水产品微波辅助杀菌过程中关键问题的解决及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波杀菌代替传统的热力学杀菌方可获得高品质长货架期的产品,为扩大其在水产品中的应用,建立一种快速、有效的方法寻找加热过程被杀菌食品的冷点是拟解决的关键问题,该论文致力于开发一种新的模拟食品并使用化学指示物结合计算机图像模拟技术来分析微波杀菌过程中的热型,填补了技术空白。以复水干海参为例:
     研究了不同复水方法得到的复水干海参(Apostichopus japonicas)在300KHz-3000MHz频率范围内、不同温度(温度变化范围20-125℃)下的介电特性差异;研究了复水干海参介电特性随频率、温度的变化规律(温度变化范围20-121.1℃),比较复水干海参不同位置介电特性的差异,并计算915MHz下的能量穿透深度值。复水干海参介电特性与频率、温度之间分别存在着对(指)数、二次曲线的关系。
     为开发一种与复水干海参介电特性匹配的模拟食品,配置了五种不同配方的模拟食品,研究乳清浓缩蛋白和乳清分离蛋白的含量对模拟食品介电特性的影响;比较915MHz频率下,不同配方模拟食品与复水干海参的介电特性、能量穿透深度随温度的变化规律(温度变化范围20-121.1℃),选定配方为浓缩蛋白(WPC)5%、分离蛋白(WPI)3%,结冷胶1%以及D-核糖0.5%、蒸馏水90.5%配制的模拟食品可用于模拟复水干海参微波杀菌热处理过程中的热型。
     使用IMQA软件编写一套特定IMAQ图像分析程序,得到模拟食品热处理过程中的3-D模式热型;研究模拟食品热处理后中心Fo值与模拟食品颜色RGB值,存在二次曲线关系;研究微波辅助杀菌过程中不同包装厚度模拟食品的热型和冷点的位置,模拟食品中心横切面冷点位置不受包装厚度的影响,平均位置为(-23.33,-3.44)m,同时对微波杀菌处理的袋装模拟食品及复水干海参进行热型分析,得到受热冷点位置(-21.68,-2.38)mm,与模拟食品中心横切面冷点位置十分接近,根据冷点位置的颜色RGB值估算出该杀菌工艺下样品受热冷点的F0值。
     相同的微波辅助杀菌工艺下,使用ellab无线测温传感器及其固定装置的使用以及复水干海参模拟食品微波辅助杀菌系统中的摆放位置对热型并无显著影响,冷点位置横纵坐标的误差均在2mm以内;使用ellab传感器记录样品冷点的温度,计算实际杀菌过程中的F0值;通过四组热穿透实验得到F0值与微波加热时间T的函数关系式:F0=105.6*T-245.14(R2=0.9744),利用该结论确立微波辅助杀菌袋装复水干海参的杀菌工艺参数;同时比较了相同系统,相同操作参数条件下,热水杀菌过程达到相同F0值情况下,所需要的加热时间为微波辅助杀菌加热时间的7倍多;使用计算机模拟法验证袋装复水干海参微波辅助杀菌过程,结果显示,复水干海参计算机模拟结果与实际的模拟食品热型基本一致,进一步验证了:
     化学指示物结合计算机图像模拟技术可以建立一套快速的、稳定的、准确的方法来确立微波杀菌过程中模拟食品以及复水干海参的冷点位置,该技术同时可以用于估算被杀菌样品冷点位置的F0值,为进一步确立微波杀菌过程参数提供基础。
     研究了其他几种常见的即食水产品原料:贻贝(Mytilus edudis linne)、章鱼(Octopus ocellatus)、扇贝(Patinopecten yessoensis)的介电特性随频率、温度的变化规律,并得到介电特性与频率呈对(指)数函数关系,为进一步的配置介电特性与之匹配的模拟食品提供数据支持,为计算机模拟微波辅助杀菌过程提供参数,为开发新的微波辅助设备提供依据。
Microwave sterilization process is a promising alternative to conventional retorting methods for producing high quality shelf stable foods. In order for this technology to produce high quality shelf stable aquatic products there is a need for a rapid and reliable method to determine the location of cold spots in food. My dissertation overcomes the limitations of no model food for low dielectric loss factor seafood with a special focus on the development of a new model food to determine heating patterns using chemical maker M-2based computer vision method for microwave sterilization. A case study of rehydrated sea cucumber was as follows:
     The dielectric constant (ε') and loss factor (ε") of rehydrated sea cucumber (Apostichopus japonicas) were investigated over the frequency range of300KHz-3000MHz at temperatures ranging from20to125℃. Influences of frequency and temperature on rehydrated sea cucumber dielectric properties as well as that of penetration depth were analyzed at915MHz in the temperature range20to121.1℃. Logarithmic (exponential) and quadratic relationship were observed, respectively.
