大黄鱼雌核发育的诱导及遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究大黄鱼人工雌核发育诱导条件的优化,对胚胎发育进行连续观察,并利用微卫星标记对雌核发育一代和雌核发育二代的基因纯合度进行分析,通过建立减数分裂型人工雌核发育家系,研究了22个微卫星标记与着丝粒之间的遗传距离。主要结果如下:
     1.大黄鱼人工雌核发育二倍体诱导条件的优化。用不同剂量紫外线辐射过的精子诱导雌核发育,原肠期存活率和孵化率都呈现出明显的Hertwig效应。综合受精率、原肠期存活率、孵化率和初孵仔鱼形态正常率的观测结果,253800μw.cm-2– 406080μw.cm-2是用紫外线进行大黄鱼精子遗传失活的适宜照射剂量。对辐射持续时间、冷休克处理起始时间和持续时间进行3因素3水平正交试验的结果表明,大黄鱼减数分裂型雌核发育二倍体诱导的最适宜条件为紫外线辐射剂量355320μw.cm-2,授精后3 min开始冷休克,休克持续时间为10 min,在此条件下诱导率(形态正常二倍仔鱼的孵化率)可达到20%。
     2.利用微卫星标记分析了大黄鱼雌核发育一代(meio-G1)和雌核发育二代(meio-G2)的杂合度以及减数分裂型雌核发育的近交效应。对普通养殖群体(C)、雌核发育一代群体和雌核发育二代群体的6个微卫星位点进行了分析,共检测到21个等位基因。三群体等位基因数从多到少依次为C(21)>G1(20)>G2(13);雌核发育一代(G1)和二代(G2)的平均观测杂合度(HO)分别为0.195和0.031,均明显低于普通养殖群体(0.494),且G2平均观测杂合度比G1减少了84.1%,G1的实际近交系数为0.605,G2的实际近交系数为0.937。可见人工诱导雌核发育可导致基因快速地纯合,是快速建立大黄鱼遗传纯系的有效途径。
     3.利用筛选出来的22对母本基因型为杂合型的微卫星引物分别对两个减数分裂型雌核发育(meio-gynogenetic)一代家系和正常二倍体对照家系进行遗传分析。结果表明,两个雌核发育家系的雌核发育个体的比例分别为100%和96.9%;在所观察的22个微卫星标记位点中,4个位点的遗传偏离了孟德尔分离比;假设在完全干涉的条件下,余下的18个位点与着丝粒间的距离介于0~50cM之间,平均重组值y为0.586,近交系数为0.414,相当于全同胞近交系数的1.67倍。其中有10个微卫星标记的重组率大于0.667,说明大黄鱼减数分裂型雌核发育一代在这些位点上的等位基因存在高度重组的现象。
In this paper, the conditions of induction of meiotic gynogenetic diploid in large yellow croaker (Pseudosciaena crocea) were optimized and the development of genogenetic hapoid and diploid embryos was observed. The gene homozygosity and inbreeding coefficient of 1st and 2nd generations of meiotic gynogens (meio-G1 and meio-G2) were evaluated by using microsatellite markers. The recombination rates between 22 microsatellite markers and the centromere was analyzed in the induced meio-gynogenetic families. The main results were shown as follows:
     1. The conditions of induction of meiotic gynogenetic diploid in large yellow croaker, including UV radiation dosage for genetically inactivation of sperms, the starting time and duration of cold shock treatment for chrosome set duplication were optimized. Hertwig effects were observed in the survival rate of gastrula embryos and hatchability when eggs fertilized with UV irradiated semen. It was suggested that the appropriate dosage of UV to genetically inactivate sperm of large yellow croaker was 253800μw.cm-2 to 406080μw.cm-2. An orthogonal experiment in three factors and three levels was designed to investigate the effects of irradiation dose, the starting time of cold shock and the duration of cold shock on induced gynogenetic diploid in large yellow croaker. The results showed the hatching rate of genogenetic diploid with highest of 20% when the egg inseminated with semen irradiated with UV for 355320μw .cm-2, and cold shocked for 10 min started at 3 min post insemination.
     2. The variation of heterozygosity (H) and inbreeding effects in meio-G1 and meio-G2 were analyzed by using micromsatellites. Six micromsatellite loci were investigated in common cultured stock (C), meio-G1 and meio-G2. A total of 21 different alleles were found in all the 6 loci in the present study. Among the 3 population, the number of alleles were ranged from C (21) > meio-G1 (20) > meio-G2 (13). The average observed heterozygosity (Ho) of the meio-G1 and meio-G2 populations were 0.195 and 0.031, respectively, significantly less than that in C (0.494), and the Ho of meio-G2 was decreased 84.1% comparing to meio-G1. The observed inbreeding coefficient of the meio-G1 and meio-G2 population reached 0.605 and 0.937, respectively. This results suggest that gynogenesis is an effective method to pure the genome and useful for quickly establishing pure-lines in aquaculture.
