滞育诱导温度和光照节律对家蚕滞育相关内分泌基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(Bombyx mori)是卵滞育性鳞翅目模式昆虫。滞育受亲代卵催青期温度、光照节律等环境因子诱导,并受产下后温度诱导决定表现。本文以经典的家蚕滞育卵诱导条件处理家蚕催青期蚕卵,调查家蚕促前胸腺激素基因Ptth、滞育激素—性信息素合成激活肽基因Dh-pban、羽化激素基因Eh以及垂体同源框激素基因Pitx的表达谱。主要获得了以下结果:
     1家蚕4个滞育相关内分泌基因的表达存在显著的组织差异性
     家蚕大造品种5龄幼虫期基因芯片表达谱显示,Ptth、Dh-pban、Eh以及Pitx 4个基因在家蚕头部等10个组织中的表达水平有显著差异,具有组织特异性,Ptth基因在家蚕头部表达水平最高,其它组织中几乎不表达;Dh-pban基因在家蚕头部表达水平最高,其次是后部丝腺和马氏管,其他组织中表达量很低;Eh基因在体壁的表达水平最高,其次是头部,在卵巢中几乎检测不到;Pitx基因在马氏管中表达水平最高,其次是中肠和头部,其他组织中表达水平较低,其中在血液中仅痕迹量表达。Eh和Pitx基因在不同组织中的表达有极显著的差异性。值得注意的是,卵巢这一蚕卵形成和滞育代谢的重要靶器官中,5龄幼虫期Ptth、Dh-pban、Eh以及Pitx 4个基因的表达水平都很低, Eh基因几乎检测不到有表达。
     2诱导子代滞育卵发生的高温与光照条件上调家蚕Dh-pban基因表达
     催青期在诱导子代滞育卵发生的高温25℃与持续光照(25LL)条件下,胚胎有稳定的、高水平Dh-pban基因mRNA存在,而诱导子代非滞育卵发生的低温15℃与持续黑暗(15DD)条件下,蚕卵中几乎检测不到Dh-pban基因的mRNA存在。在25LL或者20℃12h光照12h黑暗(20LD)催青环境中,胚胎发育至单眼形成后(积温高于2160℃·h),蚕卵中的Dh-pban基因表达水平开始显著上调,这与在此阶段的蚕卵胚胎对滞育诱导环境温度和光节律更加敏感相一致,但Dh-pban基因表达水平没有出现随不同滞育诱导温度或光节律变化的振荡节律,表明蚕卵胚胎的Dh-pban基因表达受到滞育诱导温度和光照这两个近日节律授时因子的影响,但不是节律授时因子直接调控的基因。
     从催青期开始的整个世代保护温度和光照,对家蚕胚后幼虫至成虫时期Dh-pban基因的表达水平影响,呈现高温25℃上调Dh-pban基因的表达。亲代卵孵化期的催青温度与光照,影响了子代卵的滞育性,也影响了子代卵内的Dh-pban基因mRNA水平,但这种影响与蚕卵的滞育性不完全一致。
     3光照与温度对家蚕Eh和Pitx基因在各个时期表达的影响不同
     15DD条件下,蚕卵Eh基因的mRNA水平很低,提示在非滞育卵完全诱发条件下,蚕卵胚胎可能极少翻译EH;催青期在25LL或20LD环境下,能够检测到蚕卵Eh基因的mRNA,提示在家蚕滞育卵诱发条件下胚胎期已经开始合成EH。比较25LL与20LD二种环境条件下Eh基因的表达差异,发现25LL条件下蚕卵的Eh基因表达水平总体高于20LD的蚕卵;胚胎发育后期,在积温高于2 160℃.h(单眼形成时期及单眼形成)后,Eh基因表达水平显著上调,这与在此阶段的蚕卵胚胎对滞育诱导环境温度和光照节律更加敏感相一致。亲代卵催青期25LL条件所产滞育卵中,Eh基因mRNA表达水平很低,在胚胎进入滞育后,则几乎检测不到Eh基因mRNA。而亲代15℃催青温度条件下所产子代非滞育性卵,无论是胚胎发生期间,还是其后的胚胎组织器官发育时期,都检测出一定含量的Eh基因mRNA。
     催青期在25LL、20LD、15DD环境下,均能检测到蚕卵Pitx基因的mRNA,且25LL条件下蚕卵的Pitx基因表达水平总体高于20LD和15DD的蚕卵。家蚕胚后时期25LL条件下Pitx的表达水平总体要高于15DD条件下的表达水平。亲代25LL催青环境下,子代滞育性卵在卵龄12-24 h胚胎发生期间,Pitx基因mRNA的含量快速增加,但随后迅速减少,至卵龄72 h后胚胎逐渐进入滞育阶段,卵内几乎检测不到Pitx基因的mRNA;而亲代15℃催青温度条件下所产子代非滞育性卵,无论是卵龄12-24 h的胚胎发生期间,还是其后的胚胎组织器官发育时期,都能检测出Pitx基因mRNA的表达;亲代20LD催青条件下所产子代卵,在12-192 h期间Pitx基因mRNA含量一直高于滞育性卵与非滞育性卵。胚胎发育时期Pitx的表达与Dh-pban的表达相一致。
Bombyx mori is the model insect of Lepioloptera with diapausing during its egg stage. Diapause inducements are due to temperature and photoperiod in the incubation process of parental eggs. However, whether or not eggs at progeny enter into diapause depends on temperature after oviposition. This paper investigated the expression of diapause-related endocrine genes in Bombyx mori using the classic diapause-inducing incubation conditions, which contained prothoracicotropic hormone gene, diapause hormone and pheromone biosynthests activating neuropeptide gene, eclosion hormone gene and pituitary homeobox gene. The major results are as follows:
     1 Diapause-related endocrine genes had tissue specific expression charac-teristics in Bombyx mori
