中国西北干旱半干旱区上空水汽收支和传输的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用中尺度模式WRF,首先对以兰州为中心包括周围数十公里的地区进行了一系列的敏感性数值试验。在数值实验中分别对不同区域减少了植被覆盖或改变下垫面性质,以对半干旱地区植被和下垫面发生改变后大气产生的局地和非局地的响应进行分析研究;然后论文进一步以干旱区中的一个孤立绿洲-兴隆山区为研究对象,选取兴隆山地区有降水而兰州城区无降水的几个个例进行了实况模拟,对比分析了影响兰州地区和兴隆山地区空中云水分布和收支差异主要因素。诊断分析结果表明:
     植被变化对区域内温度的影响比较复杂,并有明显的日变化。相比于区域城市化形成的强而稳定的增温中心,植被减少只会在区域形成较弱而间断的增温中心并敏感地依赖于地面净能量在感热、潜热和土壤热通量之间的分配。区域内植被变化和下垫面特性的改变导致的局地温度变化在背景风场的作用下向区域外传播,其传播的细节与风场的特征和地形密切相关。在适当的环流背景下,迎风坡下垫面改变导致的温度变化可在背景风场的输送下,绕过很高的山脊在背风坡形成一个持久的变温中心。植被减少导致的变温中心会在原有的环流形式上叠加一个强迫的二级环流,这一环流深度约为1.1 km。区域植被的减少,一方面减少了地面向上的水汽输送,导致了区域内气柱水汽含量的减少;另一方面增温引起的强迫二级环流会使区域外水汽向内输送,部分地补偿了地面向上输送水汽的减少,但是二者总体的效果是区域内的气柱水汽总量减少。在实验区域之外,上风向趋于增湿而下风向趋于减湿。
     在兴隆山地区,以植被为主的下垫面向大气的水汽输送较强,有明显的季节变化,以夏季的个例为最大。除春季外,山区主要受东南方向的较湿润的气流影响,同时在所有研究个例中该地区与周围区域都有较强的水汽交换,可以获得区域外的水汽输入。山区上空水汽充沛,云水和雨水含量较高,降水可能性较大;在兰州城区,以城市为主的下垫面对大气有稳定的水汽输送,没有明显季节变化,在夏秋季个例中远低于兴隆山区。城区一直处于来自北方、东北方的较干气流的影响,同时与周边地区的水汽交换微弱,水汽的平流输入小。城区上空云水和雨水含量都较小,降水概率比兴隆山地区小。
Using the mesoscale model WRF, a series of numerical simulations are first performed over the area around Lanzhou City of China. In these numberical experiments the model vegetation cover or the type of the landsurface in different patches of the study area has been arbitrarily changed to analysis the local and non-local responses of the atmosphere to changes in vegetation cover and surface types over a semi-arid region. A group of numerical experiments are further performed to simulate some water vapor budget and transport properties over two distinc areas, i. e., Xinlong mountain and Lanzhou city. The cases are selected when precipitation occurred over Xinlong mountain but have no precipitation over Lanzhou city. The results show that:
     Changes in vegetation cover have a complex effect on the surface temperature with a significant diurnal cycle. Contrast to a strong and persistent warming caused by urbanization of the area, decreases in vegetation cover only give rise to a weak and intermitted warming depending on the partition of the surface net available energy between sensible heat flux, latent heat flux and soil heat flux.The local temperature anomalies caused by the vegetation and surface type change can propagate out of the source region by background winds with details of the propagation depending on wind fields and underlying topography. Under suitable wind conditions, those temperature signals can pass around a mountain to form a persistent warming region lee of the mountain. A decrease in vegetation cover tends to force a 1.1 km deep secondary circulation. Decreases in vegetation cover also lead to decreases in column total water vapour over the area for one hand, and force secondary circulations due to temperature contrast on the other. The forced secondary circulations tend to transport inward the water vapour outside of the area to compensate the decrease of water vapour input from the surface. The integrated effect of a decrease in vegetation cover is to decrease column total water vapour over the area. Outside of the area, the colume total water vapour tends to increase upwind of the area and decrease downwind of the area.