     3. Twenty-two microsatellite (MS) loci which were demonstrated heterozygous in the female parents were used to evaluate the inheritance in two meio-G1 families and their control families of normal diploid. Four of the 22 microsatellite loci were deviated significantly from Mendelian expectations, and the other 18 loci were observed followed the Mendelian’s segregation. The recombination rates (y) were ranged from 0 to 1.0 with an average y value of 0.586 in the 18 loci, corresponding to a fixation index of 0.414, which showed 1.67 times comparing to full-sib inbreeding. The map distances between MS loci and centromere from 0 to 50cM under the assumption of complete interference for these 18 loci. Among which, 10 loci showed high M-C recombination with frequency more than 0.667. The results indicated that high recombination existed in the meio- G1.
引文
[1] 朱元鼎,伍汉霖.福建鱼类志(下卷)[M].福州:福建科技出版社,1985.101-136.
    [2] 楼允东.鱼类育种学.[M].北京:中国农业出版社,2001,153-194
    [3] Thorgaard G H, Allen Jr S K. Chromosome manipulation and markers in fishery management. [A]. In: Ryman N, Utter F (eds) Population genetics and fishery management.Washington University Press, Seattle and London, pp 319-331
    [4] Ihssen P E, McKay L R, McMillan I, et al., Ploidy manipulation and gynogenesis in fishes: cytogenetic and fisheries application[J]. Trans Am Fish Soc,1990, 119:698-717.
    [5] 楼允东. 人工雌核发育及其在遗传学和水产养殖上的应用[J]. 水产学报,1986,10(1):111-123
    [6] Lin F, Dabtowski K. Effect of sperm irradiantion and heat shock on induction of gynogenesis in muskellunge (Esox masquinongy) [J] . Can J Fish Aquat Sci,1996, 53:2067-2075
    [7] Felip A, Pifferrer F A, Carrillo M, et al., The relationship bwtween the effect of UV light and thermal shock on gametes and the viablility of early developmental stages in a marine teleost fish, the sea bass(Dicentrarchus labrax L.) [J]. J.Here, 1999, 83:387-397
    [8] Pongthana N, Penman D J, Baoprasertkul P, et al., Monosex femaleproduction in the silver barb (Puntius gonionotus Bleeker) [J]. Aquaculture, 1999, 173: 247-256
    [9] Piferrer F,Cal R,Castora G,et al., Induction of gynogenesis in the turbot (Scophthalmus maximus):Effects of UV irradiation on sperm motility,the Hertwig effect and viability during the first 6 months of age[J].Aquaculture,2004,238:403-419
    [10] Felip A. Induction of triploid and gynogenesis in teleost fish with emphasis on marine species[J]. Genetica, 2001, 111:175-195.
    [11] Edwige Q. Analysis of the production of all homozygous lines of rainbow trout by gynogenesis[J]. J Expe Zool., 1999, 257:367-374.
    [12] Streisingor G,Walker C H,Dower N, et al., Production of clone of homozygous diploid zebrafish (Braxhydanio rerio) [J]. Nature, 1981, 291:293-296.
    [13] Hussain M G, Penman D J, et al., Production of heterozygous and homozygous clones in Nile tilapia[J]. Aquaculture Int, 1998, 6:197-205.
    [14] Komen J, Bongers A B J, Richter C J J, et al., Gynogenesis in common carp II:the production of homozygous gynogenetic clone and F1 hybrids[J]. Aquaculture, 1991,92: 127-142.
    [15] Naruse, K. The production of cloned fish in the medaka (Oryzias latipes) [J]. J Exp Zool.,1985, 236: 335-341.
    [16] Tabata K, Gorie S. Induction of gynogenesis diploids in Paralichthys olivaceus by suppression of the 1' cleavage with special reference to their survival and growth [J]. Nippon Suisan Gakkaishi, 1988, 54:1483-149.
    [17] Paschos I, Natsis L, Nathanailides C, et al., Induction of Gynogenesis and Androgenesis in Goldfish Carassius auratus (var. oranda) [J]. Reproduction in Domestic Animals ,2001, 36(3-4): 195
    [18] Galbusera P. Gynogenesis in African catfish Clarias gariepinus (Burchel1,1822)III. Induction of endomitosis and the presence of residual genetic variation[J]. Aquaculture, 2000, 185:25-42.
    [19] Varadi L L. Induction of diploid gynogenesis using interspectific sperm and production of tetraploids in African catfish, Clarias gariepinus Burchell(1822) [J]. Aquaculture, 1999, 73: 401-411.
    [20] 朱洗,王幽兰,镣国江. 世界上第一只无父的母蟾蜍产卵传种[J]. 科学通报,1961,4:50-50
    [21] 杨永铨. 人工诱发鱼类雌核发育的实验研究[J]. 淡水渔业,1981,4:1-4
    [22] 吴仲庆. 泽蛙雌核生殖单倍体产生过程的细胞学研究[J]. 动物学报,1983,29(4):295-299
    [23] Allen S K. Flow cytotometry: assaying experimental polyploidy fish and sellfish[J]. Aquaculture, 1983, 33: 317-328.
