催化裂化干气中乙烯的低聚反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化裂化(FCC)是石油炼化的核心工艺过程,干气是该过程的副产物,其中含有大量的乙烯。随着我国炼油企业的不断发展,干气产量也在大幅度提高。目前我国催化裂化装置加工能力已达130Mt/a左右,干气产量为5.2Mt/a,其中含有乙烯约1.0Mt/a。然而由于分离困难,我国多数炼油企业通常将干气用作燃料烧掉,造成了乙烯资源的浪费;或者用干气中乙烯与苯进行合成制取乙苯,但也会受限于苯的供应。伴随着原油资源的日益紧缺,如果能通过简单有效的途径将干气资源加以利用,变废为宝,则可以弥补化工原料的不足,为催化裂化装置带来新的效益。
     目前,除了催化裂化干气生产乙苯以外,干气中乙烯的回收利用技术还有深冷分离技术、变压吸附技术、中冷油吸收技术、ARS回收技术等。由于我国炼厂规模普遍偏小,涉及到成本问题,这些技术的应用并不广泛。要实现催化裂化干气中乙烯的有效利用,迫切需要开发易于实现的粗乙烯应用技术。由此设想将催化裂化干气中乙烯通过低聚反应生成液化气(LPG,即C3~C4)成分,实现以廉价资源生产高附加值产品。
     本文在固定床微反和流化床微反装置上,进行了催化裂化脱硫后干气中乙烯的低聚研究。结果表明该反应路线可行,并且发现在干气中乙烯低聚的同时伴随着氢转移、裂化、异构化和芳构化反应,共同构成复杂的反应网络。选择合适的反应条件可以控制原料的转化程度,改善产物分布,从而满足不同的生产目的。
     与二聚催化剂、歧化催化剂的反应结果的对比表明,酸性分子筛催化剂的反应活性和实用性最好。催化剂要含有Br?nsted酸(即质子酸,简称为B酸),同时要具有合适的孔道结构,才能具有较好的活性和稳定性。HZSM-5分子筛是乙烯低聚反应合适的催化剂的活性组分,且质量含量以20~30%为宜,高岭土是适宜的载体。
     催化剂酸性越强,乙烯转化率越高,丙烯、丁烯收率越低,使用含30%HZSM-5的催化剂,当酸密度大于0.14mmolNH3/g时,丙烯、丁烯收率显著减少。调节催化剂的酸性可以改善产物分布,例如使用低温离子交换催化剂、提高催化剂Si/Al比、在催化剂制备过程中引入适量P、金属或者对其进行水热处理均可以降低催化剂酸量,提高烯烃产物的收率。低温离子交换催化剂的稳定性非常差。在不同Si/Al比催化剂上的反应表明,乙烯双分子反应不受分子筛酸位分布密度的影响,而丙烯和丁烯的氢转移反应受到影响;乙烯二聚存在Eley-Rideal机理反应过程,而丙烯和丁烯的氢转移反应遵循Langmuir-Hinshelwood机理。在多种含金属的催化剂中,MgZSM-5催化剂上的丙烯收率和烯烃收率(丙烯丁烯收率之和)最高,可达12.21%和17.28%。
     温度对干气中乙烯低聚的影响非常显著。若以提高乙烯转化率和LPG收率为目的时,应该选择活性较高的新鲜催化剂,在400oC温度下即可,但是由于烯烃发生二次反应,所得产物中烷烃较多。提高压力和降低空速都有利于低聚反应,但由于新鲜催化剂容易积碳,反应条件不宜太苛刻。在温度为400oC,压力为0.1MPa,干气流量100mL/min和催化剂装填量0.5g的条件下,乙烯转化率为82.28%,LPG收率可达34.46%。若以丙烯为目的产物,最好使用水热处理催化剂,选择适当的空速和较低压力,在C4+组分能够裂化的高温下进行反应,同时也有利于抑制氢转移反应,另外添加适量稀释气也是增加丙烯收率的有效方法。在温度为550oC,压力为0.3MPa,干气流量100mL/min,氮气/干气比为1.0,催化剂装填量1g的条件下,乙烯转化率为49.79%,LPG收率为27.33%,丙烯收率为14.47%。经计算得知,新鲜催化剂和水热处理催化剂上乙烯低聚反应的级数分别为2.50和2.62。
     由于催化剂积碳等问题,流化床反应器在工业应用中具有更好的可行性,为此,在自行设计的流化床反应器上进行实验研究,结果表明,在较低温度下就能得到与固定床反应相当的结果。使用水热处理催化剂,在温度为500oC,常压,催化剂装填量为10g,干气流量为400mL/min时,乙烯转化率为47.22%,LPG、烯烃和丙烯收率分别为30.80%、21.21%和14.32%。
     为了了解干气组分在反应时的吸附情况,使用巨正则蒙特卡罗方法(GCMC)模拟了干气组分在ZSM-5分子筛中的吸附行为。经计算得知,在室温下,乙烯比丙烯更容易吸附,而在反应温度下,乙烯吸附量降至比丙烯还低。相比干气中更大的分子,高温更不利于乙烯的吸附。当干气组分在ZSM-5分子筛上共同吸附时,小分子吸附位置不具有明显的选择性,大分子则趋于集中吸附在孔道交叉处。C4+组分吸附能力较强,会优先抢夺催化剂孔道空间和吸附位,影响乙烯的吸附和反应。
     综上所述,以催化裂化干气为原料,通过选择适宜的催化剂和操作条件,可以将催化裂化干气中乙烯直接转化为LPG成分,从而实现废气资源化,本研究为催化裂化干气有效利用提供了一条新途径。
As the core of refining technology, Fluidized Catalytic Cracking (FCC) plays an important role in the deep conversion of crude oil; dry gas, which contains plenty of ethylene, is the byproduct of this process. Currently, the total FCCU productivity in China is 130Mt/a with dry gas of 5.2Mt/a containing ethylene of approximately 1.0Mt/a. With rapid expansion of refining capacity, the yield of FCC dry gas tends to increase.
