,41(5):769-773.
    [131]杨元,黎放,侯重远,等.基于相关性的多部件系统机会成组维修优化[J].计算机集成制造系统,2012,18(4):827-832.
    [132] Marseguerra M, Zio E, Podofillini L. Condition-based maintenance optimization by means ofgenetic algorithms and Monte Carlo simulation[J]. Reliability Engineering and SystemSafety,2002,77(2):151-165.
    [133] Barata J, Soares C G, Marseguerra M, et al. Simulation modeling of repairable multi-component deteriorating system for on condition maintenance optimization[J]. ReliabilityEngineering and System Safety,2002,76(3):255-264.
    [134] Gupta A, Lawsirirat C. Strategically optimum maintenance of monitoring-enabled multi-component system using continuous-time jump deterioration models[J]. Journal of Quality inMaintenance Engineering,2006,12(3):306-329.
    [135] Zhou X J, Xi L F, Lee J. A dynamic opportunistic maintenance policy for continuouslymonitored systems[J]. Journal of Quality in Maintenance Engineering,2006,12(3):294-305.
    [136] Rice W F, Cassady C R, Nachlas J A. Optimal maintenance plans under limited maintenancetime[C]. Proceedings of the Seventh Industrial Engineering Research Conference,1998.
    [137] Cassady C R, Murdock W P, Pohl E A. Selective maintenance for support equipmentinvolving multiple maintenance actions[J]. European Journal of Operational Research,2001,129(1):252-258.
    [138] Zhu H P, Liu F M, Shao X Y, et al. A cost-base selective maintenance decision-makingmethod for machining line[J]. Quality and Reliability Engineering International,2011,27(2):191-201.
    [139] Shao X Y, Liu F M, Zhu H P, et al. Maintenance decision-making method for manufacturingsystem based on cost and arithmetic reduction of intensity model[J]. Journal of Central SouthUniversity,2013,20(6):1559-1571.
    [140] Song D P. Production and preventive maintenance control in a stochastic manufacturingsystem[J]. International Journal of Production Economics,2009,119(1):101-111.
    [141] Samrout M, Chatelet E, Kouta R, et al. Optimization of maintenance policy using theproportional hazard model[J]. Reliability Engineering and System Safety,2009,94(1):44-52.
    [142] Moghaddam K S, Usher J S. Sensitivity analysis and comparison of algorithms in preventivemaintenance and replacement scheduling optimization models[J]. Computers and IndustrialEngineering,2011,61(1):64-75.
    [143] Van Noortwijk J M. A survey of the application of gamma processes in maintenance[J].Reliability Engineering and System Safety,2009,94(1):2-21.
    [144] Chih-Chun T, Sheng-Tsaing T, Balakrishnan N. Optimal burn-in policy for highly reliableproducts using gamma degradation process[J]. IEEE Transactions on Reliability,2011,60(1):234-245.
    [145] Pan Z, Balakrishnan N. Reliability modeling of degradation of products with multipleperformance characteristics based on gamma processes[J]. Reliability Engineering andSystem Safety,2011,96(8):949-957.
    [146] Deloux E, Castanier B, Bérenguer C. Predictive maintenance policy for a graduallydeteriorating system subject to stress[J]. Reliability Engineering and System Safety,2009,94(2):418-431.
    [147] Van der Weide J A M, Pandey M D, Van Noortwijk J M. Discounted cost model forcondition-based maintenance optimization[J]. Reliability Engineering and System Safety,2010,95(3):236-246.
    [148] Van der Weide J A M, Pandey M D. Stochastic analysis of shock process and modeling ofcondition-based maintenance[J]. Reliability Engineering and System Safety,2011,96(6):619-626.
    [149] Huynh K T, Barros A, Bérenguer C, et al. A periodic inspection and replacement policy forsystems subject to competing failure modes due to degradation and traumatic events[J].Reliability Engineering and System Safety,2011,96(4):497-508.
    [150]谷振宇,何彦,刘军.基于运行信息融合的大型设备视情维修系统[J].计算机集成制造系统,2010,16(10):2094-2100.