    [24] 叶玉珍, 吴清江.草鱼和鲤杂交的细胞学研究一鱼类远缘杂交核质不同步现象[J].水生生物学报,1989, 13(3): 234-239.
    [25] 邓岳松.草鱼人工雌核发育“受精”细胞学研究[D].湖南师范大学硕士论文,1997, pp26-35.
    [26] 吴清江,陈德荣,叶玉珍. 鲤鱼人工雌核发育及其作为建立近交系新途径的研究[J].遗传学报,1981,8(1):50-55.
    [27] 罗琛,刘筠.人工诱导草鱼和鲫鱼雌核发育的研究[J].湖南师范大学自然科学学报,1991,14(2): 154-159.
    [28] 刘静,尤锋,王新成,等. 人工诱导雌核发育牙鲆的染色体核型证明[J]. 海洋与湖沼,1991, 30 (1): 68-72.
    [29] Sugama K,Taniguchi N, Seki S. Survival ,growth and development of triploid red sea bream,Pagrus major(Temromck et Schlegel):Use of allozynme markers for ploidy and family identification[J]. Aqua Fish Manag, 1992,23:149-159.
    [30] 肖亚梅, 罗琛. 雌核发育草鱼同工酶分析[J].激光生物学报,2004,13(1):74-77.
    [31] 邱芳, 伏健民. 遗传多样性的分子检测[J]. 生物多样性,1998, 6(2):143-150.
    [32] Chen H. Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carssius aruatus gibelio) [J]. Biochemical Genetics, 1995, 33(9-10): 297-306.
    [33] Liu Z P. Random amplified polymorphic DNA markers:usefulness for gene mapping and analysis of genetic variation of catdish[J]. Aquaculture, 1999, 174: 59-68.
    [34] Felip A. AFLP analysis confirms exclusive maternal genomic contribution of meiogynogenetic sea bass (Dientrarchus labrax L) [J]. Mar.Biotech, 1991, 2: 301-306.
    [35] Peruzzi S. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: relative dfficiency of methods and parental variability[J]. Aquaculture, 2000, 189: 23-37.
    [36] Oppermann K. Die entwicklung von forelleneiern nach, Befruchtung mit radiumstrahlten Samenfaden[J]. Arch Mikrosk Anat , 1913 , 83 :141-189.
    [37] Recoubratsky A V, Grunina A S, Barmintsev V A,et al., Meiotic gynogenesis in the Stellate and Russian sturgeons and sterlet[J]. Russian Journal of Developmental Biology, 2003, 34 (2 ): 92-101.
    [38] Mims S D,Shelton W L. Induced meiotic gynogenesis in shovelnose sturgeon[J]. Aquaculture Int., 1998, 6(5) :323-329.
    [39] Lou Y D, Purdom C E. Diploid gynogenesis induced by hydrostatic pressure in rainbow trout, Salmo gairdneri Richardson[J]. Fish Biology,1984, 24 (6): 665-670.
    [40] Chourrout D,Quillet E. Induced gynogenesis in the rainbow trout: Sex and survival of progenies production of all-triploid populations[J]. TAG, 1982, 62:201-205.
    [41] Nagy A ,Rajki K, Horvath L, et al., Investigation on carp, Cyprinus carpio L. gynogenesis[J]. Fish Biology, 1978, 13 (2), 215-224.
    [42] Cherfas N B, Studies on diploid gynogenesis in common carp. I.Experiments on the mass production of diploid gynogenetic progeny[J].Genetics (Moscow) 1975,11, 78-86.
    [43] 夏德全,吴婷婷,等. 人工诱导白鲢(hypophthalmichthys molitrix)雌核发育及性转[J]. 发育与生殖生物学报(英文版),2000, 9(2):31-36.
    [44] Purdom C E. Induced polyploidy in plaice(Plenroneetidae platessa)and its hybrid with the flounder(Platichthys flesus)[J].J Hered.,1972,29(1):11-24.
    [45] Gomelsky B., Cherfas N B, Gissis A,et al., Induced diploid gynogenesis in white bass[J]. Prog Fish Cult, 1998, 60: 288-292.
    [46] Peruzzia S, Chatain B. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: relative efficiency of methods and parental variability[J]. Aquaculture, 2000, 189(1-2) : 23-37.
    [47] Gomelsky B, Mims S D, Onders R J. Induced Gynogenesis in Black Crappie[J]. North American Journal of Aquaculture ,2000, 62:33-41.
    [48] Volckaert F A,Haute V, Galbusera C, et al., Gynogenesis in the African catfish, Clarias gariepinus (Burchell, 1822). Optimizing the induction of polar-body gynogenesis with combined pressure and temperature shocks[J]. Aquac Res., 1997, 28 (5) :329-334 [49 ] Rinchard J, Garcia-Abiado M A, Dabrowski K, et al., Induction of gynogenesis and gonad development in the muskellunge[J]. Fish Biology, 2002, 60(2) : 427-441.
    [50] 吴萍.我国鱼类雌核发育研究的进展及前景[J]. 上海水产大学学报,2004,13(3):255-260.