     Gene microarray analysis displayed that four genes, containing Ptth、Dh-pban、Eh?and?Pitx, had issue specific expression characteristics during postembryonic stage. Ptth gene expression level in head is higher than any other tissues. Dh-pban gene expression level in head is the highest in all tissues, and then in posterior silk gland and Malpighian tubules. The expression in other tissues is very low. Expression level of Eh gene is highest in integument, and then in head. There is almost no expression in ovary. Pitx gene expression in the Malpighian tubules is the highest, followed by the midgut and the head, lower levels of other tissues, of which only traces of the blood volume in the expression.
     2 The temperature and photoperiod inducing diapause of offspring eggs up-regulated the expression level of Dh-pban gene
     Eggs at progeny are completely diapause when parental eggs are under constant illumination at 25℃(25LL) incubation, and they are completely non-diapause under constant darkness at 15℃(15DD). The Dh-pban mRNA of eggs in 25LL stayed at a high level, but it was very low in 15LL. Under 25LL or 20LD, the Dh-pban level of parental eggs up-regulated in the late incubation stage, which indicated that B. mori would be sensitive to the external illumination and temperature after embryonic nervous developed. However, the mRNA level of Dh-pban was not oscillated with the periodic oscillation of incubation photoperiod and temperature. The Dh-pban expression level rose at 25℃during postembryonic developmental stage. In conclusion, the incubation temperature and photoperiod of parental eggs affected the diapause of offspring eggs, but Dh-pban was not the direct gene regulated by the zeitgebers.
     3 The effect of photoperiod and temperature on the expression of Eh and Pitx gene was different among different stages
     The Eh mRNA of eggs in 15DD stayed at a very low level. Under 25LL or 20LD, the Eh level of parental eggs up-regulated in the late incubation stage, which indicated that B. mori would be sensitive to the external illumination and temperature after embryonic nervous developed. In the offspring, Eh gene mRNA expression level is very low under 25LL, and in the diapause period in the embryo, the gene is almost not detected Eh mRNA. However under 15DD, the offspring Eh gene mRNA can be detected in the whole Embryonic stage.
     Under incubation environment of 25LL, 20LD, 15DD, Pitx mRNA can be detected in silkworm eggs, and under the conditions of 25LL Pitx gene expression is in general higher than 20LD and 15DD. In postembryonic period, Pitx mRNA level is in general higher under 25LL than 15DD. Under 25LL incubation environment, in offspring diapause eggs during the age of 12-24 h embryos, Pitx mRNA levels increased rapidly but then declined rapidly to the age of 72 h, eggs gradually into the diapause stage embryos. Pitx mRNA can not be detected. However under 15DD, the offspring Pitx mRNA can be detected in the whole Embryonic stage.