    [151] Kaiser K A, Gebraeel N Z. Predictive maintenance management using sensor-baseddegradation models[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2009,39(4):840-849.
    [152] Wang W. An overview of a semi-stochastic filtering approach for residual life estimationwith applications in condition based maintenance[J]. Proceedings of the Institution ofMechanical Engineers, Part O: Journal of Risk and Reliability,2010,225(2):185-198.
    [153] Elwany A H, Gebraeel N Z, Maillart L M. Structured replacement policies for componentswith complex degradation processes and dedicated sensors[J]. Operations Research,2011,59(3):684-695.
    [154] Ahmad R, Kamaruddin S. An overview of time-based and condition-based maintenance inindustrial application[J]. Computers and Industrial Engineering,2012,63(1):135-149.
    [155] Neves M L, Santiago L P, Maia C A. A condition-based maintenance policy and inputparameters estimation for deteriorating systems under periodic inspection[J]. Computers andIndustrial Engineering,2011,61(3):503-511.
    [156] Zuo M J, Liu B, Murthy D N P. Replacement-repair policy for multi-state deterioratingproducts under warranty[J]. European Journal of Operational Research,2000,123(3):519-530.
    [157] Tan C M, Raghavan N. A framework to practical predictive maintenance modeling formulti-state systems[J]. Reliability Engineering and System Safety,2008,93(8):1138-1150.
    [158] Lisnianski A, Frenkel I, Khvatskin L, et al. Maintenance contract assessment for agingsystems[J]. Quality and Reliability Engineering International,2008,24(5):519-531.
    [159] Ding Y, Lisnianski A, Frenkel I, et al. Optimal corrective maintenance contract planning foraging multi-state system[J]. Applied Stochastic Models in Business and Industry,2009,25(5):612-631.
    [160] Kim M J, Makis V. Optimal maintenance policy for a multi-state deteriorating system withtwo types of failures under general repair[J]. Computers and Industrial Engineering,2009,57(1):298-303.
    [161] Wu J, Ng T S A, Xie M, et al. Analysis of maintenance policies for finite life-cyclemulti-states systems[J]. Computers and Industrial Engineering,2010,59(4):638-646.
    [162] Soro I W, Nourelfath M, A t-Kadi D. Performance evaluation of multi-state degradedsystems with minimal repairs and imperfect preventive maintenance[J]. ReliabilityEngineering and System Safety,2010,95(2):65-69.
    [163] Huang C C, Yuan J. A two-stage preventive maintenance policy for a multi-statedeterioration system[J]. Reliability Engineering and System Safety,2010,95(11):1255-1260.
    [164] Kurt M, Kharoufeh J P. Monotone optimal replacement policies for a Markoviandeteriorating system in a controllable environment[J]. Operations Research Letters,2010,38(4):273-279.
    [165] Deloux E, Castanier B, Bérenguer C. Environmental information adaptive condition-basedmaintenance policies[J]. Structure and Infrastructure Engineering,2012,8(4):373-382.
    [166] Xiang Y S, Cassady C R, Pohl E A. Optimal maintenance policies for systems subject to aMarkovian operating environment[J]. Computers and Industrial Engineering,2012,62(1):190-197.
    [167] Celen M, Djurdjanovic D. Operation-dependent maintenance scheduling in flexiblemanufacturing systems[J]. CIRP Journal of Manufacturing Science and Technology,2012,5(4):296-308.
    [168]金玉兰.生产系统有限时间区间弹性周期预防性维修策略研究[D].上海:上海交通大学,2009.
    [169] Ding Y, Lisnianski A. Fuzzy universal generating functions for multi-state system reliabilityassessment[J]. Fuzzy Sets and Systems,2008,159(3):307-324.
    [170] Ding Y, Zuo M J, Lisnianski A, et al. Fuzzy multi-state systems: general definitions, andperformance assessment[J]. IEEE Transactions on Reliability,2008,57(4):589-594.
    [171] Liu Y, Huang H Z, Levitin G. Reliability and performance assessment for fuzzy multi-stateelements[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Riskand Reliability,2008,222(4):675-686.