    [51] 吴清江,叶玉珍,陈德荣,柯鸿文.鲤鱼人工雌核发育及其作为建立近交系新途径的研究[J].遗传学报,1981,8(1):50-55
    [52] Streinger G, WalkerC,Dower N,et al., Production of clones of homozygous diploid fish(Brachydanio rerio) [J].Nature,1981,291:293-296.
    [53] 王军,全成干,苏永全,等. 官井洋野生与养殖大黄鱼同工酶的研究[J]. 海洋科学,2001,6:39-41.
    [54] 全干成,王军,丁少雄,等. 大黄鱼养殖群体遗传多样性的同工酶研究[J]. 厦门大学学报,1999,38 (4) :584-588.
    [55] 李明云,张海琪,薛良义,等. 网箱养殖大黄鱼遗传多样性的同工酶和 RAPD 分析[J].中国水产科学,2003,10(6):523-525.
    [56] 李明云,张海琪,竺俊全,等. 象山港养殖大黄鱼同工酶的分析[J]. 海洋学报,2002,25(2):231-236.
    [57] 王志勇,王艺磊,林利民,等. 福建官井洋大黄鱼 AFLP 指纹多态性的研究[J].中国水产科学,2002,(3):198-202.
    [58] 王晓清,王志勇,柳小春,等. 大黄鱼人工诱导雌核发育后代的微卫星标记分析[J]. 遗传2006,28(7):831-837.
    [59] 王晓清,王志勇,柳小春等. 人工雌核发育大黄鱼(Pseudosciaena crocea)的 AFLP 分析[J]. 海洋与湖沼. 2007,38(1):22-28
    [60] Xie FJ, Wang ZY, Liu JF. Induction of diploid gynogenesis in large yellow croaker, Pseudosciaena crocea. Program & Abstracts of the 4th Marine Biology and Biotechnology Symposium. April 21-25, 2004, Hong Kong. p.118
    [61] 陈晓峰,王德祥,王军. 大黄鱼雌核发育技术的初步研究. 中国海洋湖沼学会鱼类学分会、中国动物学会鱼类学分会 2004 年学术研讨会摘要汇编,2004.
    [62] 许建和,尤锋,吴雄飞,等. 大黄鱼雌核发育二倍体的人工诱导[J]. 海洋科学,2006,30(12):37-42
    [63] 王德祥,苏永全,王世锋,等. 异源精子诱导大黄鱼雌核发育的研究[J].高科技通讯,2006, 16(11):1206-1210.
    [64] 汪桂玲,王建军,李家乐. 太平洋牡蛎微卫星引物对三角帆蚌的适用性研究[J]. 水产学报,2006,30(1):15-20
    [65] MaybK, Rueger C C,Kincaid H L.Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus[J].Can J Fish Aquat Sci,1997,54:1542-1547
    [66] 林凯东,罗琛. 鲤鱼微卫星引物对草鱼基因组分析适用性的初步研究[J]. 激光生物学报, 2003,12(2):121-127
    [67] 全迎春,梁力群,孙效文,等. 斑马鱼微卫星分子标记检测鲤鱼种间多样性[J]. 中国水产科学, 2006,13(2):300-304
    [68] 梁利群,常玉梅,董崇智,等.微卫星 DNA 标记对乌苏里江哲罗鱼遗传多样性的分析[J].水产学报,2004,28(3):241-244
    [69] Messier W,Li S,Stewart C.The birth of microsatellites[J].Natare,1996,381:483-483.
    [70] Li Y C, Korol A B, Fahima T, et al., Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review[J]. Mol Ecol., 2002,11:2453-2465
    [71] Goff D J, Galvin K, Katz H, et al., Identification of polymorphic simple sequence repeats in the genome of the zebrafish[J]. Genomics, 1992, 14: 200-202. [ 72 ] Shimoda N, Knapik E W, John Z, et al., Zebrafish genetic map with 2000 microsatellite markers[J].Genomics, 1999, 58: 219-232.
    [73] Crooijmans R, Bierbooms V, Komen J. Microsatellite markers in common carp (Cyrinusc arpio L .) [J]. Animal Genetics, 1997, 28 :129-134.
    [74] Carleton K L ,Streelman J T ,L ee B Y , et al., Rapid isolation of CA microsatellites from the tilapia genome[J]. Anim Genet, 2002, 33 (2): 140-144.
    [75] Sekino M, Hrara M. Isolation and characterization microsatel6te DNA loci in Japan flounder Paratichthys olivaceus[J]. Mol Ecol., 2000, 9:2201-2203.
    [76] Pardo G B, Casas L, Fortes G G, et al., New microsatellite markers in turbot (Scophthalmus maximus) derived from an enriched genomic library and sequence databases[J]. Mol Ecol Notes, 2005, 5 (1): 62 -64.
    [77] Hoarau G,Cook D, Stam W T, et al., New microsatellite primers for plaice Pleuronectes platesso L .(Teleostei:Pleuronectidae) [J]. Mol Ecol Notes, 2002,2 (1): 60 -61.