引文
1. Andrewartha HG, Miethke PM, Wells A. Induction of diapause in the pupa of Phalaenoides glycinae by a hormone from the suboesophageal ganglion. J Insect Physiol. 1974, 20: 679 - 702
    2. Barynin VV, Grebenko AI. T-catalase is a nonheme catalase of extremely thermophilic bacterium Thermus thermophi lus [J]. DoklAkad Nauk SSSR, 1986 , 286 (2): 461-464
    3. Beck SD, Hanec W. Diapause in the European corn borer (ECB), Ostrinia nubilalis [J]. J.Insect Physiol., 1960, 4: 304-318
    4. Berry SJ, Hormones and metabolism in the pupal diapause of silkmoths (Lepidoptera: Saturniidae) [J]. Entomol Gen, 1981, 7: 233-243
    5. Boothroyd CE, Wijnen H, Naef F, et al. Integration of light and temperature in the regulation of circadian gene expression in Drosophila [J]. PLoS Genet, 2007, 3(4): 0492-0507
    6. Chino H. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori. II. Conversion of glycogen into sorbitol and glycerol during diapause [J]. J Insect Physiol, 1958, 2: 1-12
    7. Chippendale GM and Yin CM. Endocrine interactions controlling the larval diapause of the southwestern Corn borer, Diatraea grandiosella [J]. J Insect Physiol, 1976, 22: 989-995
    8. Chippendale GM, Yin CM. Reappraisal of proctodone involvement in the hormonal regulation of larval diapause[J] Biol Bull, 1976, 149:151-164
    9. Chippendale GM. Hormonal regulation of larval diapause [J]. Annu. Rev. Entomol., 1977, 22: 121-138
    10. De Wilde J., Hormones and insect diapause. Mem.Soc. Endocrinol, 1970, 18, 487-514
    11. Denlinger DL. Hormonal control of diapause in comprehensive insect physiology, biochemistry and pharmacology (Eds Kerkut GA & Gilbert LI) [M]. Oxford:Pergamon Press, 1985, 8: 353-412
    12. Denlinger DL. Regulation of diapause. Annual Review of Entomology, 2002, 47: 93-122.
    13. Dismukes GC. Manganese enzymes with binuclear active sites. Chem.Rev, 1996, 96 (7): 2909-2926
    14. Fan JY, Muskus MJ, Price JL. Entrainment of the Drosophila circadian clock: more heat than light [J/OL]. Sci. STKE, 2007, (413): pe65. [2008-03-19]. http://www.stke.org/cgi/content/full/2007/413/pe65
    15. Frank V, Eva V, James FD, et al. The role of active oxygen species in plant signal transduction. Plant Science.2001, 161: 405- 414
    16. Fukuda S. The production of diapause eggs by transplanting the suboesophageal ganglion in the silkworm. Proc Jap. Acad. 1951, 27: 672– 676
    17. Glaser FT, Stanewsky R. Temperature synchronization of the Drosophila circadian clock [J]. Current Biology, 2005, 15(15): 1352-1363
    18. Glaser FT, Stanewsky R. Temperature synchronization of the Drosophila circadian clock [J]. Current Biology, 2005, 15(15): 1352-1363
    19. Goldberg I, Hochrnan A. Three different types of catalase in Klebsiel lapneumoniae [J]. Arch Biochem Biophys, 1989, 268(1):124-128
    20. Goncalves VM , Cezar de Cerqueira Leite L, Raw I, et al . Purification of catalase from human placenta [J]. Biotechnology and Applied Biochemistry, 1999, 29 (1):73-77
    21. Grigorenko V, Chubar T, Kapeliuch Y, et al. New approaches for functional expression of recombinant horseradish peroxidase C in Escherichia coli [J]. Biocatalysis and Biotransformation, 1999, 17 (5): 359-379
    22. Hasegawa K. Studies in voltinism in the silkworm Bombyx mori I. with special reference to the organs concerning determination of voltinism. J Fac. Agric Tottori Univ 1952, 1: 83 - 124
    23. Hasegawa K. The diapauses hormone of the silkworm, Bombyx mori [J]. Nature, 1957, 179: 1300-1301
    24. Hiraki T, Shibayama N, Akashi S, et al. Crystal Structures of the Clock ProteinEA4 from the Silkworm Bombyx mori [J]. J Mol Biol, 2008, 377: 630-635
    25. Hong B, Zhang Z-F, Tang S-M, et al. Protein-DNA interaction in the promoter region of the gene encoding DH-PBAN of the cotton bollworm, Helicoverpa armigera [J]. Biochim.Biophys. Acta, 2006, 1759:177-185
    26. Imai K, Konno T, Nakazaw Y, et al. Isolation and structure of diapause hormone of the silkworm [J] . Bombyx mori. Proc. Jap. Acad. 1991, 67: 98– 101
    27. Isobe K, Konno T, Nakazawa I, et al. Further characterization of the silkworm diapause hormone [ J ] A. J Insect Physiol, 1975, 21 :1221~1920
    28. Jacek S, Loewen PC. Diversity of properties among catalases. Archivers of biochemistry and biophysiscs.2002, 401: 145- 154