     However, most dry gas is burnt out as fuel in China causing atmospheric pollution and wasting of ethylene resource or used to make ethylbenzene which is usually limited by short supply of benzene. From the viewpoint of energy conservation and emission reduction, it is meaningful to take full advantage of FCC dry gas resource to cover the shortage of chemical materials and make it a new economic growth point of FCCU. Therefore, how to deal with the ethylene in FCC dry gas scientifically will become a topic of high concern.
     Besides producting ethylbenzene, present recovery technologies of ethylene from dry gas are cryogenic separation, adsorption separation, ARS method and so on. These technologies have been used and made profits in some refineries. However, most refineries in China are in small scale, in consideration of production cost, these technologies have narrow application prospects or low economic benefits. Therefore, other route should be found to make effective use of ethylene in FCC dry gas. The direct oligomerization of ethylene in FCC dry gas to Liquefied Petrolem Gas (LPG) hydrocarbons would be a feasible route.
     In this work, the oligomerization of ethylene in FCC dry gas (after desulfuration) on fixed bed reactor and fluidized bed reactor was investigated. The results showed that this reaction was feasible; moreover, the oligomerization, hydrogen transfer, cracking, isomerization and aromatization existed togother. Through choosing modest catalysts or reaction condition, the improvement in ethylene conversion and product distribution could be obtained.
     Compared with dimerization catalysts and metathesis catalysts, proton-exchanged zeolite catalysts showed the best activity and practicality. Br?nsted acid sites (B acid sites for short) and modest pore property were necessary. The proper active component and supporter were HZSM-5 zeolite (20~30wt%) and kaolin, respectively.
     With the increase in catalyst acidity, the ethylene conversion could be increased, while propylene and butylene yields were decreased when acid density exceeded 0.14mmolNH3/g over 30%HZSM-5 catalyst. Using catalyst ion-exchanged at low temperature, increasing Si/Al ratio, adding phosphorus or metal in catalyst and using steam treated catalyst could decrease the catalyst acidity and enhance propylene and butylene yields. The dimerization of ethylene was not restrained by sparse distribution of acid sites, and it proceeded containing Eley-Rideal mechanism; while the hydrogen transfer reaction of propylene and butylene was suppressed when acid density was low, and it followed the Langmuir-Hinshelwood mechanism. Among all MZSM-5 catalysts investigated, MgZSM-5 gave the highest propylene yield and olefin yield (sum of propylene and butylene), 12.21% and 17.28% respectively.
     The effect of temperature on ethylene oligomerization was remarkable. When ethylene conversion and LPG yield was the goal, fresh catalyst should be selected, and reaction temperature should be set 400oC, but more paraffin in LPG was formed because of the secondary reaction of olefin. Increasing pressure or decreasing space velocity favored the oligomerization of ethylene, but reaction condition could not be severe concerning about carbon deposition. Ethylene conversion and LPG yield could reach 82.28% and 34.46% under the condition of 400oC, 0.1MPa, and space velocity of 18h-1. When propylene was the desired product, steam treated catalyst, modest space velocity and pressure should be selected, and temperature should be increased to when C4+ could be cracked. Adding dilute gas was another approach to enhance propylene yield. Ethylene conversion, LPG and propylene yield could reach 49.79%, 2.33% and 14.47% respectively under the condition of 550oC, 0.3MPa, space velocity of 18h-1 and nitrogen/dry gas (volume ratio) of 1.0. The reaction order of ethylene over fresh catalyst and steam treated catalyst are 2.50 and 2.62, respectively.
     Carbon deposition restricts practical application of fixed bed reactor and makes fluidized bed reactor more desirable. Similar product distribution could be obtained in fluidized bed reactor at relatively lower temperature compared with fixed bed reactor. Ethylene conversion could reach 47.22% over steam-treated catalyst under the condition of 500oC, one atmosphere, catalyst weight of 10g and flow rate of 400mL/min, the LPG, olefin and propylene yield were 30.80%, 21.21% and 14.32%, respectively.
     To understand the adsorption properties of FCC components over ZSM-5 zeolite, the simulation calculation was carried out using Grand Canonical Monte Carlo method. Ethylene adsorbed on ZSM-5 more easily than propylene at room temperature, while at reaction temperature, the adsorption of ethylene was inhibited dramatically. The adsorption site of small molecules has no selectivity, while C4+ molecules tend to adsorb at the crossing of channel and occupy pore space and adsorption sites, thereby affecting the adsorption and reaction of ethylene.
     To sum up, the ethylene in FCC dry gas could oligomerize to LPG component on proper catalyst under modest condition. It is anticipated that this research will pave the way for the future research in the use of ethylene in FCC dry gas.