    [172] Griffith W S. Multistate reliability models[J]. Journal of Applied Probability,1980,17(3):735-744.
    [173] Garribba S, Guagnini E, Mussio P. Multistate block diagrams and fault trees[J]. IEEETransactions on Reliability,1985,34(5):463-472.
    [174] Wood A P. Multistate block diagrams and fault trees[J]. IEEE Transactions on Reliability,1985,34(3):236-240.
    [175] Gandini A. Importance&sensitivity analysis in assessing system reliability[J]. IEEETransactions on Reliability,1990,39(1):61-69.
    [176] Aven T. On performance measures for multistate monotone systems[J]. ReliabilityEngineering and System Safety,1993,41(3):259-266.
    [177] Parikh C R, Pont M J, Jones N B. Application of dempster-shafer theory in conditionmonitoring systems: a case study[J]. Pattern Recognition Letters,2001,22(6-7):777-785.
    [178]苗东生.系统科学精要(第3版)[M].北京:中国人民大学出版社,2010.
    [179]曹晋华,程侃.可靠性数学引论[M].北京:高等教育出版社,2006.
    [180]金鸿章,韦琦,郭健.复杂系统的脆性理论及应用[M].西安:西北工业大学出版社,2010.
    [181] Rong P X, Jin H Z, Wei Q. Brittleness research on complex system based on brittle linkentropy[J]. Journal of Marine Science and Application,2006,5(2):51-54.
    [182]金鸿章,李琦,吴红梅.基于脆性因子的复杂系统脆性分析[J].哈尔滨工程大学学报,2005,26(6):739-744.
    [183] Wang Y. Study of supply chain’s brittleness based on the complex system brittle theory[C].Proceedings of2007IEEE International Conference on Grey Systems and IntelligentServices. Washington D. C., USA: IEEE Computer Society,2007:1199-1203.
    [184]荣盘祥.复杂系统脆性理论及其理论框架的研究[D].哈尔滨:哈尔滨工程大学,2006.
    [185]荣盘祥,金鸿章,韦琦,等.基于脆性联系熵的复杂系统特性的研究[J].电机与控制学报,2005,9(2):111-115.
    [186] Nikolaidis E, Ghiocel D M, Singhal S. Engineering design reliability[M]. Washington D. C.:CRC Press,2005.
    [187] Modarres M. Risk analysis in engineering: techniques, tools, and trends[M]. New York:CRC Press,2006.
    [188] Li C Y, Chen X, Yi X S, et al. Interval-valued reliability analysis of multi-state systems[J].IEEE Transactions on Reliability,2011,60(1):323-330.
    [189] Poszgai P, Bertesche B. On the influence of the passive states on the availability ofmechanical systems[C]. In: Bedford&van Gelder, editors. Proceedings of ESREL2003:European Safety and Reliability Conference. Maastricht, Netherlands,2003,1255-1262.
    [190] Singpurwalla N D. Survival in dynamic environments[J]. Statistical Science,1995,10(1):86-103.
    [191] Frangopol D M, Kallen M J, Van Noortwijk J M. Probabilistic models for life-cycleperformance of deteriorating structures: review and future directions[J]. Progress inStructural Engineering and Materials,2004,6(4):197-212.
    [192] Himmelblau D M. Fault detection and diagnosis in chemical and petrochemical process[M].Amsterdam: Elsevier Press,1978.
    [193] Bleakie A, Djurdjanovic D. Feature extraction, condition monitoring, and fault modeling insemiconductor manufacturing systems[J]. Computers in Industry,2013,64(3):203-213.
    [194] Ulmeanu, Anatoli P. Analytical method to determine uncertainty propagation in fault trees bymeans of binary decision diagrams[J]. IEEE Transactions on Reliability,2012,61(1):84-94.
    [195] Markus S, Robert H, Ulrich S. Source identification of plant-wide faults based on k nearestneighbor time delay estimation[J]. Journal of Process Control,2012,22(3):583-598.
    [196]于景元.钱学森关于开放的复杂巨系统的研究[J].系统工程理论与实践,1992,12(5):8-12.