    29. Kai H, Arai T, Yasuda F. Accomplishment of time-interval activation of esterase A4 by simple removal of PIN fraction. Chronobiology International, 1999, 16: 51–58
    30. Kai H, Kawai T, Kaneto A. Esterase A4 elevation mechanism in relation to Bombyx (Lepidoptera: Bombycidae) eggs diapause development [J]. Appl. Ent. Zool., 1984, 19(1): 8-14
    31. Kai H, Kawai T, Kawai Y. A time-interval activation of esterase A4 by cold-relation to the termination of embryonic diapause in the silkworm, Bombyx mori [J]. Insect Biochem, 1987, 17: 367-372
    32. Kai H, Kawai T, Kawai Y. A time-interval activation of esterase A4 by cold. Insect Biochemistry, 1987, 17: 367-372
    33. Kai H, Kawai T. Similar action of acid-treatment to long chilling for breaking silkworm diapause in respect esterase A activities in eggs [J]. Seric. Sci. Jpn., 1981, 50: 373-378
    34. Kai H, Kotani H, Oda Y. Presence of PIN factor(s) responsible for the Time-interval activation of esterase A4 in the diapause duration timer of Bombyx mori. Journal of Sericultural Science of Japan, 1996, 65: 31-38
    35. Kai H, Miao Y, Kawai T. Activation of esterase A4 by hydrogen peroxide. J Seric. Sci. Japan, 1988,57(6): 533-534
    36. Kai H, Miao Y, Xu PX, et al. Effective acid-treatment in vitro to elevate the time measuring esterase A4 [J]. Seric Sci Jpn,1988, 57: 313-317
    37. Kai H, Nishi K. Diapause development in Bombyx eggs in relation to‘esterase A’activity [J]. Journal of Insect Physiology., 1976, 22: 1315-1320
    38. Kai H, Nishi K. Diapause development in Bombyx eggs in relation to "esterase A" activity. Journal of Insect Physiology, 1976, 22: 1315–1320
    39. Kai H, Nishi K. Diapause development in Bombyx eggs in relation to‘esterase A’activity. J. Insect Physical., 1976, 22, 1315-1320
    40. Kai H., et al. Electrophoretic protein patterns and esterase zymograms in ovaries and mature eggs of Bombyx mori in relation to diapause. J. Insect Physical., 1972a, 18, 133-142
    41. Kai H., et al. Studies on the mode of action of the diapause hormone with special reference to the protein metabolism in the silkworm, Bombyx mori L.Ⅲ. Effects of acid-treatment and detergents on‘Esterase A’in diapause eggs. J. Seric. sci. Jpn., 1972b, 41(4): 253-262
    42. Kai, H. Molecular biology of an alarm clock: a timer-protein involved in an active resumption of embryogenesis in the Bombyx silkworm. Biophysics, 2002, 42: 168-173(in Japanese)
    43. Kaushik R, Nawathean P, Busza A, et al. PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila [J]. PLoS Biol, 2007, 5(6): 1257-1266
    44. Khansen TE, Viik MO. The content of free amino acids in wintering insects [J]. Zool. ZH., 1985, 63: 1634-1640
    45. Kitagawa N, Shiomi K, Imai K, et al. Establishment of a sandwich ELISA system to detect diapause hormone, and developmental profile of hormone levels in egg and subesophageal ganglion of the silkworm, Bombyx mori. Zoological Science, 2005, 22: 213-221
    46. Kono Y, Fridovich I. Isolation and characterization of the pseudocatalase of L actobacillus plantarum—A new manganese containing enzyme [J]. Biol Chem, 1983, 258 (10): 6015-6019
    47. Kostal V, Hodek I. Photoperiodism and control of summer diapause in the Mediterranean tiger minth Cymbalophora pudica [J]. Insect Physiol, 1997, 43: 767 - 777
    48. Krishnan B, Levine JD, Lynch MK, et al. A new role for cryptochrome in a Drosophila circadian oscillator [J]. Nature, 2001, 411: 313-317
    49. Levin G, Mendive F, Targovnik HM, et al. Genetically engineered horseradish peroxidase for facilitated purification from baculovirus cultures by cation-exchange chromatography [J]. J Biotechnol, 2005, 118 (4): 363-369
    50. McCord J M & Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein) [J]. Biol. Chem, 1969, 244: 6049-6055
    51. McGuire JU, Schechter MS. Synthesis of macromolecules in diapausing and nondiapausing larvae of the European corn borer [J]. Econ. Entomol., 1971, 65: 676-679
    52. Nakamura K, Watanabe M, Sasaki Y,et al. Purification and characterization of liver catalase in acatalasemic beagle dog: Comparison with normal dog liver catalase [J]. The International Journal of Biochemistry and Cell Biology, 2000, 2 (1): 89-98
    53. Numata H, Hidaka T. Photoperiodic control of adult diapause in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Coreidae) 1. Reversible induction and termination of diapause [J]. Appl Entomoml Zool, 1982, 17: 530– 538
