含氮黄芩素衍生物抗肿瘤活性及作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄芩素具有低毒高效,资源丰富,药材来源方便,价格低廉等优点,近年来研究表明其具有抗氧化、抗病毒、抗菌、抗炎和镇静等功效,并有广泛的抗肿瘤活性,因此具有良好的开发前景。但是黄芩素溶解性差、生物利用度低,限制了其临床应用。近年来,随着对肿瘤分子机制更加深刻的研究,细胞周期调控理论取得了令人瞩目的成就,CDK抑制剂也成为研究的热点,但目前还没有一个CDK抑制剂真正应用于临床。大连理工大学精细化工国家重点实验室以黄芩素为底物,通过曼尼西反应合成系列含氮黄芩素衍生物,并通过CDK1/Cyclin B的抑制作用进行了筛选,得到九种活性较高的衍生物。
     本论文在此基础上,以MCF-7, Hela, SMMC-7721, SGC-7901, BGC-823, HL-60和PC-3为体外肿瘤细胞系模型,对九种含氮黄芩素衍生物的抗肿瘤活性进行了进一步筛选,考察了药物对细胞增殖的抑制率,包括半数抑制浓度(IC50)、半数生长抑制浓度(GI50)、完全抑制浓度(TGI)、半数致死浓度(LC50),其中溶解度相对较高的8-N-甲基哌嗪亚甲基黄芩素(BA-f)、8-N-羟乙基哌嗪黄芩素(BA-i)和8-N-羟基哌啶黄芩素(BA-j)显示出了相对较高的抑制肿瘤增殖活性,其TGI值分别为25.4±2.67,26.5±2.47,28.1±2.85μM。以MCF-7为体外肿瘤细胞系模型代表,通过Hochest染色、PI单染、AnnexinV-PI双染、罗丹明123染色、caspase-3和caspase-8活性检测、Bcl-2和Bax蛋白检测等发现含氮黄芩素衍生物主要是通过将肿瘤细胞的细胞周期阻滞于G1、G2期,并使S期的细胞数目减少,表明其不仅是CDK1/cyclin B的抑制剂,还可能是CDK2/cyclinE和CDK9/cyclin T1的抑制剂。能够通过线粒体膜电位的降低,caspase-3和caspase-8活性的增加以及Bcl-2蛋白表达活性的降低,诱导肿瘤细胞凋亡而发挥抗增殖活性。琼脂糖凝胶电泳检测证明BA-f, BA-i, BA-j不直接作用于DNA,对拓扑异构酶Ⅰ没有抑制作用。
     综上,合成的含氮黄芩素衍生物是一类新的CDK抑制剂,具有抗增殖活性,同时能够通过线粒体通路和死亡受体通路诱导细胞凋亡;由于不直接作用于DNA,对拓扑异构酶Ⅰ没有抑制作用,是一类毒副作用较小的抗肿瘤化合物,将成为高效抗肿瘤作用的创新药物。
Baicalein (5,6,7-trihydorxyflavone) is known to have a variety of attractive activities such as lipoxygenase inhibitory, antiviral, antibacterial, anti-inflammatory, hypotensive, and anticancer activities. For the reasons mentioned above, as well as its low toxicity and high efficacy, abundant resources and the advantage of low cost, baicalein has attracted more and more attention. However, the shortcomings such as its poor solubility and low bioavailability have limited its clinical application to some extents. In recent years, with profound development of the molecular mechanism of cancer, the theory of cell cycle regulation has obtained remarkable achievements, and CDK inhibitors are also being a hot topic. However, none of CDK inhibitors are in real clinical application. Thus, the design and synthesis of 8-aminomethylated baicalein analogues by Mannich reaction and assay for their CDK1/Cyclin B inhibitory activities by FRET have previously been done by State Key Laboratary of Fine Chemical of Dalian University of Technology, and nine of these compounds exhibited potent inhibitory activities against CDK1/Cyclin B.