    [197] Xu L, Zhang E, Liu M, et al. Human vibration characteristic and experiment research onman-manchine system in dynamic environment[C]//Proceedings of the9th InternationalConference on Computer-Aided Industrial Design and Conceptual Design: MulticulturalCreation and Design-CAIDCD2008. Piscataway, N. J., USA: IEEE Press,2008:169-174.
    [198]罗一忠,吴爱祥,胡国斌,等.采场人—机—环境系统可靠性模糊综合评价[J].中南大学学报,2006,37(4):804-809.
    [199] Marco A T, Sonia E R. Structural reliability evaluation considering capacity degradationover time[J]. Engineering Structures,2007,29(9):2183-2192.
    [200] Beckera G, Camarinopoulos L, Kabranis D. Dynamic reliability under random shocks[J].Reliability Engineering and System Safety,2002,77(3):239-251.
    [201]王国强.基于任务的数控机床可靠性建模、分析及分配技术研究[D].重庆:重庆大学,2010.
    [202]张根保,柳剑,王国强.基于任务的数控机床模糊可靠性分配方法[J].计算机集成制造系统,2012,18(4):768-774.
    [203] Wang P Z, Sugeno M. The factor fields and background structure for fuzzy subsets[J]. FuzzyMathematics,1982,2(2):45-54.
    [204] Li H X, Wang P Z, Yen V C. Factor spaces theory and its applications to fuzzy informationprocessing.(I). The basics of factor spaces[J]. Fuzzy Sets and Systems,1998,95(2):147-160.
    [205] Wang P Z. A factor spaces approach to knowledge representation[J]. Fuzzy Sets and Systems,1990,36(1):113-124.
    [206]柴杰,江青茵,曹志凯,等.基于因素空间变权理论的工业故障诊断[J].厦门大学学报(自然科学版),2002,41(4):448-452.
    [207]秦永涛,赵丽萍,要义勇.基于脆性理论的复杂加工过程质量动态性能分析[J].计算机集成制造系统,2010,16(10):2240-2249.
    [208] Ding S F, Shi Z Z. Studies on incidence pattern recognition based on information entropy[J].Journal of Information Science,2005,31(6):497-502.
    [209] Dragomir S S. An inequality for logarithmic mapping and applications for the Shannonentropy[J]. Computers and Mathematics with Applications,2003,46(8):1273-1279.
    [210] Amadori A L, Natalini R. Entropy solutions to a strongly degenerate anisotropic convectiondiffusion equation with application to utility theory[J]. Journal of Mathematical Analysis andApplications,2003,284(2):511-531.
    [211] Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal,1948(27):379-429,623-656.
    [212] Sarris C M, Proto A. N. Information entropy and nonlinear semiquantum dynamics[J].International Journal of Bifurcation and Chaos,2009,19(10):3473-3484.
    [213] Chen D, Zhao C. Data-driven fuzzy clustering based on maximum entropy principle andPSO[J]. Expert Systems with Applications,2009,36(1):625-633.
    [214] Rosenblueth E. Point estimates for probability moments[J]. Proceedings of the NationalAcademy of Sciences,1975,72(10):3812-3814.
    [215] Hirschi N W, Frey D D. Cognition and complexity: An experiment on the effect of couplingin parameter design[J]. Research in Engineering Design-Theory Applications and ConcurrentEngineering,2002,13(3):123-131.
    [216]赵克勤.集对分析及其初步应用[M].杭州:浙江科学技术出版社,2000.
    [217] Su M R, Yang Z F, Chen B. Set pair analysis for urban ecosystem health assessment[J].Communications in Non-linear Science and Numerical Simulation,2009,14(4):1773-1780.
    [218]张先迪,李正良.图论及其应用[M].北京:高等教育出版社,2005.
    [219] Dorigo M, Grambardella L M. Ant colony system: A cooperative learning approach to thetraveling salesman problem[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
    [220]涂林.卧式加工中心可靠性试验技术研究[D].重庆:重庆大学,2012.
    [221] Zhou S, Huang Q, Shi J. State space modeling of dimensional variation propagation inmultistage machining process using differential motion vectors[J]. IEEE Transactions onRobotics and Automation,2003,19(2):296-309.