引文
[1] Li C Y,Yang C H,Shan H H.Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J].Ind. Eng. Chem. Res,2007,46(14):4914-4920
    [2]李春义,袁起民,陈小博,等.两段提升管催化裂解多产丙烯研究[J].中国石油大学学报(自然科学版),2007,31(1):118-121
    [3]李晓红,陈小博,李春义,等.两段提升管催化裂化生产丙烯工艺[J].石油化工,2006,35(8):749-753
    [4]乔映宾.炼厂气的综合利用技术[J].石油炼制与化工,1997,28(6):20-24
    [5]林泰明,谷育生,李吉春,等.催化裂化干气的综合利用[J].石化技术与应用,2004,22(5):315-319
    [6]朱英强,赵新强,白跃华,等.从催化裂化干气中提取乙烯[J].化学工业与工程,2004,21(2):112-116
    [7]谢春雷,方义东.催化干气中乙烯的回收利用[J].石化技术,2005,12(3):63-67
    [8]张勇.气相法聚乙烯技术新进展[J].合成树脂及塑料,2001,18(2):51-53
    [9]白尔铮.直链α-烯烃生产技术进展[J].石油化工,1997,26(12):843-848
    [10] Dutta P,Roy S C,Nandi L N,et al.Synthesis of lower olefins from methanol and subsequent conversion of ethylene to higher olefins via oligomerisation[J].Journal of Molecular Catalysis A:Chemical,2004,223(2):231-235
    [11] Ghosh A K,Kevan L.Electron spin resonance studies of ethylene dimerization catalysed by nickel species on Y zeolites[J].Journal of Physical Chemistry,1990,94(7):3117-3121
    [12] Hartmann M,P?ppl A,Kevan L.Ethylene dimerization and butane isomerization in nickel-containing MCM-41 and AlMCM-41 mesoporous molecular sieves:An electron spin resonance and gas chromatography study[J].Journal of Physical Chemistry,1996,100(23):9906-9910
    [13] Sohn J R,Cho E S.Promoting effect of Al2O3 on catalytic activity of NiSO4/ZrO4 for ethylene dimerization[J].Applied Catalysis A:General,2005,282(1):147-154
    [14] Sohn J R,Lim J S.Ethylene dimerization over NiSO4 supported on Fe2O3-promoted ZrO2 catalyst[J].Catalysis Today,2006,111(4):403-411
    [15] Sohn J R,Lee S H.Effect of Ti-ZrO2 composition on catalytic activity of supported NiSO4 for ethylene dimerization[J].Applied Catalysis A:General,2007,321(1):27-34
    [16] Ikeda K,Kawamura Y,Yamanoto T,et al.Effectiveness of the template-ion exchange method for appearance of catalytic activity of Ni-MCM-41 for the ethane to propene reaction[J].Catalysis Communications,2008,9(1):106-110
    [17] Iwamoto M,Kosugi Y.Highly selective conversion of ethane to propene and butanes on nickel ion-loaded mesoporous silica catalysts[J].The Journal of Physical Chemistry C,2007,111(1):13-15
    [18] Huang S J,Liu S L,Xin W J,et al.Effect of reaction temperature and pressure on the metathesis reaction between ethylene and 2-butene to propene on the WO3/Al2O3-HY catalyst[J].Journal of Natural Gas Chemistry,2006,15(2):93-99
    [19] Oikawa H,Shibata Y,Inazu K,et al.Highly selective conversion of ethane to propene over SAPO-34 as a solid acid catalyst[J].Applied Catalysis A:General,2006,312(1):181-185
    [20] Chen C,Heights B,N J.Process of making high VI lubes[P].US4520221,1985
    [21] Chen C, Heights B, Tabak S A,et al.Production of lubricant range hydrocarbons from light olefins[P].US4568786,1986
    [22] Chen C,Heights B,N J.Production of lubricant range hydrocarbons from Light olefins[P].US4658079,1987
    [23] Quann R J,Moorestown,N J.Process for preparing alpha-olefins from light olefins[P].US4665245,1987
    [24]王文英,张振亮.炼厂干气的回收利用[J].化工技术经济,2000,18(2):11-16
    [25]李建英.催化干气中乙烯的回收技术进展[J].化工纵横,2003,17(9):21-22
    [26]张传江,赵永勤,杨书春.变压吸附法从催化干气中回收乙烯[J].石油与天然气化工,2002,31(6):295-298
    [27]谢有畅,李玉龙,陈玉常,等.从含稀乙烯气体中回收乙烯的方法[P].CN1183399A,1998
    [28]樊栓狮,郭开华.从催化裂化干气中分离回收乙烯的方法和装置[P].CN1301684A,2001
    [29] Eriksen O I,Vik I B,Dahl I M,et al.Separation of ethene from ethane with permeators based on silver ion-exchanged nafion hollow fibers[J].Polymeric Materials Science and Engineering,1997,77:265-266
    [30]高敦仁.炼厂干气中烯烃回收的最新方法——ARS的初步评价[J].石油化工技术经济,1994,10(2):25-29
    [31]李恒泰,陶志林,孙秀芬.炼厂干气的综合利用[J].石油化工动态,1997,5(5):21-23
    [32]吴茨萍,孙利.炼厂干气的分离回收和综合利用[J].现代化工,2001,21(5):20-23
    [33] Lewis P J,Dwyer F G.Ethylbenzene unit operates well on dilute ethylene[J].Oil and Gas J,1977,75(40):55-58
    [34]曲帅卿,王利.催化裂化干气制苯乙烯技术的工业应用[J].石油炼制与化工,2003,34(6):22-26