    [78] Ortega-Villaizan Romo M , Nakajima M ,Taniguchi N . Isolation and characterization of microsatellite DNA markers in the rare species barfin flounder (Verasper moseri) and its closely related species spoted halibut(V. variegatus) [J]. Mol Ecol Notes, 2003,3: 629-631.
    [79] Rodriguez F, Rexroad C E, Palti Y. Characterization of twenty-four microsatellite markers for rainbow trout(Oncorhymchus mykiss) [J]. Mol Ecol Notes, 2003,3 (4 ):619-622.
    [80] McGowan R , Davidson E A ,Woram R A , et al.,Ten polymorphic microsatelite markers from Arctic charr (Salvelinus alpinus):linkage analysis and amplification in other salmonids[J]. Anim Genet, 2004, 35 (6):479-481.
    [81] King T L, Eackles M S, Letcher B H. Microsatellite DNA markers for the study of Atlantic salmon ( Salmo solar) kinship, population structure, and mixed-fishery analyses[J]. Mol Ecol Notes, 2005,5 (1):130-132.
    [82] Tan G,Karsi A ,Li P, et al., Polymorphic microsatellite markers in Ictalurus punctatus and related catfish species[J]. Mol Ecol, 1999: 8(10),1758-1760.
    [83] Garciade Leon F J, Dallas J F, Chatain B , et al., Development and use of microsatellite markers in sea bass Dicentrarchus labras( Linnaeus,1758) [J].Mol marine boil biotechnol, 1995, 4(1): 62 -68.
    [84] Barinova A A, Kumagai K, Nakajima M, et al., Identification and characterization of microsatellite DNA markers developed in threeline grunt Parapristipoma trilneatum[J]. Fish Genet Breed Sci, 2002,32 :27 -32.
    [85] Takagi M, Taniguchi N,Cook D, et al., Isolation and characterization of microsatellite loci from red sea bream pagrus major and detection in closely related species[J]. Fisheries sci, 1997, 63 : 199-204.
    [86] Guo W, Wang Z Y, Wang Y L,et al.,Isolation of microsatellite markers in large yellow croaker by using FIASCO method. Program & Abstracts of the 4th Marine Biology and Biotechnology Symposium. April 21-25, 2004, Hong Kong. pp. 132.
    [87] Spruell P, Hemmingsen A R, Howell P J, et al., Conservation genetics of bull trout:Geographic distribution of variation at microsatellite loci[J]. Conservation Genetics, 2003, 4:17-29.
    [88] Powell W, Morgante M, Andre C, et al., The comparison of RFLP, RAPD, AFLP and SSR(microsatellite) makers for germplasmanalysia[J]. Mol Breed, 1996, 12: 225-238.
    [89] Russell J R,Fuller J D, Macaulay M, et al., Direct comparison of levels of genetic variation among barley accessions detected by RFLPs AFLPs SSRs and RAPDs[J]. Theor Appl Genet, 1997, 95:714-722.
    [90] Young W P,Wheeler P A,Coryell V H, et al., A detailed linkage map of rainbow trout produced using doubled haploids[J]. Genetics,1998,148:839-850.
    [91] Shimoda N, Knapid E W, Ziniti J, et al., Zebrafish genetic map with 2000 microsatellite markers[J]. Genomics,1999, 58:219-232
    [92] Waldbieser G C, Bosworth B G, Nonneman D J, et al., A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus[J]. Genetics, 2001, 158:727-734
    [93] 孙效文, 梁利群.鲤鱼的遗传连锁图谱[J].中国水产科学, 2000, 7(1):1-5
    [94] 王伟,尤锋,高天翔等. 鱼类微卫星标记的研究进展[J].海洋科学,2006,30(10:81-86
    [95] 鲁双庆,刘臻,刘红玉等. 鲫鱼 4 群体基因组 DNA 遗传多样性及亲缘关系的微卫星分析[J]. 中国水产科学, 2005,12(4):371-376
    [96] 梁俊,李道季,卢莉琼. 日本鳗鲡 (Anguilla japonica)和欧洲鳗鲡 (A. anguilla)的微卫星差异[J]. 海洋与湖沼,2003,34(4):414-421
    [97] Hauser L, Adcock G J, Smith P J, et al., Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus) [J]. Proceedings of the National Academy of Sciences of the USA, 2002, 99:11742-11747.
    [98] Banks M A. Isolation and Inheritance of Novel Microsatellites in Chinooksa lmon[J]. J Here., 1999, 90(2):281-288.
    [99] Guo W, Wang Z Y, Wang Y L, et al., Isolation and characterization of six microsatellite markers in the large yellow croaker (Pseudosciaena crocea Richardson) [J]. Mol Ecol Notes, 2005, 5:369-371.
    [100] An H S,Cho K C,Park J Y. Eleven new highly polymorphic microsatellite loci in the yellow croaker, Pseudosciaena crocea[J]. Mol Ecol Notes, 2005, 5: 866-868.
    [101] 林能锋,徐斌福,曾红. PCR 法筛选大黄鱼微卫星 DNA[J]. 福建畜牧兽医,2005,27(2):7-8
    [102] 郝君,孙效文,梁利群,等. 大黄鱼微卫星标记的富集与筛选[J].中国水产科学,2006,13(5):762-766.