    54. Ohtsuki Y. Silkworm eggs. In: Japanese Society of Sericultural Science, Editor, A General Textbook of Sericulture, Nihon Sansei Shinbun-Sha, Tokyo, 1979, pp 156-173 (in Japanese)
    55. Pittendrigh CS, Bruce VG, Kaus P. On the significance of transients in daily rhythms [J]. PNAS, 1958, 44(9): 965-973
    56. Qiu J, Hardin PE. per mRNA cycling is locked to lights-off under photoperiodic conditions that support circadian feedback loop function [J]. Mol Cell Biol, 1996, 16: 4182-4188
    57. Reubsaet FA, Veerkamp JH, Brückwilder M L, et al . Peroxisomal oxidases and catalase in liver and kidney homogenates of normal and di (ethylhexyl) phthalate-fed rats [J]. Int J Biochem, 1991, 23 (9): 961-967
    58. Ryan B J,ó'Fágáin C. Arginine-to-lysine substitutions influence recombinant horseradish peroxidase stability and immobilization effectiveness [J]. BMC Biotechnology, 2007, 7 (1): 86-94
    59. Saito H, Takcuchi Y, Takeda R et al. The core and complementary sequence for iological activity of the diapause hormone of the silkworm, Bombyx mori. Peptides, 1994, 15: 1173-1178
    60. Sato Y, Oguchi M, Menjo N, et al. Precursor polyprotein for multiple neuropeptides secreted from the SG of the silk worm, Bombyx mori: Characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. PNAS, 1993, 90(8): 3251-3255
    61. Sawchyn WW, Church NS. The effects of temperature and photoperiod on diapause development in the eggs of four species of Lestes (Odonata: Zygoptera) [J]. Can J Zool, 1973, 51: 1257– 1265
    62. Schneiderman HA, Williams GM. The physiology of insect diapauseⅫ: The respiratory metabolism of the cecropia silkworm during diapause and development [J]. Biol Bull, 1953, 105: 320-334
    63. Singh R, Singh RK, Mahdi AA, et al. Circadian periodicity of plasma lipid peroxides and other anti-oxidants as putative markers in gynecological malignancies. In Vivo, 2003, 17(6): 593-600
    64. Takeda N. Histophysiological studies on corpus allatum during prepupal diapause in Monema flavescens (Lepidop tera) [J]. Morph. 1977, 153: 245– 262
    65. Tani N, Kamada G, Ochiai K, et al. Carbohydrate moiety of Time-Interval Measuring Enzyme regulates time measurement through its interaction with time-holding peptide PIN [J]. J Biol Chem, 2001, 129: 221–227
    66. Tauber M J, Tauber CA. Seasonal Adaptations of Insects [M]. Landon: Oxford University Press, 1986, 202-207
    67. Ti X, Tani N, Isobe M, Kai H. Time-measurement-regulating peptide PIN may alter a timer conformation of time interval measuring enzyme (TIME). Insect Physiology, 2006, 52: 461-467
    68. Ti X, Tuzuki N, Tani N, et al. Demarcation of diapause development by cold and its relation so time-interval activation of TIME-ATPase in eggs of the silkworm, Bombyx mori [J]. Insect Physiol, 2004, 50: 1053-1064
    69. Ti X, Tuzuki N, Tani N, et al. The peptide PIN changes the timing of transitoryburst activation of timer-ATPase TIME in accordance with diapause development in eggs of the silkworm, Bombyx mori [J]. Insect Physiology, 2005, 51: 1025-1032
    70. Tomás-Zapico C, Coto-Montes A, Martínez-Fraga J, et al. Effects of continuous light exposure on antioxidant enzymes, porphyric enzymes and cellular damage in the Harderian gland of the Syrian hamster. J Pineal Res, 2003, 34(1): 60-68
    71. Wei ZJ., Zhang QR., Kang L., et al. Molecular characterization and expression of prothoracicotropic hormone during development and pupal diapause in the cotton bollworm, Helicoverpa armigera [J]. Insect Physiology, 2005, 51: 691-700
    72. Wheeler DA, Hamblen-Coyle MJ, Dushay MS, et al. Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both [J]. Biol Rhythms, 1993, 8(1): 67-94
    73. Xu Shi-Qing, Dai Xuan-Ying, Han Yi-Fei, et al. Research on diapause bioclock protein esterase A4 of silkworm, Bombyx mori. Sericology, 2001, 41(4) 543-549
    74. Xu SQ, Kai H, Xu JL, et al. Changes of esterase A4-activity and its relationship with diapause in hot water treated eggs of silkworm, Bombyx mori [J]. Sericology, 2003, 43: 61-67
    75. Xu SQ, Kai H, Xu JL, et al. Changes of esterase A4-activity and its relationship with diapause in acid-treated eggs of silkworm, Bombyx mori. Science of Sericulture, 1998, 24: 95-99