    [35]孙新德,王清遐,刘盛林,等.干气和苯催化蒸馏制乙苯[J].石油化工,2005,34(7):626-631
    [36]王清遐,徐龙伢,张淑蓉,等.催化裂化干气中乙烯和甲苯烃化制对甲基乙苯[J].石油化工,1997,26(12):800-803
    [37]张淑蓉,郝景龙,胡清溪,等.催化裂化干气中稀乙烯与甲苯烷基化制对甲基乙苯的研究[J].石油炼制与化工,1998,29(10):5-9
    [38]王彦伟,刘晓欣,徐舒言.催化干气稀乙烯制丙醛及丙醛市场前景[J].石油化工技术经济,2002,18(4):42-46
    [39]李贤均,陈华,黎耀忠,等.一种乙烯制丙醛的方法[P].CN1434015A,2003
    [40]殷元骐,特木勒,胡斌,等.低浓度烯烃经羰基合成制备正异构醛的过程[P].CN1125712A,1996
    [41]季亚英,陈燕馨,李文钊,等.催化干气选择氧化制氢[J].石油与天然气化工,1999,28(3):190-192
    [42]张君涛,付兴国,张耀君,等.乙烯齐聚制线性α-烯烃的技术进展[J].西安石油学院学报(自然科学版),2002,17(2):44-51
    [43]赵光辉,邵伟,关旭.直链α-烯烃的技术进展及应用前景[J].中国石油和化工,2006(1):29-32
    [44]张玉良,钱明星,何仁.过渡金属络合物催化乙烯齐聚[J].应用化学,2001,18(5):360-364
    [45]焦宁宁.乙烯二聚制高纯丁烯-1技术经济评价[J].化学技术经济,1995(6):30-33
    [46] Commereuc D , Chauvin Y , Gaillard J , et al . Dimerize ethylene to butane-1[J].Hydrocarbon Processing,1984,63(11):118-120
    [47]薛祖源.Alphabutol工艺乙烯二聚制丁烯-1技术的评析[J].化工设计,1996(1):8-12
    [48]于正一.乙烯二聚反应条件探讨[J].广州化工,2000(3):38-42
    [49]范潞,张宝,陈一斋.乙烯催化二聚合成1-丁烯及其催化剂的研制[J].现代化工,1995(4):27-29
    [50] Carter C O,Wann,Okla.Surface Conditioning in olefin dimerization reactors [P].US4538018,1985
    [51]张剑锋.乙烯催化二聚制丁烯-1技术进展[J].现代化工,1994(2):17-23
    [52] Maschmeyer D M,Fowler A E,Sims S A,et al.Process for making a mixture of ethylene and butane-1[P].US4484016,1984
    [53]周爽,刘国良.线性α-烯烃及应用[J].化学工程师,1994(6):34-37
    [54] Phillips seeks partner for 1-hexene technology[N].European Chemical News,1995,64(1696):24
    [55] Process set to produce near-pure hexane-1[N].European Chemical News,1997,67(175):24
    [56]黄文.生产线性α烯烃和聚α烯烃的现代技术(一)[J].化工科技动态,1995,11(10):21-24
    [57]黄文.生产线性α烯烃和聚α烯烃的现代技术(二) [J].化工科技动态,1995,11(11):22-24
    [58]章文.α-烯烃的技术进展和市场分析[J].上海化工,2004(4):48-49
    [59]赵军.Mobil公司拟向我国提供石化产品生产技术[J].化工科技动态,1995,11(6):18-20
    [60]宋瑞琦,相宏伟,李永旺等.烯烃齐聚合成液体燃料[J].燃料化学学报,1999,27(suppl):79-89
    [61]焦书科.烯烃配位聚合理论与实践[M].北京:化学工业出版社,2004:25
    [62]孙淑坤.乙烯齐聚催化剂研究进展[J].辽宁化工,2003,32(12):529-532
    [63]谭志俊,贺大为.乙烯二聚和齐聚催化剂[J].石油化工,1997,26(11):778-78
    [64] Pillai S M,Tembe G L,Ravindranathan M,et al.Dimerization of ethylene to 1-butene catalyzed by the Titanium Alkoxide-Trialkylaluminum system[J].Ind Eng Chem Res,1988,27(11):1971-1997
    [65] Andrzej K , Perry J . A method of producing 1-butene by dimerization of ethylene[P].CA1298829,1992
    [66]何仁,于净,卫锋.乙烯线性齐聚的研究X.烷氧基锆的催化性能[J].催化学报,1995,16(2):163-166
    [67]何仁,郭瑞超,赵琦,等.乙烯齐聚合制备低碳α-烯烃的连续化过程[P].CN1160700,1997
    [68]沈玉梅,何仁.乙烯线性齐聚研究XI.Kaminsky催化剂催化乙烯齐聚[J].催化学报,1995,16(3):245-249
    [69]王梅,沈玉梅,钱明星,等.Kaminsky型催化剂催化乙烯齐聚——二酚基二茂锆的催化作用[J].分子催化,1999,13(4):282-286
    [70]钱明星,黄勇,王梅,等.二茚基二芳氧基锆催化乙烯齐聚[J].应用化学,2000,17(1):96-98
    [71]钱明星,黄勇,王辉,等.Ind2ZrCln(OC6H3-3,5-Me2)2-n一氯二乙基铝催化乙烯齐聚的研究[J].分子催化,2000,14(1):29-32
    [72]焦书科.烯烃配位聚合理论与实践[M].北京:化学工业出版社,2004:135
    [73]刘东兵,李达刚.镍系催化剂乙烯齐聚制线性α-烯烃[J].分子催化,1998,12(1):71-79
    [74]刘东兵,宋焕玲,李达刚.镍螯合物催化乙烯齐聚制低碳α-烯烃[J].应用化学,1997,14(3):99-101
    [75] Peuckert M , Keim W . A new complex for the oligomerization of ethylene[J].Organometallics,1983,2(5):594-597
    [76]李达刚,刘东兵.对SHOP法乙烯齐聚制α-烯烃催化剂的改进与创新[J].石油化工,1999,28(5):297-300
    [77]沈昊宇,金国新.新型后过渡金属烯烃聚合催化剂——镍系烯烃聚合催化剂[J].化学进展,2003,15(1):60-66
    [78] Killian C M,Johnson L K,Brookhart M.Preparation of linearα-olefins using cationic Nickel(II)α-Diimine catalysts[J].Organometallics,1997,16(10):2005-2007
    [79]贾辉,陈红霞,卢艳,等.α-二亚胺合镍氯化物/MAO催化乙烯齐聚[J].大庆石油学院学报,2003,27(4):36-38
    [80] Small B L,Brookhart M.Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linearα-olefins[J].Journal of the Ameican Chemical Society,1998,120(28):7143-7144
    [81]马志,孙文华,王航,等.一种新型双亚胺吡啶铁系催化剂的乙烯低聚研究[J].高分子学报,2002(5):703-706
    [82]张志成,柯毓才,吕英莹,等.一种吡啶二亚胺类铁催化剂的合成及乙烯低聚研究[J].高分子学报,2005(2):191-196
    [83] Chen Y F,Qian C T,S J.Fluoro-substituted 2,6-bis(imino) pyridyl Iron and Cobalts complexes:high activity ethylene oligomerization catalysts[J].Organometallics,2003,22(6):1231-1236