    [103] 丁少雄. 分子标记在大黄鱼(P.crocea)遗传育种及石首鱼科(Sciaenidae)分子系统进化研究中的应用[D]. 厦门大学博士论文,2001.
    [104] Guo W, Wang Z Y, Wang Y L, et al., Isolation and characterization of microsatellite loci in wild and cultured large yellow croaker (Pseudosciaena crocea Richardson). Abstract of 13th International Congress on Genes, Gen Families and Isozymes & 2005, Forum on Fisheries Science and Technology. September 17-21, 2005, Shanghai, China. p.46-47
    [105] Xiao Z Q, Wang Z Y, Lin L M, et al., Microsatellite analyses of the genetic structure of large yellow croaker (Pseudosciaena crocea) along coast of China[J]. In publish.
    [106] Ning Y, Liu X D, Zhi Y W, et al., A genetic map of large yellow croaker Pseudosciaena crocea[J]. Aquaculture, 2007, 264 (1): 16-26
    [107] Vrijenhoek R C. Unisexual fish: model systems for studying ecology and evolution[J]. Ann Rev Ecold Syst, 1994, 25:71-96.
    [108] Cherfas N, Gomelsky B, Ben-Dom N, et al., Evidence for the heritable nature of spontaneous diploidization in common carp, Cyprinus carpio L., eggs[J]. Aquac Res, 1995, 26:289-292.
    [109] Cherfas N B, Rothbard S, Hulata G, et al., Spontaneous diploidization of maternal chromosome set in ornamental (koi) carp, Cyprinus carpio L[J]. J App Ichth, 1991, 7:72-77.
    [110] Thorgaard G H, Gall G A E. Adult triploids in a rainbow trout family[J]. Genetics, 1979, 93: 961-973.
    [111] Flajshans M, Kvasnicka P, Rab P. Genetic studies in tench (Tinca tinca L. ): high incidence of spontaneous triploidy[J]. Aquaculture, 1993, 110:243-248.
    [112] 张海发,陈相麟. 异源精子激发彭泽鲫雌核发育产生的子一代及亲本 RAPD 分析[J].应用与环境生物学报,1999,5(5):507-511
    [113] 滕春波,孙孝文. 利用异源精子激发雌核发育的银鲫及亲本的 RAPD 分析[J]. 水产学报,1999,23(4):420-423
    [114] Felip A, Piferrer F, Carrillo M, et al., The relationship between the effects of UV light and thermal shock on gametes and the viability of early developmental stages in a marine teleost fish, the sea bass (Dicentrarchus labrax L.) [J]. J Hered., 1999, 83: 387-397.
    [148] 王军,王德祥,尤颖哲,等. 大黄鱼三倍体诱导的初步研究[J].厦门大学学报(自然科学版), 2001,40(4):927-930.,
    [116] 孙远东,张纯,刘少军等. 人工诱导日本白鲫[J]. 遗传学报,2006,33(5):405-412
    [117] 孙远东,陶敏,刘少军等. 用团头鲂精子诱导红鲫雌核发育的研究[J]. 自然科学进展,2006,16(12):1633-1638
    [118] 杨永铨.人工诱导鱼类雌核发育的实验研究[J].淡水渔业,1981,4:1-4.
    [119] 徐连伟, 贾忠贺, 王炳谦. 利用紫外线辐射遗传失活精子诱导虹鳟雌核发育[J]. 水产学杂志,2006,19(1):14-19
    [120] Chourrout1 D. and Quillet E. Induced gynogenesis in the rainbow trout: Sex and survival of progenies production of all-triploid populations[J]. Theor Appl Genet, 1982,63(3):201-205
    [121] 李胜忠, 陈琳. 热休克诱导虹鳟二倍体雌核发育[J]. 动物学杂志, 1997,32(5):7-9
    [122] 戈文龙, 张全启, 齐洁等. 异缘精子诱导牙鲆雌核发育二倍体[J]. 中国海洋大学学报,2005,35(6):1011-1016
    [123] 王伟, 尤锋, 高天翔,张培军. 人工诱导牙鲆雌核发育群体的微卫星标记分析[J]. 高技术通讯, 2005,15(7):107-110
    [124] 朱晓琛, 刘海金, 孙效文等. 微卫星评价牙鲆雌核发育二倍体纯合性[J]. 动物学研究, 2006,27(1):63-67
    [125] Don J and Avtalion R R. Production of F1 and F2 diploid gynogenetic tilapias and nalysis of the “Hertwig curve” obtained using ultraviolet irradiated sperm[J]. Theor Appl Genet.1988,76(2):253-259
    [126] Tabata T.Studies on chromosome manipulation in hirame Paralichthys livaceus[J].Fish Genetics and Breeding Science,1992,13:9-18.
    [127] Flajshans M, Kvasnicka P, Rab P. Genetic studies in tench (Tinca tinca L. ): high incidence of spontaneous triploidy[J]. Aquaculture, 1993, 110:243-248.
