二氧化碳跨临界循环转子式膨胀机的分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以目前国际上制冷热泵研究的关键问题——开发 CO2 膨胀机这一前沿
    性课题为研究对象,以开发高效率的 CO2膨胀机为目的,从而使 CO2跨临界循
    环不仅具有环保优势,同时节约能源。本文的研究为其实用化提供理论基础和
    实践经验。
    通过对采用回热器、提高压缩机效率、提高换热系数、利用膨胀机和优化
    循环等方法的比较发现,利用膨胀机可大幅度地提高 CO2跨临界系统性能系数。
    对膨胀过程进行不可逆热力学分析,根据 CO2 跨临界循环中膨胀过程不同初始
    参数,建立了膨胀过程中的流体流动的物理模型和泄漏模型,以及压力波的传
    播速度模型。这些模型的建立为膨胀机的模拟提供理论基础。利用膨胀机理论
    模型对膨胀机的运行特性进行分析,发现膨胀机的运行参数存在最佳点使膨胀
    机的输出功效率达到最大。
    在原有滑板滚动活塞膨胀机的基础上进行改进,对滑板膨胀机进行重新设
    计,开发了第二代滑板滚动活塞膨胀机并进行了理论分析。通过与原有滑板型
    膨胀机的对比,发现利用新型滑板可减小不可逆损失,新型滑板膨胀机的理论
    效率高于原有滑板型膨胀机。开发了 CO2 摆动转子膨胀机,对摆动转子膨胀机
    进行了动力学和不可逆损失的研究,计算表明摆动转子膨胀机的泄漏损失很小,
    其理论效率高于新型滑板滚动活塞膨胀机。对摆动转子进行了有限元受力分析,
    结果发现摆动转子的最大应力和变形发生在摆杆基部,数值并不很大,通过选
    择适宜的材料和合理设计,摆动转子是非常适合在 CO2 跨临界循环高压差环境
    下工作。
    对膨胀机的回收方式进行了较全面的分析,比较了各种形式的优缺点和可
     - I -
    
    
    行性。提出发电方式可用于大型的系统,输出的电量可以驱动小型的设备。在
    小型系统中,压缩膨胀机较为有利。对压缩膨胀机在系统的布置方式进行了理
    论研究,研究表明压缩膨胀机提供双级压缩的第二级压缩形式的系统循环性能
    系数接近最优值,与主压缩机同轴双级压缩循环方式可以最大限度的提高系统
    的能效。选择了压缩膨胀机的开发形式,给出了具体的设计思路。分析了偏心
    轮轴的相位角对压缩膨胀机运行的影响,以及轴的受力情况。
    对开发的 CO2 跨临界循环原有型滑板膨胀机、新型滑板滚动活塞膨胀机和
    摆动转子膨胀机进行了实验研究。三个样机都能平稳运行。测试的新型滑板滚
    动活塞膨胀机的效率在 35%~47%之间。摆动转子膨胀机的效率则在 33%~44
    %之间,都高于原有型滑板膨胀机的效率,说明为减小泄漏的设计是有效的。
    通过实验得到膨胀机系统的运行特性,系统参数存在最优匹配的问题。实验验
    证了膨胀机存在最佳参数使膨胀机的输出效率达到最大的理论分析结论。
The development of the carbon dioxide expander, which is now the key
    technology of the refrigeration and heat pump research, is the subject of the
    dissertation. This study is on the purpose of designing a highly efficient carbon
    dioxide expander. Employing an expander, the carbon dioxide transcritical cycle not
    only have the advantage of environmental protection but also save energy. So this
    paper presents both theoretical analysis and practical experience for its application.
     Comparisons of different measures such as using internal heat exchanger,
    improving compressor efficiency, increasing the coefficient of the heat transfers,
    adopting an expander and optimizing the cycle, show that the utilization of the
    expander in the carbon dioxide transcritical system can improve the coefficient of
    performance of the system. The expansion process in the carbon dioxide transcritical
    cycle is analyzed based on the irreversible thermodynamics. According to various
    inlet parameters of the expansion process, the models of leakage, fluid flow and the
    spread velocity of the pressure wave are set up. On the basis of the theoretical
    expander model, the characteristics of the performance are analyzed. There exist the
    optimal parameters to maximize the efficiency of the expander.
     The second generation expander with the redesigned blade is developed on the
    basis of the former rolling piston expander and its theoretical analysis has been made.