    [84] Chen Y F,Chen R F,Qian C T,et al.Halogen-substituted 2,6-bis(imino) pyridyl Iron and Cobalts complexes:high active catalysts for polymerization and oligomerization of ethylene[J].Organometallics,2003,22(21):4312-4321
    [85]张闻,黄文娟,孙文华.后过渡金属配合物催化乙烯齐聚与聚合的研究进展[J].化学进展,2005,17(2):310-319
    [86] Bianchini C,Mantovani G,Meli A,et al.Selective oligomerization of ethylene to linearα-olefins by tetrahedral Cobalt(II) complexes with 6-(Organyl)-2-(imino) pyridyl ligands : influence of the heteroatom in the organyl group on the catalytic activity[J].Organometallics,2003,22(13):2545-2547
    [87]李光辉,黄英娟,孔维苓,等.钴系亚胺基配合物催化乙烯齐聚性能评价[J].河北工业大学学报,2004,33(5):33-37
    [88]刘元霞,方义群,宋炬伟,等.铬系乙烯齐聚和聚合催化剂[J].高分子通报,2002(2):29-37
    [89]隋军龙,杜向东,栗同林.乙烯三聚制1-己烯的研究[J].合成树脂及塑料,2001,18(2):23-25
    [90]隋军龙,栗同林.氯化物对乙烯三聚合制1-己烯的影响[J].合成树脂及塑料,2005,22(2):19-22
    [91]姜涛,阎卫东,刘立新,等.乙烯三聚制1-己烯研究进展[J].石化技术与应用,2000,18(5):284-287
    [92]雷燕湘.世界丙烯及其衍生物发展现状与趋势[J],当代石油石化,2007,15(4):38-44
    [93] Mol J C.Industrial applications of olefin metathesis[J].Journal of Molecular Catalysis A:Chemical.2004,213(1):39-45
    [94]温陵生,刘雅娟,张武阳,等.固体磷酸催化剂的活性相[J].高等学校化学学报,1994,15(3):428-430
    [95] M.A.达琳娜.高级烯烃生产和应用[M].北京:烃加工出版社,1986:153
    [96] Kazansky V B,Elev IV,Shelimov B N.Preparation of monovalent nickel surface complexes by selective hydrogen photoreduction of supported nickel(II) ions: their activity in acetylene cyclotrimerization and ethylene oligomerization[J].Journal of Molecular Catalysis,1983,21(1-3):265-274
    [97] Witzel F,Sill G A,Hall W K.Reaction studies of the selective reduction of NO by various hydrocarbons[J].Journal of Catalysis,1994,149(1):229-237
    [98] Mosqueda-Jiménez B I,Jentys A,Seshan K,et al.Structure-activity relations for Ni-containing zeolites during NO reduction:II.Role of the chemical state of Ni[J].Journal of Catalysis,2003,218(2):375-385
    [99] Speiser F , Braunstein P , Saussine L . Catalytic Ethylene Dimerization and Oligomerization : Recent Developments with Nickel Complexes Containing P,N-Chelating Ligands[J].Accounts of Chemical Research,2005,38(10):784-793
    [100] Kimura K,A-I H,Ozaki A.Tracer study of ethylene dimerization over nickel oxide-silica catalyst[J].Journal of Catalysis,1970,18(3):271-280
    [101]王大庆,靳长德,蔡天锡.NiSO4/γ-Al2O3烯烃迭合催化剂的制备及其催化性能的研究[J].石油化工,1988,17(9):549-554
    [102] Cai T X,Zang L Y,Qi A H,et al.Propene oligomerization catalyst derived from nickel sulfate supported onγ-alumina[J].Applied Catalysis,1991,69(1):1-13
    [103]蔡天锡,曹殿学,齐爱华,等.NiSO4/γ-Al2O3对低级烯烃齐聚反应的催化作用[J].催化学报,1995,15(1):23-27
    [104] Sohn J R,Kim H W,Park M Y,et al.Highly active catalyst of NiO-ZrO2 modified with H2SO4 for ethylene dimerization[J].Applied Catalysis A:General,1995,128(1):127-141
    [105] Sohn J R,Lee S Y.High catalytic activity of NiO-ZrO2 modified with WO3 for ethylene dimerization[J].Applied Catalysis A:General,1997,164(1-2):127-140
    [106] Sohn J R,Park W C.Characterization and catalytic activity for ethylene dimerization of nickel sulfate supported on zirconia[J].Applied Catalysis A:General,2002,230(1-2):11-18
    [107] Sohn J R,Park W C,Kim H W.Characterization of nickel sulfate supported onγ-Al2O3 for ethylene dimerization and its relationship to acidid properties[J].Journal of Catalysis,2002,209(1):69-74
    [108] Sohn J R.Catalytic activities of nickel-containing catalysts for ethylene dimerization and butane isomerization and their relationship to acidic properties[J].Catalysis Today,2002,73(1-2):197-209
    [109] Yonemitsu M,Tanaka Y,Iwamoto M.Metal ion-planted MCM-41.Planting of Manganese(II) ion into MCM-41 by a newly developed template-ion exchange method[J].Chemical Material,1997,9(12):2679-2681
    [110] Yonemitsu M,Tanaka Y,Iwamoto M.Metal ion-planted MCM-412.Catalytic epoxidation of stilbene and its derivatives with tert-butyl hydroperoxide on Mn-MCM-41[J].Journal of Catalysis,1998,178(1):207-213