     Over Xinglong mountain, the vegetated land-surface supply plenty of water vapor to the atmosphere with obvious seasonal variation. The maximum water vapor input into the atmosphere from the surface occurs in the summer cases. The Xinglong mountain area is mainly affected by the moist airflow from southeast except for the spring cases and has strong exchange of water vapor with the area around it. The area has plenty of cloud water and rain water above, and hence, high possibility of rain; Over Lanzhou city, the water vapor supply from surface to atmosphere is stable and has no evident seasonal variation, The total water vapor over Lanzhou city is much lower than that over Xinglong mountain in summer and autumn cases. Lanzhou city is mostly controlled by the dry airflow from north or northeast and the water vapor transport from outside of the city is quite small. Consequently, the cloud water and rain water as well as the possibility of rain over the city are lower than those over Xinlong mountain.
引文
[1]马柱国,符淙斌。1951-2004年中国北方干旱化的基本事实[J]。科学通报,2006,51(20):2429-2439
    [2]符淙斌,安芷生,郭维栋。我国生存环境演变和北方干旱化趋势预测研究Ⅰ):主要研究成果[J]。地球科学进展,2005,20(11):1158-1167
    [3]符淙斌,温刚。中国北方干旱化的几个问题[J]。气候与环境研究,2002,7(1):22-29
    [4]胡隐樵,左洪超。黑河实验(HEIFE)研究获重大成果[J]。中国科学院院刊,1996,11(6):447-451
    [5]王俊勤,陈家宜。HEIFE区边界层某些结构特征[J]。高原气象,1994,13(3):299-306
    [6]吕兰芝,季国良。HEIFE辐射资料的处理[J]。大气情报,1995,15(4):42-45
    [7]薛具奎,胡隐樵。绿洲与沙漠相互作用的数值试验研究[J]。自然科学进展,2001,11(5):514-517
    [8]安兴琴,吕世华,陈玉春。河西绿洲效应的数值模拟研究[J]。高原气象,2004,23(2):208-214
    [9]张强,于学泉。干旱区绿洲诱发的中尺度运动的模拟及其关键因子的敏感性实验[J]。高原气象,2001,20(1):58-65
    [10]吕世华。盆地绿洲边界层特征的数值模拟[J]。高原气象,2004,23(2):171-175
    [11]张强,王胜。西北干旱区荒漠水分循环特征及其模拟[J]。干旱气象,2007,25(4):1-4
    [12]乔标,方创琳,黄金川。干旱区城市化与生态环境交互耦合的规律性及其验证[J]。生态学报,2006,26(7):2183-2190
    [13]乔标,方创琳,李铭.干旱区城市化与生态环境交互胁迫过程研究进展及展望[J].地理科学进展,2005,24(6):31-41
    [14]常学礼,陈雅琳,崔步礼。半干旱地区城市化进程对区域沙漠化的影响[J]。干旱区地理,2007,30(3):321-327
    [15]张秋玲,马金辉,赵传燕。兴隆山地区景观格局变化及驱动因子[J]。生态学报,2007,27(8):3206-3214
    [16]徐晓桃,颉耀文,马金辉。兴隆山地区气温与降水的面域化处理[J]。遥感技术与应用,2006,21(4):317-321
    [17]章国材。美国WRF模式的进展和应用前景[J]。气象,2004,30(12):27-31
    [18]李毅,潘晓滨。新一代天气研究预报模式WRF简介[J]。教学与研究(南京),2003,24(1):54-59
    [19]http://www.mmm.ucar.edu/wrf/users/docs/wrf-dyn.html
    [20]Klemp,J.B.,W.C.Skamarock,and J.Dudhia.Conservative split-explicit time integration methods for the compressible nonhydrostatic equations[J].Mon.Wea.Rev.,2007,accepted
    [21]Skamarock,W.C.,J.B.Klemp.A time-split nonhydrostatic atmospheric model for research and NWP applications.J.Comp.Phys.,special issue on environmental modeling.2007,Accepted
    [22]Skamarock,W.C..Positive-Definite and Montonic Limiters for Unrestricted-Timestep Transport Schemes[J].Mon.Wea.Rev.,2006,134:2241-2250.