    The expander with the new blade runs well with less irreversible loss and its
    theoretical efficiency is higher compared with the former one. In addition, a swing
    expander is developed and studied in the respect of kinetics and the irreversible
    losses. The results illustrate that there is quite a little leakage loss in this kind of
    expander and its theoretical efficiency is higher than that of the rolling piston
    expander with a new blade. By the means of the finite element method, the stress
    analysis of the swing piston has been done. The results indicate that the maximum
    stress and the most grievous distortion take place at the base of the piston blade,
    however the extreme value is not that large, so it is quite fit for the swing piston to
    perform under high pressure disparity by choosing the optimal material and
    reasonable design.
     In this paper, the methods of the power recovery of the expander have been
    well discussed. The merits, demerits and feasibility of various types have been
    presented. The type of generating electricity is suitable for the system with large
     - III -
    
    
    capacity, and its output of the generator can drive some small equipments. The
    expander-compressor is favorable for the system with small capacity. The
    arrangements of the expander-compressor in the system are studied. The research
    shows that the coefficient of performance of the system can approach the optimum
    value when the expander-compressor supplies the second stage compression for the
    two-stage compression system. When the expander is connected to the main
    compressor in the two-stage compression system, the coefficient of performance of
    the system can reach the highest point. The developed structure of the
    expander-compressor and the design philosophy are presented in detail. The
    influences of both the phase of two crank-shafts and the strength on the shaft on the
    function of the expander-compressor are analyzed.
     The experiments on the rolling piston expander with conventional blade, the
    redesigned rolling piston expander and the swing expander in the carbon dioxide
    transcritical cycle have been conducted. Three prototypes can perform steadily. The
    test efficiency of the rolling piston expander with new blade is from 35% to 47%,
    while that of the swing expander is from 33% to 44%, they are higher than that of
    the rolling piston expander with a conventional blade. The experimental results
    demonstrate that the design is effective in reducing leak
引文
[1]Perkins, J. Apparatus for Producing Ice and Cooling Fluids, Patent 6662. United
    Kingdom. 1834
    [2] G. Lorentzen. The use of natural refrigerants: a complete solution to the CFC/HCFC
    predicament. Int. J. Refrig, 1995, 18(3): 190-197.
    [3] Lorentzen,G. and Pettersen, J. A New Efficient and Environmentally Benign System
    for Car Air-Conditioning. International Journal of Refrigeration, 1993, 16(1):4-21
    [4] Lorentzen, G. , Application of “Natural ” Refrigerants - a rational solution to a
    pressing problem, IIR International conference: Energy efficiency in refrigeration and
    global warming impact, Chent Belgium,1993.
    [5] http://birger.maskin.ntnu.no/kkt/annex22
    [6] http://www.egi.kth.se/users/thermo/samer/www/annex27
    [7] http:// www. arti-21cr. Org
    [8] Friedrich Kauf. Determination of the optimum high pressure for transcritical CO2-
    refrigeration cycles. Int. J. Therm. sci., 1999, 38: 325-330.
    [9] 马一太, 杨昭, 吕灿仁. CO2 跨临界(逆)循环的热力学分析. 工程热物理学报,
    1998, 19(6): 665-668.
    [10]王侃宏. CO2 跨临界循环的理论分析与实验研究:[博士论文].天津:天津大学,
    2000
    [11] Petter Neksa,etc. CO2-heat pump water heater, characteristics, system design and
    experimental results, Int. J. Refrig., 1998, 21(3): 172-179.
    [12] Robinson, D.M., Groll, E.A. Efficiencies of transcritical CO2 cycles with and without
    an expansion turbine. Int. J. Refrig. 1998, 21(7): 577-589.
    [13] 马一太, 王侃宏, 杨昭, 吕灿仁. 带膨胀机的 CO2 跨(超)临界逆循环的热力学
    分析. 工程热物理学报, 1999, 20(6): 661-665.
    [14]J.Kohler, M.Sonnekalb, H.Kaise, W.Kocher. Carbon Dioxide as a Refrigerant for
    Vehicle Air-Conditioning with Application to Bus Air-Conditioning, Proceedings of
    International CFC and Halon Alternatives Conference. Washington 1995: 376-385.
    [15]Compressor world trends, JARN, Refrigeration & Air conditioning compressor,
    2003.5. 25.No.409-S.
    [16]J.Host. Test Rig For CO2 Automotive Air Conditioning Compressor, International
    Conference CFCs. Meeting of IIR Commission B1, B2, E1, E2. Arhus, Denmark 1996.