    [128] Gomelsky B., Cherfas N B, Gissis A, et al. Induced diploid gynogenesis in white bass[J]. Prog Fish Cult, 1998, 60: 288-292
    [129] 张梅芬,吴美锡,丁汉搏. 泥鳅雌核生殖单倍体胚胎发育的研究[J].动物学研究,1993,14(4):361-366.
    [130] Purdom C E. Radiation induced gynogenesis and androgenesis in fish[J]. J Hered., 1969, 24: 431-444.
    [131] 吴仲庆.单套染色体在泽蛙雌核单倍体发育中的作用[J].动物学报, 1985,31(1):28-32.
    [132] 赵振山,吴清江,高贵芹,等. 大鳞副泥鳅雄核发育单倍体胚胎的研究[J].动物学研究,1999,20(3):230-234.
    [133] 吴清江,桂建芳等著. 鱼类遗传育种工程. [M].上海科学技术出版社 1999, pp84-110
    [134] Recoubratsky A V, Gomelsky B I, Emelyanova O V, Pankratyeva E V. Triploid common carp produced by heat shock with industrial fish-farm technology[J]. Aquaculture,1992, 108:13-19.
    [135] 曾呈奎,相建海. 海洋生物技术[M].山东科学技术出版社,1998.
    [136] 刘静霞,周莉,赵振山,桂建芳.锦鲤 4 个人工雌核发育家系的微卫星标记研究[J].动物学研究,2002,23(2):97-105.
    [137] Castro J, Bouza C, Samchez L, et a1.Gynogenesis assessment using microsatellite genetic markers in Turbot(Scophthalmus maximus) [J].Mar Biotechno1,2003,5:584-592
    [138] 刘静霞,周莉,魏丽华,等.红白锦鲤人工雌核发育纯系的微卫星标记分析[J].水生生物学报,2003,27(6):557-562
    [139] 董仕,谷口顺彦.微卫星 DNA 鉴别克隆香鱼[J].水产学报,2003,27(4):295-299
    [140] Pahi Y, Shirak A, Cnaani A, et a1.Detection of genes with deleterious alleles in an inbred line of tilapia(Oreochromiss aureus) [J].Aquaculture1, 2002,206:151-164
    [141] Morishima K, Nakayama I, Arai K, et a1.Microsatellite-centromere mapping in the loach, Misgurnus anguillicaudatus[J].Genetica,200l,lll:59-69
    [142] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics,1978,89:583-590.
    [143] 张天时,刘萍,李健,等. 用微卫星 DNA 技术对中国对虾人工选育群体遗传多样性的研究[J]. 水产学报,2005,29(1):6-12.
    [144] 王伟. 微卫星遗传标记在牙鲆群体遗传学和人工诱导雌核发育群体遗传变异分析中的应用.[D].2005, pp38-39
    [145] 马大勇,胡红浪,孔杰. 近交及其对水产养殖的影响[J]. 水产学报,2005, 29(5):849-856.
    [146] Curik I,Zechner P,Sǒlkner J, et al., Inbreeding,microsatellite heterozygosity,and morphological traits in Lipizzan horses[J]. J Hered.,2003, 94:125-132.
    [147] 李思发, 杨怀宇, 邹曙明. 快速近交对团头鲂遗传结构的影响和近交效应的估算[J]. 水产学报,2005,29(2):161-165.
    [148] 储明星(译).数量遗传学导论(第四版)[M]. 北京:中国农业出版社. 2000,pp194.
    [149] Sing C F,Berwer G J,Thirtle B. Inherited biochemical vailation in Drosophila melanogafief, noise or signal, I Single locus analyses[J]. Genetics,1973, 75: 381-404.
    [150] Tave D. Inbreeding and brood stock management[J].Rome: FAO, 1999.
    [151] Streisinger G, Singer F, Walker C, et al., Segregation analysis and gene-centromere distance in zebrafish[J]. Genetics,1986, 112: 311-319.
    [152] Thorgaard G H, Allendorf F W, Knudsen K L. Genecentromere mapping in rainbow trout: high interference over long map distance[J]. Genetics,1983, 103: 771-783.
    [153] Guyomard R. High level of residual heterozygosity in gynogenetic rainbow trout, Salmo gairdneri, Richardson[J]. Theor Appl Genet,1984,67: 307-316.
    [154] Thompson D, Scott A P. An analysis recombination data in gynogenetic diploid rainbow trout[J]. J Hered.,1984,53: 441-452.
    [155] Allendorf F W, Seeb J E, Knudsen K L, et al., Gene-centromere mapping of 25 loci in rainbow trout[J]. J Hered, 1986,77: 307-312.
    [156] Matsuoka M P ,Gharrett A J , Wilmot R L , et al., Gene–Centromere Distances of Allozyme loci in Even- and Odd-year Pink Salmon, (Oncorhynchus gorbuscha) [J].Genetica,2004,121:1-11.