    [222] Dewar M, Kadirkamanathan V. A canonical space-time state space model: state andparameter estimation[J]. IEEE Transactions on Signal Processing,2007,55(10):4862-4869.
    [223] Levitin G. The universal generating function in reliability analysis and optimization[M].London: Springer-Verlag London Limited,2005.
    [224]李春洋,陈循,易晓山,等.基于向量通用生成函数的多性能参数多态系统可靠性分析[J].兵工学报,2010,31(12):28-34.
    [225]周金宇,谢里阳.结构系统可靠性分析的发生函数法[J].中国科学:技术科学,2010,40(2):177-185.
    [226] Utkin L V, Kozine I O. A reliability model of multi-state units under partial information[C].The Third International Conference on Mathematical Methods in Reliability (MMR2002),Trondheim, Norway,2002:643-646.
    [227] Utkin L V. Cautious reliability analysis of multi-state and continuum-state systems based onthe imprecise Dirichlet model[J]. International Journal of Reliability, Quality and SafetyEngineering,2006,13(5):433-453.
    [228]田宏,吴穹.具有不同状态概率表示形式的多态系统可靠性[J].系统工程与电子技术,2004,26(7):994-996.
    [229]田宏,陈宝智,吴穹,等.具有不确定性的多态系统可靠性[J].系统工程与电子技术,2001,23(4):99-102.
    [230]苏永华,何满潮,赵明华,等.基于区间变量的响应面可靠性分析方法[J].岩土工程学报,2005,27(12):1408-1413.
    [231]邱志平.非概率集合理论凸方法及其应用[M].北京:国防工业出版社,2005.
    [232]李春洋.基于多态系统理论的可靠性分析与优化设计方法研究[D].长沙:国防科学技术大学,2010.
    [233]赵明华,蒋冲,曹文贵.基于区间理论的挡土墙稳定性非概率可靠性分析[J].岩土工程学报,2008,30(4):467-472.
    [234] Figueiredo L H, Stolfi J. Affine arithmetic: concepts and applications[J]. NumericalAlgorithms,2004,37(1-4):147-158.
    [235] Degrauwe D, Lombaert G, Roeck G D. Improving interval analysis in finite elementcalculations by means of affine arithmetic[J]. Computers and Structures,2010,88(3-4):247-254.
    [236] Bevilacqua M, Braglia M. The analytic hierarchy process applied to maintenance strategyselection[J]. Reliability Engineering and System Safety,2000,70(1):71-83.
    [237] Mckone K, Wiess E. TPM: planned and autonomous maintenance: bridging the gap betweenpractice and research[J]. Production and Operations Management,1998,7(4):335-351.
    [238]张琦.现代机电设备维修质量管理概论[M].北京:清华大学出版社,北方交通大学出版社,2004.
    [239] Swanson L. Linking maintenance strategies to performance[J]. International Journal ofProduction Economics,2001,70(3):237-244.
    [240] Mechefske C K, Wang Z. Using fuzzy linguistics to select optimum maintenance andcondition monitoring strategies[J]. Mechanical Systems and Signal processing,2003,17(2):305-316.
    [241] Waeyenbergh G, Pintelon L. A framework for maintenance concept development[J].International Journal of Production Economics,2002,77(3):299-313.
    [242] Sharma R K, Kumar D, Kumar P. FLM to select suitable maintenance strategy in processindustries using MISO model[J]. Journal of Quality in Maintenance Engineering,2005,11(4):359-374.
    [243] Badia F G, Berrade M D, Campos C A. Optimal inspection and preventive maintenance ofunits with revealed and unrevealed failures[J]. Reliability Engineering and System Safety,2002,78(2):157-163.
    [244] Mijailovic V. Probabilistic method for planning of maintenance activities of substationcomponent[J]. Electric Power System Research,2003,64(1):53-58.
    [245] Chen M, Feldman R. Optimal replacement policies with minimal repair and age-dependentcosts[J]. European Journal of Operational Research,1997,98(1):75-84.