    [17] Marcus Preissner, Brett Cutler, Srinivas Singanamalla, Comparison of automotive
    air-conditioning systems operating with CO2 and R134a, Preliminary Proceeding of the
    4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue University,
     - 138 -
    
    
    W.Lafayrtte, IN USA, July: 279-284.
    [18]Yin.J,Park .Y.C.,Boewe D, et al.,Experimental and model comparison of transcritical
    CO2 versus R134a and R410A system performance. Joint Meeting of the IIR, section B
    and E, 1998:331-340.
    [19] Boewe D,Ying.J.,Park,Y.C., Bullard,C.W., et al., The role of suction line heat
    exchanger in transcritical R744 mobile A/C system. SAE Technical Paper Series, 1999:
    1-8.
    [20] Werner Stadtmüller, Jürgen Kunesch A1-Extrusions for Automotive CO2
    Refrigerant Systems -Special Material and Design Requirements
    http://vda.cysell.com/abstracts.htm.
    [21] Dr. Carlo Burkhardt Flexible metal hoses for the guidance of CO2 in air-conditioning
    systems of passenger cars - Systems requirements and design parameters
    http://vda.cysell.com/abstracts.htm.
    [22]丁国良,黄冬平,张春路,跨临界二氧化碳汽车空调稳态仿真,中国工程热物
    理学会工程热力学与能源利用学术会议论文集,2000,南京.
    [23]P.Neksa, J.Pettersen. CO2-Heat Pump Water Heater, Characteristics, System Design
    and Experimental Results. Int.J.Refrig. 1998, 21(3): 172-179.
    [24] Neks? P. CO2 Heat pump systems. Int. J. Refrig., 2002, 25: 421-427
    [25] Brandes,B., Kruse,H., Hochtemperatur Hausw?rmepumpen mit CO2 als K?ltermittel
    (High Temperature Residential Heat pumps with CO2 as refrigerant). KI Luft-og
    K?ltetechnik 7/2000: 311-315.
    [26] Jorn Stene. Investigation of a residential brine-to-water CO2 heat pump for combined
    low-temperature space heating and hot water preparation. In: 5th IIR Gustav Lorentzen
    conference on natural working fluids, Guangzhou, China. 2002: 268-275.
    [27] E.hihara, R&D on heat pumps with natural working fluids in Japan, The proceedings
    of the 7th International Energy agency heat pump conference, Beijing, 2002 : 272-279
    [28] E.L.Schmidt,K.Klocker,N.Flacke and F.Steimle, Applying the transcritical CO2
    process to a drying heat pump Int.J.Refrig, 1998 , Vol.21: 202-211.
    [29] K.Klocker,E.L.Schmidt,F.Steimle, Carbon dioxide as a working fluid in drying heat
    pump, Int.J.Refrig, 2001,Vol.24 :100-107.
    [30] 王侃宏, 马一太, 魏东, 洪芳军, 王景刚. CO2 跨临界水—水热泵循环系统的实
    验研究. 见: 中国工程热物理学会工程热力学与能源利用学术会议论文集. 南京.
    2000: 431-436.
    [31] Gustav Lorentzen, The use of natural refrigerants: a complete solution to the
    CFC/HCFC predicment Proceeding of the New Applications of Natural Working Fluids in
    Refrigeration and Air Conditioning at Hannover Germany ,1994 : 23-35
    [32] H.J.Huff Yunho Hwang R. Redermacher, Options for a two-stage transcritical carbon
    dioxide cycle, The proceedings of the 5th IIR-Gustav Lorentzen conference on natural
     - 139 -
    
    
    working fluids at GuangZhou China, 2002: 143-149
    [33] Heyl, P. Germany free piston expander-compressor for co2 ?design, applications and
    results. http://www.tu-dresden.de/mw/iem/kkt/mitarbeiter/lib/Peter/sydney.html
    [34] Zhaolin Gu, Hongjuan Liu, Yun Li,CO2 Two stage refrigeration system with low
    evaporating temperature,-56.6℃,The proceedings of the 5th IIR-Gustav Lorentzen
    conference on natural working fluids at GuangZhou 2002: 226-330
    [35] J.S.Baek, E.A.Groll, P.B.Lawless, Effect of pressure ratios across compressors on the
    performance of the transcritical carbon dioxide cycle with two stage compression and
    intercooling, Purdue University,2002,U.S.A
    [36] J. Pettersen, A, Jakobsen. A dry ice slurry system for low temperature refrigeration.
    International Symposium on Refrigeration in Sea Transport Today and in the Future.