     Study the effect of whey protein concentrate (WPC) and whey protein isolation (WPI) on dielectric properties of model food with five different formulation for development a model food for rehydrated sea cucumber; based on comparison of the measured dielectric properties of the rehydrated sea cucumbers and model food samples with different formulations and the calculated microwave power penetration depths among the sea cucumbers and model foods in the temperature range20to121.1℃at915MHz, appropriate formulation (WPC5%, WPI3%, gellan gum1%, D-ribose0.5%and distilled water90.5%) was chosen as the model food for rehydrated sea cucumbers for the purpose of predicting heating pattern in microwave processing development.
     Through interactive programming an IMAQ Vision Builder script was designed to get the3-D heating pattern in model food to predict the heating patterns in rehydrated sea cucumber during thermal processing; relationship among thermal lethality (Fo) and color RGB value with model food was studied, quadratic curve was observed; Sensitivities to the heating patterns were tested for model food with different thickness. Results indicated that microwave heating patterns were similar, the average cold spot was located at the point23.33mm from the right edge and3.44mm from the front edge in the middle layer; heating patterns were tested for model food and rehydrated sea cucumber and cold spots were analyzed which is close to model food,(-21.68,-2.38) mm; F0value in cold spot was calculated through color RGB value during microwave sterilization.
     The method here was further improved to facilitate the comparison of the heating patterns for model food with ellab sensor and frame or without sensor and frame; model food in different belt position during the same processing, the results showed that the heating patterns were similar, and the errors (within2mm) were acceptable; the temperature of the cold spot predicted by the model food was validated using ellab sensors, F0value was calculated; data sets were collected from four heat penetration test runs, relationship of Fo value and microwave heating time (T) was analyzed: Fo=105.6*T-245.14(R2=0.9744), microwave-assist processing parameters were determined for package rehydrated sea cucumbers; Septuple heating time was needed for the same F0value in hot water sterilization processing using the same system with the same processing parameters; the method here was further improved to facilitate the comparison of heating patterns between computer simulation and microwave processing. The result showed the similar heating pattern:
     Validation tests confirmed that the method based on chemical marker M-2and computer vision can accurately determine the cold spot location in pre-package model food and rehydrated sea cucumber processed by microwave, Fo value in cold spot was calculated through microwave heating time for developing microwave-assist sterilization processing parameters.
     The dielectric constant (ε'and ε " of mussel (Mytilus edudis linne), octopus (Octopus ocellatus) and scallop (Patinopecten yessoensis) were investigated. Influences of frequency were analyzed in the temperature range20.to121.1℃, Logarithmic(exponential) relationships were observed, and those data could be used for developing model food, simulating with computer and designing new equipment for microwave sterilization processing.