    [111] Hulea V,Fajula F.Ni-exchanged AlMCM-41——An efficient bifunctional catalyst for ethylene oligomerization[J].Journal of Catalysis,2004,225(1):213-222
    [112] Lallemand M,Finiels A,Fajula F,et al.Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites[J].Applied Catalysis A:General,2006,301(2):196-201
    [113] Wendt G,Finster J,Schoellner R,et al.Structural and catalytic properties of NiO-Al2O3/SiO2 catalysts for the dimerization and isomerization of olefins[J].Studies in Surface Science and Catalysis,1981,7(2):978-992
    [114] Kasai P H,Bishop R J,Mcleod D.Ligand effects on the redox reactions in nickel-and copper-exchanged zeolites[J].Journal of Physical Chemistry,1978,82(3):279-285
    [115] Prakash A M,Kevan L.Formation of monovalent nickel in NiNa-MCM-22 zeolite and its interaction with various inorganic and organic adsorbates:Electron spin resonance studies[J].Journal of Physical Chemistry,1996,100(50):19587-19594
    [116] Mihaylov M,Hadjiivanov K.Redox couples in the selective catalytic reduction of NOx with hydrocarbons over Co-ZSM-5 and Ni-ZSM-5 catalysts: an FT-IR study[J].Chemical Communications,2004(19):2200-2201
    [117] Azuma N, Kevan L.Electron spin resonance and election spin echo modulation studies of Ni(I) in silicoaluminophosphate type 11:Reducibility and location of nickel ions during various degrees of dehydration[J].Journal of Physical Chemistry,1995,99(14):5083-5088
    [118] Zhang Q L,Kantcheva M,Dalla Lana I G.Oligomerization of ethylene in a slurry reactor using a Nickel/Sulfated Alumina catalyst[J].Ind Eng Chem Res,1997,36(9):3433-3438
    [119] Lallemand M,Rusu O A,Dumitriu E,et al.NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization:Effect of zeolite texture and nickel cations/acid sites ratio[J].Applied Catalysis A:General,2008,338(1-2):37-43
    [120] Lallemand M,Finiels A,Fajula F,et al.Nature of the Active Sites in Ethylene Oligomerization Catalyzed by Ni-Containing Molecular Sieves:Chemical and IR Spectral Investigation[J].Journal of Physical chemistry C,2009,113(47):20360-20364
    [121] Corma A.From microporous to mesoporous molecular sieve materials and their use in catalysis[J].Chemcal Reviews,1997,97(6):2373-2420
    [122] Amin N A S,Anggoro D D.Dealuminated ZSM-5 zeolite catalyst for ethylene oligomerization to liquid fuels[J].Journal of Natural Gas Chemistry,2002,11(1-2):79-86
    [123] Quann R J,Krambeck F J.Chemical Reactions in Complex Mixtures[M].New York:Van Nostrand Reinhold,1991:143-160
    [124] Page N M,Ysrdley,Young L B,et al.Olefin oligermerization with surface modified zeolite[P].US4855527,1989
    [125] Wilshier K G,Smart P,Western R,et al.Oligomerization of propene over H-ZSM-5 zeolite[J].Applied Catalysis,1987,31(2):339-359
    [126]王殿中,何鸣元.稀乙烯在ZSM-5沸石上转化为异丁烯与汽油的反应[J].石油炼制与化工,1995,26(8):59-63
    [127]王殿中,何鸣元.稀乙烯在ZSM-5沸石上叠合与芳构化反应环境因素的影响[J].石油炼制与化工,1995,26(9):15-18
    [128]张君涛,张耀君,梁生荣.多相催化乙烯齐聚制α-烯烃的研究(I)[J].分子催化,2004,18(5):357-360
    [129]张君涛,张耀君,梁生荣.表面修饰对金属负载型MZSM-5催化剂乙烯齐聚性能的影响[J].分子催化,2005,19(2):121-125
    [130]张昕,王建伟,钟进,等.丁烯齐聚反应催化剂及其工艺的研究进展[J].石油化工,2004,33(8):781-786
    [131] Baba T,Iwase Y,Inazu K,et al.Catalytic properties of silver-exchanged zeolites for propene production by conversion of methane in the presence of ethene[J].Microporous and Mesoporous Materials,2007,101(1-2):142-147
    [132]李金哲,齐越,刘中民,等.SAPO-34催化剂上反应条件对乙烯转化制丙烯的影响[J],催化学报,2007,29(7):660-664
    [133] Huang S J,Liu S L,Xin W J,et al.Effect of reaction temperature and pressure on the metathesis reaction between ethylene and 2-butene to propene on the WO3/Al2O3-HY catalyst[J].Journal of Natural Gas Chemistry,2006,15(2):93-99
    [134] Yamaguchi T,Tanaka Y,Tanabe K.Isomerization and disproportionation of olefins over tungsten oxides supported on various oxides[J].Journal of Catalysis,1980,65(2):442-447
    [135] O’Nill P P,Rooney J J.Direct transformation of ethylene to propylene on an olefin metathesis catalyst[J].J. Am. Chem. Soc,1972,94(12):4383-4384