    [246] Bruns P. Optimal maintenance strategies for systems with partial repair options and withoutassuming bounded costs[J]. European Journal of Operational Research,2002,139(1):146-165.
    [247] Cavory G, Dupas R, Goncalves G. A genetic approach to the scheduling of preventivemaintenance tasks on a single product manufacturing production line[J]. InternationalJournal of Production Economics,2001,74(1-3):135-146.
    [248] Mann L, Saxena A, Knapp G M. Statistical-based or condition-based preventivemaintenance[J]. Journal of Quality in Maintenance Engineering,1995,1(1):46-59.
    [249] Barbera F, Schneider H, Kelle P. A condition based maintenance model with exponentialfailures and fixed inspection interval[J]. The Journal of the Operational Research Society,1996,47(8):1037-1045.
    [250] Sloan T W, Shanthikumar J G. Using in-line equipment condition and yield information formaintenance scheduling and dispatching in semiconductor wafer fabs[J]. IIE Transactions,2002,34(2):191-209.
    [251] Yam R C M, Tse R C M, Li L, et al. Intelligent predictive decision support system forcondition-based maintenance[J]. International Journal of Advanced ManufacturingTechnology,2001,17(5):383-391.
    [252] Wang L, Chu J, Mao W J. A condition-based order-replacement policy for a single-unitsystem[J]. Applied Mathematical Modelling,2008,32(11):2274-2289.
    [253] Al-Najjar B, Alsyouf I. Selecting the most efficient maintenance approach using fuzzymultiple criteria decision making[J]. International Journal of Production Economics,2003,84(1):85-100.
    [254] Mobley R K. An introduction to predictive maintenance, second edition[M]. NewYork:Elsevier science,2002.
    [255] Djurdjanovic D, Lee J, Ni J. Watchdog agent-an infotronics based prognostics approach forproduct performance assessment and prediction[J]. International Journal of AdvancedEngineering Informatics,2003,17(3-4):109-125.
    [256] Engel S J, Gilmartin B J, Bongort K, et al. Prognostics, the real issues involved withpredicting life remaining[C]. IEEE Aerospace Conference Proceedings,2000(6):457-469.
    [257] Liu J, Djurdjanovic D, Ni J, et al. Similarity based method for enhanced prediction ofmanufacturing process performance[C]. In Proceedings of ASME2004InternationalMechanical Engineering Congress and Exposition, Anaheim, California, USA,2004:65-72.
    [258] Pandit S M, Wu S M. Time series and system analysis with applications[M]. Malabar, FL:Krieger Publishing Co.,1993.
    [259] Yu G, Qiu H, Djurdjanovic D, et al. Feature signature prediction of a boring process usingneural network modeling with confidence bounds[J]. The International Journal of AdvancedManufacturing Technology,2006,30(7-8):614-621.
    [260]李常有,徐敏强,郭耸,等.具有混合数据的维修策略决策方法[J].机械工程学报,2008,44(10):32-37.
    [261]徐玖平,吴巍.多属性决策的理论与方法[M].北京:清华大学出版社,2006.
    [262] Saaty T L. The Analytic Hierarchy Process[M]. New York: McGraw Hill,1980.
    [263] Parthasarathy S, Anbazhagan N. Evaluating ERP implementation choices using AHP[J].International Journal of Enterprise Information Systems,2007,3(3):52-65.
    [264] Soota T, Singh H, Mishra R. Defining characteristics for product development using qualityfunction deployment: a case study on Indian bikes[J]. Quality Engineering,2008,20(2):195-208.
    [265]苏为华,陈骥.模糊Borda法的缺陷分析及其改进思路[J].统计研究,2007,24(7):58-64.
    [266] Levner E, Alcaide D, Sicilia J. Multi-attribute text classification using the fuzzy Bordamethod and semantic grades[C]. Conference of the7th International Workshop on FuzzyLogic and Applications, Berlin, Germany: Springer,2007:422-429.
    [267] Holland J. Genetic Algorithms[J]. Scientific American.1992(7):44-50.
    [268] Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameteroptimization problems[J]. Evolutionary Computation,1996,4(1):1-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700