    Gdansk, Poland, Sep/Oct. 1994
    [37] 胡姆.格贝哈尔特. Nestec公司采用NH3和CO2 制冷剂-采用天然制冷剂替代
    R13B1的一个大型冷库. 制冷与空调技术. 2002, 1: 46-52.
    [38] J.Jang, P.S.Hrnjak, Condensation of carbon dioxide at low temperature, proceedings
    of the 5th IIR-Gustav Lorentzen conference on natural working fluids, Guanzhou, 2002
    [39] Dieter Mosemann , CO2 - Ammonia Cascade Refrigeration Plant, A Solution for
    Industrial Refrigeration?
    http://www.grasso-global.com/english/nbsp/menu/news_events/latest_news/co2_ammoni
    a_cascade_refrigeration_plant_a_solution_for_industrial_refrigeration_october_2001/.
    [40] Fagerli B.,CO2 compressor development, Presentation on the CO2 workshop,
    Trondheim, 1997.
    [41] Jurgen Sub, Horst Kruse, Efficiency of the indicated process of CO2-compressor, Int
    J.Refrig.Vol.21,No.3.pp194-201,1998
    [42] Mr.Casini, CO2 compressors and equipment use and availability,
    http://www.eurocooling.com/articledorin.doc
    [43] Steve Sakamoto, Peter Giese, SANDEN / LuK cooperation on CO2 – compressors
    http://vda.cysell.com/abstracts.htm.
    [44] Tadashi Yanagisawa, Mitsuhiro Fukuta et al, Basic operating characteristics of
    reciprocating compressor for CO2 cycle, The proceedings of the 4th IIR-Gustav Lorentzen
    Conference on Natural Working Fluids at Purdue ,2000: 331-338
    [45] P.Neks? , F.Dorin, H.Rekstad et al, Development of two-stage semi-hermetic
    CO2-compressors, The proceedings of the 4th IIR-Gustav Lorentzen Conference on
    Natural Working Fluids at Purdue ,2000 :355-362
    [46] Masaya Tadano Toshiyuki Ebara et al, Development of the CO2 hermetic compressor,
    The proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids
    at Purdue ,2000 : 323-330.
     - 140 -
    
    
    [47] 桧皮武史,大川剛義 熊倉英二 等, CO2冷媒スイング壓縮機の性能評價,平
    成12年度日本冷凍空調學術講演論文集,札幌.
    [48] http://www.jsme.or.jp/English/awardsn26.html.
    [49] Hiroshi Hasegawa, Mitsuhiro Ikoma, et al, Experimental and theoretical study of
    hermetic CO2 scroll compressor, The proceedings of the 4th IIR-Gustav Lorentzen
    Conference on Natural Working Fluids at Purdue ,2000 : 347-353.
    [50] Tomoyasu ADACHI,Takayuki HAGITA, Automobile air conditioner using CO2,
    冷凍2003,Vol.77.No.893: 8-13.
    [51] Mitsuhiro Fukuta, R.Radermacher, Performance of vane compressor for CO2 cycle,
    The proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids
    at Purdue, 2000: 339-346.
    [52] http://www.mycomj.co.jp
    [53] C.Seeton, Jorg Fahl, D.Henderson, Solubility, viscosity, boundary, lubrication and
    miscibility of CO2 and synthetic lubricants, The proceedings of the 4th IIR-Gustav
    Lorentzen Conference on Natural Working Fluids at Purdue, 2000, P417-424.
    [54] Hsinheng.Li, T.E.Rajewski, Experimental study of lubricant candidates for the
    CO2refrigeration system, The proceedings of the 4th IIR-Gustav Lorentzen Conference on
    Natural Working Fluids at Purdue, 2000: 409-416.
    [55]Baumann H., Small oil free CO2-compressor. Final report.
    http://www.waermepumpe.ch/fe/
    [56] J.Nickl, G.Will,W.E.Kraus,H.Quack Design considerations for a second generation
    CO2-expander The proceedings of the 5th IIR-Gustav Lorentzen conference on natural
    working fluids at GuangZhou 2002: 189-195
    [57] Ronald W. Applications for the hinge-vane positive displacement
    compressor-expander.
    http://www.egi.kth.se/users/thermo/samer/www/annex27/Projects_Uk.html
    [58] Denso Corp, JP. , patent .DE 100 10864 A1
    [59] Bjφrn F. Feasibility study of using centrifugal compressor and expander in a car
    conditioner working with carbon dioxide as refrigerant , ACRC CR-23.
    http://acrc.me.uiuc.edu/publications.asp?type=contract&page=2
    [60] Reihard R. CO2 compressor-expander analysis. ARTI 21-CR Research Project
    611-10060. http://www.arti-21cr.org/research/ongoing/611-10060.pdf
    [61] J.S.Baek, E.A.Groll, P.B.Lawless, Development of a piston-cylinder Expansion
    device for the transcritical carbon dioxide cycle, Purdue University, 2002.