     In this paper, nine BAs were screened for their antiproliferative activities in various human cancer cell lines, and three parameters of dose-response activities (GI50, TGI and LC50) were evaluated. Among these, BA-f, BA-i and BA-j, which were much more soluble in aqueous solution than the rest, showed more effective antiproliferative activities and yielded mean TGI values of 25.4±2.67,26.5±2.47,28.1±2.85μM, respectively, in Hela, SMMC-7721, SGC-7901, BGC-823, HL-60 and PC-3 cancer cell lines. In addition, G1 and G2 growth arrests and decrease of S phase cell number demonstrated that BAs not only acted as CDK1/Cyclin B inhibitors, but could also inhibit CDK2/Cyclin E and CDK9/Cyclin T1. Moreover, increased caspase-8 and caspase-3 expressions, down-regulation of Bcl-2 expression and mitochondrial membrane potential (ΔΨm), which could induce apoptosis, were found to be elements that mainly contributed to the antiproliferative activities of BA-f, i and j. However, BA-f, i and j were not inhibitory toward DNA Topoisomerase I, and could not have direct effect on DNA.
     In summary, the results suggested that 8-aminomethylated baicalein analogues is a novel class of CDK inhibitors which has high antiproliferative activity and could induce apoptosis, which is mediated by the mitochondrial mediated pathway and death receptor-related pathway. And because it could not inhibit DNA and DNA TopoⅠ, BAs is less toxic and may be explored as a possible novel drug with enhanced anticancer effect.
引文
[1]Lin SS, Huang HP, Yang JS, et al. DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade-and mitochondrial-dependent pathway [J]. Cancer letters,2008,272:77-90.
    [2]Evan GI, Voueden KIT. Proliferation, cell cycle and apoptosis in cancer [J]. Nature, 2001,411 (6835):342-348.
    [3]Jacks T, weinberg RA. Cell-cycle controf and watchman [J]. Nature,1996,381:643-647.
    [4]Hartwell LH, kastan KB. Cell cycle control and cancer [J]. Science,1994,266:1821-1825.
    [5]O'Connor L, Huang DCS,O'Reilly LA, et al. Apoptosis and cell division [J]. Cell Biology,2000,12:257-263.
    [6]Collins I, Garrett MD. Targeting the cell division cycle in cancer:CDK and cell cycle checkpoint kinase inhibitors [J]. Pharmacology,2005,5:366-373.
    [7]Elledge SJ. Cell cycle checkpoints:preventing an identity crisis [J]. Science,1996, 274:1664-1672.
    [8]Weinert T. DNA damage checkpoints update:getting molecular [J]. Genetics& Development, 1998,8:185-193.
    [9]Veinberg RA. The Retinoblastoma Protein and Cell Cycle Control [J]. Cell,1995, 81:323-330.
    [10]Bartek J, Lukas J. Mammalian G1-and S-phase checkpoints in response to DNA damage [J]. Cell Biology,2002,14:721-726.
    [11]Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage [J]. FEBS Letters,2001,490:117-122.
    [12]Lundberg AS, Weinberg RA. Control of the Cell Cycle and Apoptosis [J]. European Journal of Cancer,1999,35:531-539.
    [13]Arellano M, Moreno S. Regulation of CDK/cyclin Complexes During the Cell Cycle [J]. Int. J.Biochem.Cell Biol,1997,29:559-573.
    [14]Kerr JFR, Wyllie AH, Currie AR. Apoptosis, a basic biological phenomenon with wide ranging implications in tissue kinetics [J]. Br J cancer,1972,26:239-257.
    [15]Hunot S, Flavell RA. Apoptosis, Death of a monopoly? Science,2001,292 (5518):865-866.
    [16]Reed JC, Green DR. Remodeling for demolition:Changes in mitochrondrial ultrastructure during apoptosis [J]. Molecular Cell,2002,9:1-9.
    [17]Martin DP, Schmidt RE, DiStefano PS et al. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death by nerve growth factor deprivation [J]. J Cell Biol, 1988,106:829-844.
    [18]Admas JM, Cory S. The Bcl-2 protein fmaily:arbiters of cell survival [J]. Seienee,1998, 281(5381):1322-1326.
    [19]Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis [J]. Immunology Today,1997,18:44-51.
    [20]Petit PX, Susin SA, Zamzami N, et al. Mitochondria and programmed cell death" back to the future [J]. FEBS Letters,1996,396:7-13.
    [21]Heiden MGV, Chandel NS, Williamson EK, et al. Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria [J]. Cell,1997,91:627-637.
    [22]Er E, Oliver L, Cartron PF, et al. Mitochondria as the target of the pro-apoptotic protein Bax [J]. Biochimica et Biophysica Acta,2006,1757:1301-1311.