    [157] Taniguchi N, Kijima A, Fukai J. High heterozygosity at Gpi-1 in gynogenetic diploids and triploids of ayu Plecoglossus altivelis[J]. Nipon Suisan Gakkaishi,1987, 53: 717-720.
    [158] Taniguchi N, Seki S, Fukai J, et al., Induction of two types of gynogenetic diploids by hydrostatic pressure shock and verification by genetic marker in ayu[J]. Nippon Suisan Gakkaishi, 1988, 54: 1483-1491.
    [159] Naruse K, Shima A. Linkage relationships of gene loci in the Medaka, Oryzias latipes (Pisces: Oryziatidae), determined by backcrosses and gynogenesis[J]. Biochem. Genet,1989,27: 183-198.
    [160] Liu Q, Goudie C A, Simco B A, et al., Gene-centromere mapping of six enzyme loci in gynogenetic channel catfish[J]. J Hered, 1992, 83: 245-248.
    [161] Suwa M, Arai K, Suzuki R. Suppression of the first cleavage and cytogeneticx studies on the gynogenetic loach[J]. Fisheries. Sci, 1994, 60: 673-681.
    [162] Estoup A, Presa P, Krieg F, et al., (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout) [J]. J Hered., 1993, 71: 488-496.
    [163] Sakamoto T, Danzmann R G,Gharbi K, et al., A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates[J]. Genetics, 2000, 155: 1331-1345.
    [164] Kauffman E J, Gestl E E, Kim D J, et al., Microsatellite–centromere mapping in the zebrafish (Danio rerio) [J]. Genomics, 1995, 30:337-341.
    [165] Aliah R S, Taniguchi N. Gene-centromere distance of six microsatellite DNA loci in gynogenetic nishikigoi (Cyprinus carpio) [J]. Suisan-Ikushu (Fish Genet. Breed Sci.) ,2000, 29: 113-119.
    [166] Morishima K, Nakayama I , Arai K. Microsatellite-centromere mapping in the loach, Misgurnus anguillicaudatus[J]. Genetica, 2001, 111: 59-69.
    [167] Nomura K, Morishima K , Tanaka H ,et al., Microsatellite–centromere mapping in the Japanese eel (Anguilla japonica) by half-tetrad analysis using induced triploid families[J].Aquaculture, 2006, 257:53-67.
    [168] Lindner K R, Seeb J E,Habicht C, et al., Gene–centromere mapping of 312 loci in pink salmon by half-tetrad analysis[J]. Genome, 2000, 43:538-549.
    [169] Allendorf F W, Seeb J E, Knudsen K L, et al., Gene-centromere mapping of 25 loci in rainbow trout[J]. J Hered., 1986,77: 307-312.
    [170] Komen J. Clones of common carp: new perspectives in fish research. Ph.D. thesis, Agricultural University of Wageningen, The Netherlands.1990
    [171] Hussain M G, McAndrew B J, Penman D J, et al., Estimating gene-centromere recombination frequencies in gynogenetic diploids of Oreochromis niloticus L., using allozymes, skin colour and a putative sex-determining locus (SDL-2) [A]. In A. Beaumont (ed.). Genetics and Evolution of Aquatic Organisms, Chapman and Hall. 1994, pp502-509.
    [172] Kauffman E J, Gestl E E,Kim D J, et al., Microsatellite–centromere mapping in the zebrafish (Danio rerio) [J]. Genomics,1995,30:337-341.
    [173] Morishima K, Nakayama I, Arai K. Microsatellite–centromere mapping in the loach, Misgrunus anguillicaudatus[J]. Genetica ,2001,111:59-69.
    [174] Matsuoka M P, Gharrett A J, Wimot R L, et al., Gene–centromere distances of allozyme loci in even- and oddyear pink salmon, (Oncorhynchus gorbuscha) [J]. Genetica,2004,121:1-11.
    [175] Kauffman E J, Gestl E E, Kim D J, et al., Microsatellite–centromere mapping in the zebrafish (Danio rerio) [J]. Genomics,1995,30:337-341.
    [176] Johnson S L, Africa D, Horne S, et al., Half-tetrad analysis in zebrafish: mapping the ros mutation and the centromere of linkage group I[J]. Genetics , 1995,139: 1727-1735.
    [177] Johnson S L, Gates M A, Johnson M, et al.,Centromere-linkage analysis and consolidation of zebrafish genetic map[J]. Genetics ,1996,142: 1277-1288.
    [178] 全成干,王军,丁少雄,等. 大黄鱼染色体核型研究[J]. 厦门大学学报(自然科学版),2000,39 (1):107-110.
    [179] 郭文久.微卫星在基因组上的分布与功能及其计算方法初步研究[D].四川农业大学博士学位论文.2004.
    [180] Wright S. The genetical structure of populations[J]. Ann Eugenics, 1951, 15:323-354
    [181] Wright S. The interpretation of population structure by F-statistics with special regards to systems of mating[J]. Evolution, 1965,19:395-420
    [182] Allendorf F W, Leary R F. Heterozygosity in gynogenetic diploids and triploids estimated by gene-centromere recombination rates[J]. Aquaculture, 1984,43, 413-420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700