    [62] N.stosic,I.K.Smith,A.Kovacevic,Twin screw combined compressors and expanders
    for CO2 refrigeration systems. The proceeding of the sixteenth international compressor
    engineering conference at Purdue, 2002.
     - 141 -
    
    
    [63] Pettersen,J., Hafner,A., Skaugen,G., and Rekstad,H., Development of compact heat
    exchangers foe CO2air-conditioning systems.Int.J.,1998, Vol.21.No.3,:180-193.
    [64] 丁国良,黄冬平,张春平等,跨临界循环二氧化碳汽车空调研究进展, 制冷学报,
    2000 (2):7-27.
    [65] Sconfeld,H. and Kraus W.E., Calculation and simulation of a heat exchanger:
    supercritical carbon dioxide-water. International Conference on Heat Transfer Issues in
    Natural Refrigerants, University of Maryland, 36-43, 1997.
    [66] Chaobin Dang, Eiji Hihara, Heat transfer coefficient of supercritical carbon dioxide,
    The proceedings of the 5th IIR-Gustav Lorentzen conference on natural working fluids at
    GuangZhou 2002: 100-107
    [67] Hihara,E., Tanaka,s., Boling heat transfer of carbon dioxide in Horizontal tubes,
    Preliminary Proceeding of the 4th IIR-Gustav Lorentzen Conference on Natural Working
    Fluids, Purdue University, W.Lafayrtte, IN USA, July: 279-284.
    [68] J.Pettersen, Flow vaporization of CO2 in microchannel tubes Part 1: experimental
    method and two-phase flow pattern, The proceedings of the 5th IIR-Gustav Lorentzen
    conference on natural working fluids at GuangZhou 2002:76-83.
    [69] J.Pettersen, Flow vaporization of CO2 in microchannel tubes Part 2: Heat transfer
    pressure drop,and correlation, The proceedings of the 5th IIR-Gustav Lorentzen
    conference on natural working fluids at GuangZhou 2002:84-91.
    [70] Z.sun, E.A. Groll, CO2 flow boiling heat transfer in horizontal tubes, Part 1: flow
    regime and prediction of dryout, The proceedings of the 5th IIR-Gustav Lorentzen
    conference on natural working fluids at GuangZhou 2002:116-125.
    [71] Z.sun, E.A. Groll, CO2 flow boiling heat transfer in horizontal tubes, Part 2:
    Experimental results, The proceedings of the 5th IIR-Gustav Lorentzen conference on
    natural working fluids at GuangZhou 2002:126-132.
    [72] Rin Yun, Changsun Choi, Yongchan Kim, Convection boiling heat transfer of carbon
    dioxide in Horizontal small Diameter Tubes, The proceedings of the 5th IIR-Gustav
    Lorentzen conference on natural working fluids at GuangZhou 2002:298-308.
    [73] J.B.Choi, S.H.Yoon, Y.J.Kim, M.S.Kim, Investigation of the characteristics of
    evaporation heat transfer for carbon dioxide in a vertical tube, The proceedings of the 5th
    IIR-Gustav Lorentzen conference on natural working fluids at GuangZhou 2002:61-67.
    [74] 1998 自然冷媒会议简介 http://refrigerant.itri.org.tw/paper.htm
    [75] 魏东. CO2 跨临界循环换热与膨胀机理的研究: [博士论文],天津:天津大学,
    2002.
    [76] 查世彤.CO2 跨临界循环膨胀机的研究与开发:[博士论文],天津:天津大学,
    2002.
    [77] 低温传热学 (美)弗罗斯特(W. Frost)编 陈叔平,陈玉平译,北京:科学出版社
    1982
     - 142 -
    
    
    [78] 张远君 王慧玉 张振鹏,两相流体动力学-基础理论及工程应用,北京:北京
    航空学院出版社,1987.
    [79] 汤烺孙,沸腾传热和两相流动, 北京:机械工业出版社,1980.
    [80] 鲁钟琪, 两相流与沸腾传热,北京:清华大学出版社,2002.
    [81] 计光华, 透平膨胀机,北京:机械工业出版社,1982.