    [23]Yang JC, Cortopassi GA. Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c [J]. Free Radical Biology& Medicine, 1998,24:624-631.
    [24]Jin Z, El-Deiry WS. Overview of cell death signaling pathways [J]. Cancer Biol Ther, 2005,4 (2):39-63.
    [25]Mikhailov V, Mikhailova M, Pulkrabek DJ, et al. Bcl-2 Prevents Bax Oligomerization in the Mitochondrial Outer Membrane [J]. J. Biol. Chem,2001,276:18361-18374.
    [26]Ashe PC, Berry MD. Apoptotic signaling cascades [J]. Progress in Neuro-Psychopharmacology& Biological Psychiatry,2003,27:199-214.
    [27) Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis [J]. Cell,1998,94(4):491-501.
    [28]Etsuro H, Cynthia A, Bradham AS, et al. The Mitochondrial Permeability Transition Augments Fas-induced Apoptosis in Mouse Hepatocytes [J]. J Biol Chem,2000,275: 11814-11823.
    [29]Sanghavi DM, Thelen M, Thornberry NA, et al. Caspase-mediated proteolysis during apoptosis:insights from apoptotic neutrophils [J]. FEBS Letters,1998,422:179-184.
    [30]Srinivasula SM, Ahmad M, Fernandes-Alnemri T, et al. Autoactivation of Procaspase-9 by Apaf-1-Mediated Oligomerization [J]. Molecular Cell,1998,89:45-50.
    [31]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta [J]. Nature,2000,403 (6765):98-103.
    [32]Nakamura K, Bossy-Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal enviroment affect cell sensitivity to apoptosis [J]. J Cell Biol,2000, 150(4):731-740.
    [33]Rao RV, Hemrel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program, Mechanism of caspase activation [J]. J Biol Chem,2001, 276(36):33869-33874.
    [34]Mesaeli N, Nakaura K, Zvaritch E, et al. Calreticulin is essential for cardiac development [J]. J Cell Biol,1999,144(5):857-868.
    [35]Yi X, Yin MX, Dong Z. Inhibition of Bid-induced apoptosis by Bcl-2:tBid insertion, Bax ranslocation and Bax/Bak oligomerization suppressed [J]. J Biol Chem,2003, 278(19):16992-16999.
    [36]Kandasamy K, Srinivasula SM, Alnemri ES, et al. Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TARIL)-induced mitochondrial disruption and apoptosis:differential regulation of cytochrome c and Smac/DIABLO release [J]. Caneer Res,2003,63(7):1712-1721.
    [37]Sun XM, Bratton SB, Butterworth M, et al.Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor of apoptosis protein [J]. J Biol Chem,2002, 277(13):11345-11351.
    [38]MeConkey DJ, Nutt LK. Calcium flux measurements in apoptosis [J]. Methods Cell Biol, 2001,66(2):229-246.
    [39]Nutt LK, Pataer A, Phaler J, et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+stores [J]. J Biol Chem,2002, 277(12):9219-9225.
    [40]Wood DE, Newcomb EW. Caspase-dependent activation of calpain during durg-induced apoptosis [J]. J Biol Chem,1999,274(12):8309-8015.
    [41]Breckenridge GD, Stojnaovic M, Marcellus Rc, et al. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum signals, enhancing cytochrome c release to the cytosol [J]. J Cell Biol,2003,160(7):1115-1127.
    [42]Wang B, Nguyen M, Breckenridge DG, et al. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria [J]. J Biol Chem,2003,278(16):14461-14468.
    [43]Reed JC. Apoptosis-based therapies [J]. Nat Rev Drug Dis,2002,1(2):111-121.
    [44]朱森,王学江.凋亡相关因子在肿瘤细胞凋亡中的表达[J].肿瘤,2002,22:522-526.
    [45]Adams JM, Cory S. Apoptosomes:engines for caspase activation [J]. Curr Opin Cell Biol, 2002,14 (6):715-720.
    [46]Roy S, Bayly CI, Gareau Y. Maintenance of caspase-3 proenzyme dormancy by an intrinsic "safety catch" regulatory tripeptide [J]. Proc Natl Acad Sci USA,2001, 98 (11):6132-6137.
    [47]Grutter MG. Caspase:key players in programmed cell death [J]. Curr opin Struct Biol, 2000,10 (6):649-655.