    76. Xu SQ, Kai H, Xu JL, et al. Target of hydrochloric acid in acid-treatment of diapausing eggs of Bombyx mori. Acta Entomologica Sinica, 2001, 44: 51-55
    77. Xu WH, Denlinger DL. Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens and a new role for diapause hormone. Insect Molecular Biology, 2003, 12(5): 509-516
    78. Xu WH, Sato Y, Ikeda M, et al. Stage-dependent and temperature-controlled expression of the gene encoding the precursor protein of DH-PBAN in the silkworm, Bombyx mori. J. Biol. Chem. 1995, 270: 3804-3808
    79. Xue FS, Kallenborn HG. Summer and winter diapause in pupae of the cabbage butterfly, Pieris melete Ménétriés [J]. J Insect Physiol., 1997, 43: 701-707
    80. Yamamoto K, Banno Y, Fujii H, Miake F, Kashige N, Aso Y, 2005. Catalase fromthe silkworm, Bombyx mori: Gene sequence, distribution, and overexp ression. Insect Biochem.Mol.B iol., 35: 277– 283
    81. Yamashita O, Hasegawa K. Oocyte age sensitive to the diapause hormone from the standpoint of glycogen synthesis in the silkworm, Bombyx mori [J]. Insect Physiol ,1970, 16: 2377 - 2 383
    82. Yamashita O, Hasegawa K. Studies on the mode of action of diapause hormone in the silkworm Bombyxmori L. IV. Effect of diapause hormone on the glycogen content in ovaries and the blood sugar level of silkworns. J Seric Sci. 1964, 33: 407– 416
    83. Yamashita O, Suzuki K. Morphogenic hormones in arthropods (ed. Gupta, A.P.), New Brunswick: Rutger University Press, 1991, pp 82-128
    84. Yamashita O, Yaginma T. Silkworm eggs at low temperature, implications for sericulture [M]. In: Lee R E. and Denlinger K L eds. Insect at low Temperature, New York: Chapman and Hall Press ,1991, 424– 445
    85. Yamashita O. Diapause hormone of the silkworm Bombyx mori: structure gene expression and function [J]. Insect Physiology, 1996, 42, 669-679
    86. Yin CM, Wang ZS, Chaw WD, et al. Brain neurosecretory cell and ecdysiotropin activity of the non-diapausing and diapausing D.Gradiosella [J]. J Insect Physiol., 1985, 31: 659-667
    87. Yoshii T, Sakamoto M, Tomioka K. A temperature-dependent timing mechanism is involved in the circadian cycling period gene expression in Drosophila system that drives locomotor rhythms in the fruit fly Drosophila melanogaster [J]. Zoolog Sci, 2002, 19(8): 841-850
    88. Yoshii T, Fujii K, Tomioka K. Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constan light. Journal of Biological Rhythms, 2007, 22: 103-114
    89. Young MW, Youngm W. Circadian rhythms-marking time for a kingdom [J]. Science, 2000, 288: 451-453
    90. Yumoto I, Ichihashi D, Iwata H, et al. Purification and characterization of a catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1T exhibitinghigh catalase activity[J ] . J Bacteriol, 2000, 182 (7):1903-1909
    91. Zámocky M, Koller F. Understanding the structure and function of catalase: Clues f rom molecular evolution and in vitro mutagenesis [J]. Progress in Biophysics and Molecular Biology, 1999, 72(1) :19-66
    92. Zhang TY, Kang L, Zhang Z-F, et al. Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding DH-PBAN in Bombyx mori [J]. Biochem, 2004, 380: 255-263
    93. Zhang TY, Sun JS, Kang L, et al. Structural analysis of the gene for DH-PBAN in Helicoverpa armigera and its transcriptional regulation. Biochim.Biophys. Acta. 2005, 1728 (1-2): 44-52
    94. Zhang TY, Sun JS, Zhang QR et al. The DH-PBAN gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause. Insect Physiology, 2004,50(6): 547-554
    95. Zhao LC, Sima, YF, Shen XM, et al. Metabolism of hydrogen peroxide in the course of embryonic development in silkworm. Dev. Reprod. Biol., 1999, 8, 41-48
    96. Horodyski FM. Neuroendocrine control of insect ecdysis by eclosion hormone. Insect Physiol, 1996, 42:917-924
    97. Kunihiro Shiomi,Yoshihiro Fujiwara,Yuji Yasukochi,Zenta Kajiura,Masao Nakagaki, and Toshinobu Yaginuma, The Pitx homeobox gene in Bombyx mori: Regulation of DH-PBAN neuropeptide hormone gene expression. Molecular and Cellular Neuroscience,2007,34:209-218
    98.陈田飞,乐波灵.家蚕滞育机理研究概况[J].广西蚕业,2004,41(3):12-16
    99.丛海峰,徐世清,司马杨虎,等.野桑蚕铜锌超氧化物歧化酶基因的克隆分析与原核表达[J].蚕业科学,2007,33(1): 234-240
    100.丁道远,胡皆汉,朴勇旭.荧光光谱法研究某些药物与DNA的相互作用[J].光谱学与光谱分析1990,10:24
    101.韩慧慧,徐丽,陶卉,司马杨虎,徐世清.滞育诱导的温度和光照节律对家蚕滞育激素基因Dh表达的影响[J].蚕业科学,2010,36(6):930-936.