    [136]瞿勇,唐荣华,白尔铮,等.C4烯烃歧化制丙烯技术[J].石油化工,2002,31(12):1017-1021
    [137] Taoufik M,Le Roux E,Thivolle-Cazat J,et al.Direct Transformation of Ethylene into Propylene Catalyzed by a Tungsten Hydride Supported on Alumina: Trifunctional Single-Site Catalysis[J].Angewandte Chemie International Edition.2007,46(38):7202-7205
    [138] Le Roux E,Taoufix, M,Cope′ret, C,et al.Development of Tungsten-Based Heterogeneous Alkane Metathesis Catalysts through a Structure-Activity Relationship[J].Angewandte Chemie International Edition.2005,44(41):6755-6758
    [139]田华.脂肪酸酯的催化裂化研究[D].东营:中国石油大学(华东),2008
    [140]袁起民.焦化蜡油催化裂化转化应用基础研究[D].东营:中国石油大学(华东),2007
    [141]李晓波,胡津仙,王锋,等.含锆ZSM-5分子筛上丙烯齐聚反应的研究[J].燃料化学学报,2004,32(2):498-503
    [142]吴铭.世界丙烯市场供求趋紧[J].中国石油和化工,2008(4):27-28
    [143]陈伟雄.国内聚异丁烯供需概况[J].化工科技市场,2005,28(12):38-39
    [144] Poncelet G,Dubru M L.An infrared study of the surface acidity of Germanic near-faujasite zeolite by pyridine adsorption[J].Journal of Catalysis,1978,52(2):321-331
    [145] Haw J F,Song W,Marcus D M,et al.The mechanism of methanol to hydrocarbon catalysis[J].Acc Chem Res,2003,36(5):317-326
    [146] Dahl I M,Kolboe S.On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J].Catalysis Letters,1993,20(3-4):329-336
    [147]张剑秋,田辉平,达志坚,等.磷改性Y型分子筛的氢转移性能考察[J].石油学报(石油加工),2002,18(3):70-74
    [148]柯明,汪燮卿,张凤美.分子筛孔结构和硅铝比对催化裂化产品中乙烯选择性的影响[J].石油炼制与化工,2003,34(9):53-58
    [149] Corma A,González-Alfaro V,Orchillés A V.The role of pore topology on the behavior of FCC zeolite additives[J].Applied Catalysis A:General,1999,187 (2):245-254
    [150]张汉军,胡霞美,谢克令,等.ZSM-5芳构化反应活性和稳定性的研究[J].分子催化,1998,12(5):385-388
    [151]宋月芹,徐龙伢,谢肃娟,等.ZSM-5分子筛催化剂上液化石油气低温芳构化制取高辛烷值汽油[J].催化学报,2004,25(3):199-204
    [152]龙军,魏晓丽.催化裂化生成干气的反应理论研究[J].石油学报(石油加工),2007,23(1):1-7
    [153] Bortnovsky O,Sazama P,Wichterlova B.Cracking of pentenes to C2-C4 light olefins over zeolites and zeotypes-Role of topology and acid site strength and concentration[J].Applied Catalysis A:General,2005,287(2):203-213
    [154] Liu F Y,Li C Y,Ding X,et al.Studies on catalytic conversion of ethylene[J].Journal of Natural Gas Chemistry,2007,16(3):301-307
    [155] den Hollander M A,Wissink M,Makkee M,et al.Gasoline conversion:reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts[J].Applied Catalysis A:General,2002,223(1-2):85-102
    [156]英徐根,张国政.计算物理化学[M].北京:科学出版社,2001:234-246
    [157]王松汉.石油化工设计手册第一卷[M].北京:化学工业出版社,2002:383-407
    [158] Tzompantzi F,Mantilla A,Del A G,et al.NiO–W2O3/Al2O3 catalysts for the production of ecological gasoline:Effect of both NiO and the preparation method on the isobutene oligomerization selectivity[J].Catalysis Today,2009,143(1-2):132-136
    [159] Katada N,Igi H,Kim J H,et al.Determination of the Acidic Properties of Zeolites by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium[J].Journal of Physical Chemistry B,1997,101(31):5969-5977
    [160] Ghosh A K,Kydd R A.A fourier transform infrared spectral study of propene reactions on aciditc zeolites[J].Journal of Catalysis,1986,100(1):185-195
    [161]纪华,胡津仙,吕毅军,等.丙烯在Zr/HZSM-5催化剂上齐聚反应性能的研究[J].燃料化学学报,2001,29(suppl):22-25
    [162]李景林,李斌,梁宇宁,等.Ag-ZSM-5分子筛上乙醇氧化过程中积碳行为的研究[J].广西科学,1999,6(2):106-108
    [163]尉东光,周敬来,张碧江.分子筛催化剂结焦失活探讨[J].天然气化工,1995,20(2):47-52
    [164]陈俊武.催化裂化工艺与工程[M].北京:中国石化出版社,2005:184-185
    [165]高永灿,张久顺.催化裂化过程中氢转移反应的研究[J].炼油设计,2000,30(11):34-38
    [166]吴越.催化化学[M].北京:科学出版社,1995:1056
    [167] Miller S J.Oligomerization of Gaseous Olefeins[P].US4423269,1983
    [168] Buchanan J S. Gasoline selective ZSM-5 FCC additives: Model reactions of C6-C10 olefins over steamed 55:1 and 450:1 ZSM-5[J].Applied Catalysis A:General,1998,171(1):57-64
    [169]王殿中,舒兴田,何鸣元,等.一种高硅ZSM-5沸石的合成方法[P].CN1235875,1999
    [170] Zhu X X,Liu S L,Song Y Q,et al.Catalytic cracking of C4 alkenes to propene and ethene: Influences of zeolites pore structures and Si/Al2 ratios[J].Applied Catlysis A:General,2005,288(1-2):134-142