    [82] I.K.Simith, Review of the development of two-phase screw expanders,
    http://www.city.ac.uk/engineering/mead/research/posdispcom.htm
    [83] 马国远,李红旗,旋转压缩机,北京:机械工业出版社,2001
    [84] 曾丹苓,工程非平衡态热力学,北京:科学出版社,1991.
    [85] Taniguchi,H., Kudo,K, Giedt,W.H, Park,I., Analytical and experimental
    investigation of two-phase flow screw expanders for power generation. Trans
    ASME,J.Engng for Gas Turbines and Power, 1998,110.
    [86] 胡亮光,庞风彪,中低温全流发电螺杆膨胀机的性能及实验研究,工程热物理
    学报,1989,4:353-356.
    [87] 洛阳轴承研究所编,滚动轴承产品样本,北京:中国石化出版社,机械工业出
    版社,2002.
    [88] 王景刚.自然工质热泵循环和地源热泵运行特性研究:[博士论文],天津:天津
    大学,2002.
    [89] 徐步青, 冲击载荷下齿轮动态响应的有限元分析和光弹实验,[硕士论文],天津:
    天津大学,2000.
    [90] 熊则男,乔宗亮编著,压缩机设计中的力学分析,北京:机械工业出版社, 1997.
    [91] Alberto Cavallini, Condensation heat transfer and energy efficiency of working
    fluids in mechanical refrigeration, 5th IIR-Gustav Lorentzen Conference on Natural
    Working Fluids, Guangzhou, 16-20 September, 2002:1-13.
    [92] http:// www.termo.unit.no/kkt/
    [93]http://www.achrnews.com/CDA/ArticleInformation/features/BNP_Features_Item/0,1
    338,7528,00.html.
    [94] http://www.news.uiuc.edu/scitips/01/08ammonia.html.
    [95] http://www.trane.com/commercial/issues/environmental/cfc6b.asp.
     [96] http://europa.eu.int/comm environment/ozone/alternatives.htm
     [97] http://www.heatpumpcentre.org
     [98]http://archive.greenpeace.org/~climate/climatecountdown/documents/COOL%2
    0TECHs%202002%20SBSTA.doc
    [99] http://www.greenchill.org/images/greenpeace_99.doc
    [100] 费人杰,关于氨制冷装置的新动向,制冷, 6 (2), 1, 1998, :67-70.
    [101] 朱明善. CFCs 和 HCFCs 替代制冷剂的趋势与展望.制冷学报,2000,(1):2-9.
     - 143 -
    
    
    [102] 朱明善, 21 世纪制冷空调行业绿色制冷空调行业的趋势与发展.暖通空调,
    2000,30(2):22-26.
    [103] 邢子文, 螺杆压缩机——理论、设计及应用, 北京:机械工业出版社,2000.
    [104] 张华俊 俞炳丰, 制冷系统中采用两相膨胀机的理论分析, 低温工程
    Vol.72.No.2,1993
    [105] I.K.Smith, N.Stosic, C.A.Aldis, A.Kovacevic Twin screw two-phase expanders in
    large chiller units
    http://www.city.ac.uk/engineering/mead/research/posdispcom.htm
    [106] I.K.Smith, N.Stosic, The expressor: an efficiency boots to vapour compression
    systems by power recovery from the throttling process
    http://www.city.ac.uk/engineering/mead/research/posdispcom.htm
    [107] I.K.Smith, N.Stosic, Development of the triliateral flash cycle system Part3: the
    design of high-efficiency two-phase screw expanders
    http://www.city.ac.uk/engineering/mead/research/posdispcom.htm
    [108] 郑连生 供热蒸汽余压余热发电螺杆膨胀机机内过程及实验研究:[硕士论文]
    天津:天津大学,1991.
    [109] 洪芳军,CO2 跨临界循环热泵热水供暖的理论和实验研究:[硕士论文] 天津:
    天津大学,2001.
    [110] 王景刚,马一太,魏东,双级压缩带膨胀机制冷循环研究,制冷学报,2001,
    (2):6-11.
    [111] 汪训昌, CFCs 的淘汰及有关 HCFCs, HFCs 的使用前景问题,2002 年首届中国
    制冷空调行业信息大会,中国空调工业协会,2002.
    [112] 曾正明,应用工程材料技术手册,北京:机械工业出版社, 2000.
    [113] 张华,马波,制冷工质的安全、环境评价指标和数据,节能技术,Vol.18 (104),
    2000.11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700