    [23]Skamarock,W.C.,J.B.Klemp,J.Dudhia,D.O.Gill,D.M.Barker,W.Wang,J.G.Powers.A description of the Advanced Research WRF Version 2.NCAR Tech Notes-468+STR,2006
    [24]Skamarock,W.C..Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra[J].Mon.Wea.,Rev.,2004,132:3019-3032
    [25]Wicker,L.J.,W.C.Skamarock.Time splitting methods for elastic models using forward time schemes[J].Mon.Wea.Rev.,2002,130:2088-2097.
    [26]http://www.mmm.ucar.edu/wrf/users/docs/wrf-phy.html
    [27]Kessler,E..On the distribution and continuity of water substance in atmospheric circula-tion.Meteor.Monogr[J].,No.32,Amer.Meteor.Soc.,1969,84pp
    [28]Lin,Y.-L.,R.D,Farley,H.D.Orville.Bulk parameterization of the snow field in a cloud model[J].Climate Appl.Meteor.,1983,22,1065-1092
    [29]Tao,W.-K..An ice-water saturation adjustment[J].Mon.Wea.Rev.,1989,117:231-235
    [30]Webb,E.K..Profile relationships:The log-linear range,and extension to strong stability[J].Quart.J.Roy.Meteor.Soc.,1970,96:67-90
    [31]Chen,S.-H.,W.-Y.Sun.A one-dimensional time dependent cloud model[J].J.Meteor.Soc.Japan,2002,80:99-118
    [32]Hong,S.-Y.,H.-M.H.Juang,Q.Zhao.Implementation of prognostic cloud scheme for a regional spectral model[J].Mon.Wea.Rev.,1998,126:2621-2639.
    [33]Zhao,Q.,F.H.Carr.A prognostic cloud scheme for operational NWP models.Mon.Wea.Rev.,1997,125:1931-1953
    [34]Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,S.A.Clough.Radiative trans-fer for inhomogeneous atmosphere:RRTM,a validated correlated-k model for the long-wave[J].J.Geophys.Res.,1997,102(D14):16663-16682
    [35]Fels,S.B.,M.D.Schwarzkopf.The simplified exchange approximiation:a new method for radiative transfer calculations[J].J.TMOS.Sci.,1975,32L1475-1488
    [36]Schwarzkopf,M.D.,S.B.Fels,The simplified exchange method revisited-An accurate,rapid method for computation of infrared cooling rates and fluxes[J].J.Geophys.Res.,1991,96(D5):9075-9096
    [37]Dudia,J..Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].J.Atmos.Sci.,1989,46:3077-3107.
    [38]Chou M.-D.,M.J.Suarez.An efficient thermal infrared radiation parameterization for use in general circulation models[J]. NASA Tech. Memo. 1994,104606, 3, 85pp
    [39] Lacis, A. A.,J. E. Hansen. A parameterization for the absorption of solar radiation in the earth's atmosphere[J]. J. Atmos. Sci., 1974,31,:118-133
    [40] Sasamori,T.,J. Londom,D. V. Hoyt. Radiation budget of the Southen Hemisphere. Meteor.Monogr. [J].1972,13,No.35:9-23
    [41] Paulson,C. A.. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer[J]. J. Appl. Meteor., 1970, 9:857-861
    [42] Dyer, A. J.,B. B. Hicks. Flux-gradient relationships in the constant flux layer[J]. Quart. J. Roy. Meteor. Soc, 1970,96:715-721
    [43] Janjic, Z. I.. The step-mountain coordinate: physical package[J]. Mon. Wea. Rev., 1990,118: 1429-1443
    [44] Janjic, Z. I.. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes[J]. Mon. Wea. Rev., 1994,122:927-945
    [45] Janjic, Z. I.. The surface layer in the NCEP Eta Model. Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19-23 August 1996. Amer. Meteor. Soc, Boston, MA, 354-355.