    102.侯月利,花蕾.昆虫滞育诱导的因素[J].陕西林业科技,2000,3: 62-67
    103.黄耀伟,于涟.生物钟机制研究进展[J].生命科学,2000,12(1): 10-13
    104.蒋明星,谢立群,张孝羲.棉铃虫的滞育诱导特性[J].应用生态学报, 1999,10(1): 60-62
    105.梁辉,徐丽,宋燕,朱晓苏,韩慧慧,司马杨虎,徐世清.诱发滞育的温度和光照条件对家蚕胚胎生物钟信号主要基因表达的影响[J].蚕业科学,2010,36(5):0771-0779.
    106.刘惠霞,李新岗,吴文君.昆虫生物化学[M].西安:陕西科学技术出版社,1998
    107.鲁加龙,张恩英,王仁赉.淡色库蚊生殖滞育的神经内分泌调节[J].昆虫学报,1993,36(3): 302-307
    108.萨姆布鲁克J,拉塞尔DW.分子克隆实验指南(第三版)[M].北京:科学出版社. 2002
    109.山下兴亚.家蚕的激素,特别是关于滞育激素的作用.蚕丝科学和技术,1969, 8(1): 72-78
    110. M.KOBAYASHI,时连根.家蚕促前胸腺激素(PTTH)研究综述[J].中国蚕业,1991(2): 15-19
    111. Kawak.,张雨青.家蚕促前胸腺激素的分子克隆.国外农学—蚕业,1992(2): 26-28
    112.魏兆军,洪桂云,姜绍通,鲁成.家蚕脑核蛋白抽提及其与PTTH基因启动子的凝胶阻滞分析[J].中国农业科学,2008,41(1): 265-271
    113.于淼,陈复生,魏兆军.家蚕神经肽促前胸腺激素基因mRNA的发育表达[J].安徽农业科学,2010,38(10):5518-5520
    114.魏兆军.昆虫促前胸腺激素和滞育激素性信息素合成激活肽基因的结构、表达及功能[D].安徽:中国科学技术大学,2004
    115.张天翼.昆虫滞育激素—性信息素合成激活肽基因的结构特性、发育表达、功能的分析及其转录调控机理的研究[D].安徽:中国科学技术大学,2004
    116.徐军.甜菜夜蛾滞育激素—性信息素合成激活肽(DH-PBAN)基因和促前胸腺激素(PTTH)基因的克隆和表达分析[D].安徽:中国科学技术大学,2007
    117.章梅.棉铃虫羽化激素cDNA的克隆、表达及功能研究[D].安徽:中国科学技术大学,2006
    118.魏兆军,赵远.珍贵绢丝昆虫天蚕FXPRLamide家族神经肽的免疫组织化学鉴定[J].中国农业科学,2005,38(12): 2542-2548
    119.魏兆军,魏洪义,洪桂云,李娟,姜绍通,罗建平.亚洲玉米螟神经肽羽化激素基因cDNA的克隆及组织表达[J].昆虫学报,2007,50(4): 323-329
    120.徐春媛,刘彦群,鲁成.中国野桑蚕DH-PBAN基因克隆研究初报.西南农业大学学报,2003,25(4): 327-330
    121.徐春媛,刘彦群,鲁成.中国野桑蚕滞育激素基因的克隆与序列分析[J].蚕业科学,2003,29(3): 236-240
    122.侯成林,徐卫华.棉铃虫促前胸腺激素的表达模式与发育调节[J].科学通报,2007,52(11): 1269-1273
    123.徐军,苏建亚,沈晋良,徐卫华.甜菜夜蛾促前胸腺激素cDNA的克隆和表达[J].中国科学,2007,37(2): 171-177
    124.张丛,王琛柱. PBAN及其对昆虫性外激素的调控[J].昆虫知识,2001,38(5): 326-330
    125.徐卫华.家蚕滞育激素—性信息素合成激活肽基因表达的调节[J].中国生物化学与分子生物学报,1998,11(5): 557-561
    126.宋艳.家蚕滞育诱导过程中近日节律基因period和timless的表达研究[D].苏州:苏州大学,2009
    127.王国卿.大鼠松果体生物钟基因的昼夜表达以及外周血淋巴细胞钟控基因的筛选与鉴定[C].博士论文,2007,5
    128.王英,司马杨虎,宋艳,等.昆虫生物钟基因及其作用机制研究进展[J].江苏蚕业,2008,30(1): 9-14
    129.王英,徐世清,司马杨虎,等.家蚕滞育生物钟蛋白质EA4的基因结构和功能研究[C].第六届中国国际丝绸会议中国蚕学会第五届青年学术研讨会论文集,苏州,2007,9: 366-380
    130.王玉军,徐世清,司马杨虎,等.家蚕滞育生物钟蛋白质EA4基因的cDNA克隆和序列分析[J].蚕业科学,2007,33(1): 36-42