    [48]Saikumar P, Dong Z, Mikhailov V, et al. Apoptosis:definition, mechanism and relevance to disease [J]. Am J Med,1999,107:489-506.
    [49]Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of Caspase activation during apoptosis [J]. Annu Rev Cell Dev Biol,1999,15:269-290.
    [50]Poter AG, Janicke RU. Emerging roles of Caspase-3 in apoptosis [J]. Cell Death Differ, 1999,6:99-104.
    [51]Christopher D, Buckley. RGD peptides induce apoptosis by direct Caspase-3 activation [J]. Nature,1999,397:534-539.
    [52]Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis [J]. Genes Dev,1999,13 (15):1899-1911.
    [53]Kelekar A, Thompson CB. Bcl-2-family proteins:the role of the BH3 domain in apoptosis [J]. Trends Cell Biol,1998,8 (8):324-330.
    [54]Puthalakath H, Villunger A, O'Reilly LA et al. Bmf:a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis [J]. Science,2001,293 (5536):1829-1832.
    [55]Reed JC.Double identity for proteins of the Bcl-2 family [J]. Nauter,1997,387: 773-776.
    [56]Adams J, Cory S. The Bcl-2 protein family:arbiters of cells survival [J]. Science, 1998,281:1322-1326.
    [57]Reed J. Bcl-2 family proteins [J]. oncogene,1998,17:3225-3236.
    [58]Pan G,O'Rourke K, Dixit VM. Caspase-9, bcl-x and apaf-1 form a ternary acomplex [J]. J Biol Chem,1998,273 (10):5841-5845.
    [59]张德芹,张建军,钟赣生,等.芪蓝糖脂宁胶囊对糖尿病合并高脂血症大鼠肝细胞凋亡及Bax、Bcl-2蛋白表达的影响[J].中华中医药杂志,2005,20(4):211-213.
    [60]Gupta M, Fujimori A, Pommier Y. Eukaryotic DNA topoisomerases I [J]. Biochemica et Biophysica Acta,1995,1262:1-14.
    [61]Malonne H, Atassi G. DNA topoisomerase targeting drugs:mechanisms of action and perspectives [J]. Anti Cancer Drugs,1997,8 (9):811-822.
    [62]Redinbo MR. Novel Insights into Catalytic Mechanism from a Crystal Structure of Human Topoisomerase I in Complex with DNA [J]. Biochemistry,2000,39 (23):6832-6840.
    [63]Christiansen K, Westerjaard 0. Characterization of Intra-and Intermolecular DNA Ligation Mediated by Eukaryotic Topoisomerase I [J]. J Biol Chem,1994,269 (1):721-729.
    [64]Hsiang YH, Hertzberg R, Hecht S, et al. Camptothecin induces protein linked breaks via mammalian DNA topoisomerase I [J]. J Biol Chem,1985,260:14873-14878.
    [65]Shin CG, Snapka RM. Patterns of strongly protein-associated simian virus 40 DNA replication intermediates resulting from exposures to specific topoisomerase poisons [J].Biochemistry,1990,29 (49):10934-10939.
    [66]宋云龙,蔡芸,袁松等.DNA拓扑异构酶Ⅰ抑制剂研究进展[J].国外医学药学分册,2001,28(6):321-325.
    [67]郝兰虎,孙倪悦,袁浩亮等.细胞周期依赖蛋白激酶小分子抑制剂的研究进展[J].海峡药学,2009,21(6):12-14.
    [68]Fischer PM, Lane DP. Inhibitors of cyclin-dependent kinases as anti-cancer therapeutics [J]. Curr Med Chem,2000,7(12):1213-1245.
    [69]Senderowicz AM. Flavopiridol:the first cyclin-dependent kinase inhibitor in human clinical trials [J]. Invest New Drugs,1999,17 (3):313-320.
    [70]M. Aklilu, H. L. Kindler, R. C. Donehower, S. Mani, et al. Phase Ⅱ study of flavopiridol in patients with advanced colorectal cancer [J]. Ann Oncol,2003,14:1270-1273.
    [71]Kaiser A, Nishi K, Gorin FA, et al. The Cyclin-Dependent Kinase (CDK) Inhibitor Flavopiridol Inhibits Glycogen Phosphorylase [J]. Arch. Biochem Biophys,2001, 386:176-187.