    [171] Bessel S,Seddon D.The conversion of ethene and propene to higher hydrocarbons over ZSM-4[J].Journal of Catalysis,1987,105(1):270-275
    [172]丁冰晶,黄世萍,汪文川.酸性分子筛催化乙烯二聚反应[J].物理化学学报,2007,23(12):1864-1868
    [173]张佳,周丹红,倪丹.H-ZSM-5分子筛上的乙烯二聚反应机理的理论计算研究[J].催化学报,2008,29(8):715-719
    [174]朱洪法.石油化工催化剂基础知识[M].北京:中国石化出版社,1995:35-38
    [175]郑淑琴,庞新梅,孙书红,等.拟薄水铝石作为催化裂化催化剂活性组分的研究[J].炼油设计,2002,32(3):7-10
    [176] Vonghia E,Boocock D G B,Konar S K,et al.Pathways for the deoxygenation of triglycerides to aliphatic hydrocarbons over activated alumina[J].Energy & Fuels,1995,9(6):1090-1096
    [177]郑淑琴,索继栓,张永明,等.FCC催化剂中高岭土的影响及应用[J].非金属矿,2002,25(2):22-23
    [178]沈志虹,潘惠芳,徐春生,等.磷对烃类催化裂化催化剂表面酸性及抗炭性能的影响[J].石油大学学报(自然科学版),1994,18(2):86-89
    [179] Xue N,Chen X,Nie L,et al.Understanding the Enhancement of Catalytic Performances for Olefin Cracking: Hydrothermally Stable Acids in P/HZSM-5[J].Journal of Catalysis,2007,248(1):20-28
    [180] Lin B M,Zhang Q H,Wang Y.Catalytic conversion of ethylene to propylene and butens over H-ZSM-5[J].Ind.Eng.Chem.Res,2009,48(24):10788-10795
    [181]吕仁庆,罗立文,项寿鹤.水热处理的HZSM-5分子筛的孔结构及活性研究[J].石油大学学报(自然科学版),2002,26(3):97-101
    [182]吕仁庆,王秋英,项寿鹤.碱性水蒸气处理对ZSM-5沸石酸性质及孔结构的影响[J].催化学报,2002,23(5):421-424
    [183]胡颖,舒兴田.ZSM-5沸石中非骨架铝对沸石裂化性能影响的初步探讨[J].石油学报(石油加工),1998,14(3):85-88
    [184]龙立华,万焱波,伏再辉.磷改性ZSM-5沸石的催化裂化性能[J].工业催化,2004,12(5):11-15
    [185]杨小明,罗京娥.磷氧化物改性对ZSM-5沸石物化性质及择形催化性能的影响[J].石油炼制与化工,2001,32(11):48-51
    [186]吴向阳.丙烯的催化二聚[J].江苏理工大学学报(自然科学版),1999,20(6):54-56
    [187]洪庆尧,谢红霞,盖月庭,等.由丁烯二聚制C8、C12烯烃的研究[J].石油化工,2001,30(12):899-903
    [188]吴向阳,吴锁川,孟中岳.丙烯的催化二聚与芳构化[J].催化学报,1991,12(5):388-393
    [189]朱华元,何鸣元,宋家庆,等.含碱土金属分子筛对FCC催化剂催化性能的影响[J].石油学报(石油加工),2001,17(6):6-10
    [190] Garwood W E,Krambeck F J,Kushnerick J D,et al.Multistage conversion on lower olefins with interreator quenching[P].US4740645,1988
    [191] Mat R,Amin N A S,Ramil Z,et al.Ethylene conversion to higher hydrocarbon over copper loaded BZSM-5 in the presence of oxygen[J].Journal of Natrual Gas Chemistry,2006,15(6):259-265
    [192]朱光中.正己烷在金属改性HZSM-5上芳构化反应的影响因素[J].石油学报(石油加工),1997,13(3):100-104
    [193] Kanazirev V I,Price G L.Propane conversion on Cu-MFI zeolites[J].Journal of Molecular Catalysis A:Chemical,1995,96(2):145-154
    [194] Ishaq M,Khan M A,Yashima T.Transformation of n-butane over HZSM-5 and other MFI type zeolites[J].Fuel Processing Technology,1998,56(3):169-181
    [195] Wang X N,Zhao Z,Xu C M,et al.Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeotlite for catalytic cracking of butane to ligh olefins[J].Journal of Rare Earths,2007,25(3):321-328
    [196]刘鸿洲,汪燮卿.ZSM-5分子筛中引入过渡金属对催化热裂解反应的影响[J].石油炼制与化工,2001,32(2):48-51
    [197] Wang J W,Kang M Q,Zhang Z X,et al.Propane aromatization over Mo/HZSM-5 catalysts[J].Journal of Natrual Gas Chemistry,2002,11(1-2):43-50
    [198] Li Y G,Xie W H,Yong S.The acidity and catalytic behavior of Mg-ZSM-5 prepared via a solid-state reaction[J].Applied Catalysis A,1997,150(2):231-242
    [199]刘一心,何智勇.轻烃芳构化技术进展[J].石油与天然气加工,2005,34(3):165-167
    [200]费翔.醚化后混合C4催化转化规律及应用研究[D].东营:中国石油大学(华东),2008
    [201]肖志英.流化床反应器设备设计计算[J].河北化工,2004,27(4):55-59
    [202]沈复,李阳初.石油加工单元过程原理(上册)[M].北京:中国石化出版社,2007:207-208
    [203]陈俊武.催化裂化工艺与工程(第二版)[M].北京:中国石化出版社,2005:505
    [204]郭向云,王建国.蒙特卡罗方法及其在多相催化中的应用[J].燃料化学学报,2001,29(2):191-192
    [205] Alelen M P,Tildesley D J.Computer Simulation of Liquids[M].Oxford:Clarendon Press,1987
    [206] Fox J P,Rooy V,Bates S P.Simulating the adsorption of binary and ternary mixtures of linear, branched, and cyclic alkanes in zeolites[J].Journal of Physical Chemistry B,2004,108(44):17138-17142
    [207] Connolly M L.Computation of molecular volume[J].Journal of the American Chemical Society,1985,107(5):1118-1124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700