    131.吴孔明,郭予元.棉铃虫滞育的诱导因素研究[J].植物保护学报., 1995,22(4): 331-336
    132.谢立群,蒋明星,张孝羲.烟青虫滞育特征的研究[J].植物保护学报., 1997,24(3): 199-203
    133.徐丽,宋艳,朱晓苏,等.滞育诱导温度与光照对家蚕近日节律基因per表达的影响[J].蚕业科学,2010,36(1):52-59
    134.徐世清,陈息林,薛卫东,等.桑蚕卵孵化控制方法[P].中国:ZL200510041062.8. 2005-12-28
    135.徐世清,何茂顶.蚕种生产操作技术指南[M].北京:中国科学技术出版社,1993, 14-29
    136.徐世清,甲斐英则,徐俊良,等.家蚕滞育生物钟蛋白质EA4的纯化及其分子结构分析[J].中国生物化学与分子生物学报,1999a,15(2): 241-246
    137.徐世清,甲斐英则,徐俊良,等.体外盐酸处理与PIN对酯酶A4活性影响的关系[J].蚕业科学,1999c,25(3): 149-153
    138.徐世清,甲斐英则,徐俊良,等.盐酸处理蚕卵酯酶A4的活性变化及其与滞育性的关系[J].蚕业科学,1998,24(2): 95-99
    139.徐世清,甲斐英则,徐俊良,等.盐酸刺激量对家蚕卵酯酶A4活性的影响及其与蚕卵活化的关系[J].蚕业科学,2000a,26(1): 20-26
    140.徐世清,蒋龙元,戴璇颖,等.采种环境对家蚕越年卵催青期过氧化氢代谢的影响[J].江苏蚕业, 2005,27(1): 15-17
    141.徐世清,司马杨虎,陈息林,等.家蚕卵温汤处理酯酶A4的活性变化[J].蚕业科学, 2004,30(1): 50-54
    142.徐世清,藤国琴,甲斐英则,徐俊良,郑必平,陈息林,司马杨虎.体外25℃家蚕卵酯酶A4的ATP酶活性变化及其与滞育性的关系[J].蚕业科学, 2000c, 26(3): 140-145
    143.徐世清,郑必平,司马杨虎,等.家蚕滞育性卵盐酸孵化法酸作用靶物[J].昆虫学报,2001,44(1): 51-55
    144.徐世清.桑蚕滞育性卵盐酸孵化理论研究[D].浙江农业大学,1997,63-67
    145.徐卫华,佐藤行洋,山下兴亚.家蚕滞育激素基因的克隆[J].遗传学报, 1995b,22(3): 178-184
    146.徐卫华.家蚕滞育的分子机理[J].遗传学报,1999,26(2): 107-111
    147.徐卫华.家蚕滞育激素-信息素合成激活肽基因表达的调节[J].中国生物化学和分子生物学学报.,1998,14(5): 557-561
    148.徐卫华.昆虫滞育研究进展[J].昆虫知识,2008,45(4): 512-517
    149.押部秀二,1943.实验蚕种学,玉研社,247
    150.赵林川,李兵,等.微粒子感染对家蚕过氧化氢代谢的影响[J].蚕学通讯,1998,18(2):15-17
    151.赵林川,时连根.家蚕滞育性卵中辅酶Ⅰ和辅酶Ⅱ的含量变化[J].蚕业科学,2008,34(3): 447-452
    152.赵林川,司马杨虎,李兵,等.即时浸酸对家蚕胚胎发育中H2O2代谢的影响[J].蚕业科学,2000,26(4):268-270
    153.赵林川,姚祥,李兵.家蚕变态过程中过氧化氢代谢特点及外源激素对其调节作用[J].蚕学通讯,1999, 19(3):5-8
    154.赵林川,姚祥.五龄家蚕过氧化氢的代谢.南京师大学报, 1997, 20(4):128-130
    155.赵林川.用过氧化氢提高催青期水处理蚕卵的孵化率[J].蚕业科学., 2004, 30(4): 440-442
    156.浙江农业大学主编.家蚕良种繁育与育种学[M],北京:中国农业出版社,1981,33
    157.郑必平,徐世清,徐孟奎,等.蓖麻蚕滞育与过氧化氢代谢的关系[J].蚕业科学,2006b,32(2): 221-225
    158.郑荣梁,1993.生命科学中自由基研究的鸟瞰.自由基生命科学进展1:5~13
    159.朱晓苏.家蚕生物钟基因Bm-cry的克隆及滞育诱发环境对其表达的影响[D].苏州:苏州大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700