    [72]Geoffrey I. Shapiro:Preclinical and Clinical Development of the Cyclin-dependent kinase inhibitor flavopiridol [J]. Clinical Cancer Research,2004,10 (20):4270-4275.
    [73]Byrd JC, et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia [J]. Blood,2007,15 (6):399-404.
    [74]Wang S, McClue SJ, Ferguson JR, et al. Synthesis and configuration of the cyclin-dependent kinase inhibitor roscovitine and it s enantiomer [J]. Tetrahedron Asymmetry,2001,12(20):2891-2894.
    [75]Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cycl in-dependent kinase4/6 by PD 0332991 and associated anti-tumor activity in human tumor xenografts [J]. Mol Cancer Ther,2004,3 (11):1427-1437.
    [76]Misra RN, Xiao HY, Kim KS, et al. N-(Cycloalkylamino) acyl-2-aminothiazole Inhibitors of Cyclin-Dependent Kinase 2. N-[5-[[[5-(1,1-Dimet hylethyl)-2-oxazolyl] methyl]thio]-2-t hiazolyl]-4-piperidinecarboxamide (BMS-387032), a Highly Efficacious and Selective Antitumor Agent [J]. J Med Chem,2004,47 (7):1719-1728.
    [77]Senderowicz AM. The Cell Cycle as a Target for Cancer Therapy:Basic and Clinical Findings wit h the Small Molecule Inhibitors Flavopiridol and UCN-01 [J]. Oncologist, 2002,7 (suppl 3):12-19.
    [78]Dai Y, Khanna P, Chen S, et al. Steven Grant:Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation [J]. Blood,2007,109 (10):4415-4423.
    [79]Joshi KS, Rathos MJ, Joshi RD, et al. In vitro antitumor properties of a novel cyclin-dependent kinase inhibitor, P276-00 [J]. Mol Cancer Ther,2007, (3):918-925.
    [80]Soni R,O'Reilly T, Furet P, et al. Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4 [J]. J Natl Cancer Inst,2001,93 (6): 436-446.
    [81]Steven J. MCCLUE:In Vitro And In Vivo Antitumor Properties of The Cyclin Dependent Kinase Inhibitore CYC202 (R-roscoviyine) [J]. Int J Cancer,2002,102 (5):463-468.
    [82]Misra RN, Xiao HY. N-[5-[[[5-alkyl-2-oxazolyl] methyl] thio]-2-thiazolyl]-carboxamide inhibitors of cyclin dependent kinases [P]. US Patent 6,515,004 B1, February 4,2003.
    [83]J. Lyons. AT7519, a selective small molecule inhibitor of cyclin dependent kinases: pharmacodynamic biomarker activity in a Phase I study, http://www. Astex-therapeutics. Com/products/clinical candidates, php# AT7519. [EB/OL] Jan. 2007.
    [84]Ganka Atanasova:Effects of the cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) on the physiology of cultured human keratinocytes [J]. Biochemical Pharmacology,2005,70(6):824-836.
    [85]Siemeister G, Luecking U, Wagner C, et al. Molecular and pharmacodynamic characteristics of the novel multi-target tumor growth inhibitor ZK 304709 [J]. Biomedicine& Pharmacotherapy,2006,60 (6):269-272.
    [86]许文杰,丁启龙.黄芩素的药理学研究进展[J].江苏药学与临床研究,2006,14(2):35-39.
    [87]Tong WG, Ding XZh, Richard C, et al. Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway [J]. Mol Cancer Ther,2002,1:929-935.
    [88]Lee HZ, Leung HW, Lai MY, et al. Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells [J]. Anti-cancer Res,2005,25(2):959-964.
    [89]董庆华,郑树,徐荣臻等.黄芩苷元选择性诱导人的血病K562细胞凋亡[J].药学学报,2003,38(11):817-820.
    [90]Chen CH, Huang LL, Huang CC, et al. Baicalein, a novel apoptotic agent for hepatoma cell lines:a potential medicine for hepatoma [J]. Nutr Cancer,2000,38 (2):287-295.
    [91]Wang J, Yu Y, Hashimoto F, et al. Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cells [J]. Int J Mol Med,2004,14(4): 627-632.
    [92]Ma Z, Otsuyama KI, Liu ShQ, et al. Baicalein, a component of Scutellaria radix from Huang-Li an-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells [J]. Blood,2005,105 (8):3312-3318.