    [46] Beljaars, A.C.M.. The parameterization of surface fluxes in large-scale models under free convection[J]. Quart. J. Roy. Meteor. Soc, 1994,121:255-270
    [47] Zilitinkevich, S.S.. Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows. In: Air Pollution III - Volume I. Air Pollution Theory and Simulation (Eds. H. Power, N. Moussiopoulos and C.A. Brebbia). Computational Mechanics Publications, Southampton Boston, 1995,53-60
    [48] Hong, S.-Y., H.-L. Pan.Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon. Wea. Rev., 1996,124:2322-2339.
    [49] Janjic, Z. I.. Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models."[J]. Journal of the Atmospheric Sciences, 2000, Vol. 57:3686.
    [50] Janjic, Z. I.. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 2002,61 pp
    [51] Chen, F., J. Dudia, 2000. Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., in press
    [52] Kain, J. S., J. M. Fritsch. A one-dimensional entraining/ detraining plume model and its application in convective parameterization[J]. J. Atmos. Sci., 1990,47:2784-2802.
    [53] Kain, J. S., J. M. Fritsch. Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc, 1993, 246 pp.
    [54] Betts, A. K.. A new convective adjustment scheme. Part I: Observational and theoretical basis[J]. Quart. J. Roy. Meteor. Soc, 1986112:677-691.
    [55] Betts, A. K., and M. J. Miller. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets[J]. Quart. J. Roy. Meteor. Soc, 1986112:693-709.
    [56] Janjic, Z. I.,. Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models."[J]. Journal of the Atmospheric Sciences, 2000,Vol. 57, p. 3686
    [57] MAHRT L.Surface heterogeneity and vertical structure of the Boundary Layer[J]. Boundary-Layer Meteorology, 2000, 96: 33-62
    [58] Shao Y,M Sogalla,M Kerschgens et al. Effects of land-surface heterogeneity upon surface fluxs and turbulent conditions[J]. Meteorol.Atmos.Phys.2001,78:157-181
    [59] Albertson John D,William P Kustas,Todd M Scanlon. Large-eddy simulation over heterogeneous terrain with remotely sensed land surface conditions[J]. Water Resource Research, 2001, 37: 1939-1953
    [60] Yang, Z -L, Dai,et al. Sensitivity of ground heat flux to vegation cover fraction and leaf area index. J. Geophys. Res., 1999,104:19505-19504
    [61] Stull, R B. An Introduction to Boundary Layer Meteorology[M]. Kluwer Academic Publishers, Dordrecht, 1988, 666 pp.
    [62] Raasch S,G Harbusch. An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using Large-eddy simulation[J]. Boundary-Layer Meteorology, 2001, 101: 31-59
    [63] Brown A R,A C M Beljaars,H Hersbach. Errors in parametrizations of convective boundary-layer turbulent momentum mixing[J]. Q.J.R.MeteoroI.Soc, 2006, 132: 1859-1876
    [64] Kim Hyoung-Jin,Yign Noh. Interaction between wind and temperature fields in the planetary boundary layer for a spatially heterogeneous surface heat flux[J]. Boundary-Layer Meteorology, 2004, 111: 225-246
    [65] Avissar Roni,Tatyana Schmidt. An Evaluation of the Scale at which Ground-Surface Heat Flux Patchiness Affects the Convective Boundary Layer Using Large-Eddy Simulations[J]. Journal of the Atmospheric Sciences, 1997, 55: 2666-2689
    [66] Gopalakrishnan S G,Somnath Baidya Roy,Roni Avissar. An Evaluation of the Scale at which Topographical Features Affect the Convective Boundary Layer Using Large Eddy Simulations[J]. Journal of the Atmospheric Sciences, 1999, 57: 334-351
    [67] Gopalakrishnan S G. Roni Avissar. An LES Study of the Impacts of Land Surface Heterogeneity on Dispersion in the Convective Boundary Layer[J]. Journal of the Atmospheric Sciences, 1999, 57: 352-371
    [68] Tchamen G W, R A Kahawita. Modelling wetting and drying effects overcomplex topography[J]. Hydrol. Process. 1998, 12: 1151-1182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700