    [93]Graham PP, Keqin Tang, et al. Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing v3 and v5 integrin expression [J]. Cancer Res,2003, 63:4258-4267.
    [94]Yoshimura R, Inoue K, Kawahito Y, et al. Expression of 12-lipoxygenase in human renal cell carcinoma and growth prevention by its inhibitor [J]. Int J Mol Med,2004,13 (1):41-46.
    [95]Zhang DY, Wu J, Ye F, et al. Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis [J]. Cancer Res,2003,63:4037-4043.
    [96]Lee YS, Yeo H, Liu SH, et al. Increased anti-P-glycoprotein activity of baicalein by alkylation on the A ring [J]. J Med Chem,2004,47 (22):5555-5566.
    [97]Liao HL, Hu MK. Synthesis and anticancer activities of 5,6,7-trimethylbaicalein [J]. Chem Pharm Bull (Tokyo),2004,52 (10):1162-1165.
    [98]王军政,冯锋,徐明婧等.黄芩素衍生物构效关系研究进展[J].药学进展,2008,32(6):241-246.
    [99]Schnier JB, Kaur G, Kaiser A, et al. Identification of cytosolic aldehyde dehydrogenase 1 from non-small cell lung carcinomas as a flavopiridol-binding protein [J]. Federation of European Biochemical Societies,1999,454:100-104.
    [100]Sedlacek HH. Mechanisms of action of flavopiridol [J]. Oncology/Hematology,2001, 38:139-170.
    [101]Dai Y, Grant S. Cyclin-dependent kinase inhibitors [J]. Pharmacology,2003, 3:362-370.
    [102]Chao SH, Fujinaga K, Marion JE, et al. Flavopiridol Inhibits P-TEFb and Blocks HIV-1 Replication [J]. Biological Chemistry,2000,275:28345-28348.
    [103]Chao SH, David H. Price. Flavopiridol Inactivates P-TEFb and Blocks Most RNA Polymerase II Transcription in Vivo[J]. Biological Chemistry,2001,276:31793-31799.
    [104]Thompson CB, Apoptosis in the pathogenesis and treatment of disease [J]. Science, 1995,267:1456-1462.
    [105]Hyun PW, Hee CY, Won JC, et al. Arseni trioxide inhibits the growth of A498 renal cell carcinoma cells via cell cycle arrest or apoptosis [J]. Biochem Biophys Res Commun,2003,300:230-235.
    [106]Knockaert M, Meijer L. Indentifying in vivo targets of cyclin-dependent kinase inhibitors by affinity chromatography [J]. Biochemical Pharmacology,2002, 64:819-825.
    [107]Roberts JM. Evolving ideas about cyclins [J]. Cell,1999,98:129-132.
    [108]Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer [J]. Adv Cancer Res,1996,68:97-108.
    [109]Paulovich AG, Toczyski DP, Hartwell LH. When Checkpoints Fail [J]. Cell, Vol.1997, 88:315-321.
    [110]Bartek J, Lukas J, Batkova J. Perspective:defects in cell cycle control and cancer [J]. J Pathol,1999,187:95-99.
    [111]Pavletich NP. Mechanisms of Cyclin-dependent Kinase Regulation:Structures of Cdks, their Cyclin Activators, and Cip and INK4 Inhibitors [J]. J. Mol. Biol,1999, 287:821-828.
    [112]Martin SJ, Reutelingsperger CP, McGahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus:inhibition by overexpression of Bcl-2 and Abl [J]. J Exp Med, 1995,182:1545-1556.
    [113]Fu YR, Yi ZJ, Yan YR, et al. Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway [J]. Mitochondrion,2006,6: 211-217.
    [114]Chen M, Wang J. Initiator caspases in apoptosis signaling pathways [J]. Apoptosis, 2002,7:313-319.
    [115]Meikle I, Cummings J, Macpherson JS, et al. Induction of apoptosis in human cancer cell lines by the novel anthracenyl-amino acid topoisomerase I inhibitor NU/ICRF505[J]. Br J Cancer,1996,74:374-379.
    [116]Slichenmyer WJ, Rowinsky EK, Donehower RC, et al. The current status of camptothecin analogues as antitumor agents [J]. J N atl Cancer Inst,1993,85:271-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700