引文
[1]邵桂兰,赵伟.我国水产品加工企业面临的技术贸易壁垒及应对措施[J].中国渔业经济,2006,1:46-48
    [2]于集思.未来水产品加工向纵深发展[J].农村新技术,2010,2:6-8
    [3]岑剑伟,李来好,杨贤庆,等.我国水产品加工行业发展现状分析[J].现代渔业信息,2008,7:6-10
    [4]李少华.我国水产品加工行业发展现状分析[J].企业技术开发,2009,2:35-36
    [5]付万冬,杨会成,李碧清,钟明杰.我国水产品加工综合利用的研究现状与发展趋势[J].现代渔业信息,2009,12:3-5
    [6]徐小怡,宁凌.我国沿海省份水产品加工产业发展比较[J].中国渔业经济,2011,3:145-151
    [7]Iles A. Making the seafood industry more sustainable:creating production chain transparency and accountability. Journal of Cleaner Production 2007,15(6):577-589
    [8]Lindkvist K B, Trondsen T. Restructuring the Chinese seafood industry, global challenges and policy implications. Marine Policy,2008,32(3):432-441
    [9]王锡昌.中国水产品加工的当代思考[J].食品与机械,2006,4:10-11
    [10]王红勇.海南岛及东、南、西、中沙群岛海参资源现状与保护策略[J].北京水产,2006,1:46-49
    [11]房英春,张慧,陈曦.海参资源及生物学特征[J].北京水产,2007,2:25-27
    [12]周南.海参市场进入新规范化时代—中国水产流通与加工协会海参分会在北京成立[J].中国市场,2009,51:32-33
    [13]姚雪梅,黄勃,张继涛.海南海参资源种群分布和增养殖前景[J].科学养鱼,2003,6:5-9
    [14]姜健,杨宝灵,邰阳.海参资源及其生物活性物质的研究[J].生物技术通讯,2004,5:537-540
    [15]张春云,王印庚,荣小军,等.国内外海参自然资源、养殖状况及存在问题[J].海洋水产研究,2004,3:89-97
    [16]保胜,张维善,黄宁.世界海参渔业[J].招商周刊,2004,44:65
    [17]徐文其,沈建,薛长湖,等.鲜活海参清洗工艺试验研究[J].渔业现代化,2009,6:42-45
    [18]徐文其,蔡淑君,沈建.一种鲜活海参连续式蒸煮生产工艺及其设备的研究[J].食品科技,2011,1:108-111
    [19]杨玉.干海参的加工方法[J].农村实用科技信息,1995,10:20
    [20]陈积庆.怎样制作干海参[J].中国水产,1984,11:19
    [21]滕瑜,王彩理.淡干海参和糖干海参-干海参的市场暗战[J].科学养鱼,2010,12:69-70
    [22]云霞,杨红,张江红,葛慧.冻干海参预处理工艺研究[J].食品工业科技,2006,8:103-105
    [23]向怡卉,苏秀榕,董明敏,陈才利.盐渍海参水发技术的研究[J].食品科学,2007,12:153-156
    [24]蒲昭和.“水发”海参有何妙招[J].农村百事通,2007,23:59
    [25]刘淇,曹荣,王联珠,殷邦忠.干海参水发工艺的研究[J].农产品加工(创新版),2010,11:4648
    [26]唐家林,吴成业,刘淑集,等.即食海参加工工艺的研究[J].福建水产,2012,1:31-35
    [27]叶丹,谢超.即食海参休闲食品原料处理新工艺[J].肉类研究,2008,10:38-40
    [28]李银塔,李钰金,陈英乡,邵仁东.即食鲜海参生产工艺研究[J].肉类研究,2010,6:78-81
    [29]刘昌衡,王小军,袁文鹏,等.复方海参口服液的抗疲劳和免疫功能的研究[J].现代食品科技,2009,10:1115-1119
    [30]马廷行,田静,李春华,唐晓勇.升柏和味海参口服液防治化疗所致骨髓抑制临床研究[J].实用中医药杂志,2008,5:268-269
    [31]杨志娟.海参蜂蜜营养口服液的研制[J].食品科技,2002,9:58-59
    [32]江帷国.海参肽营养素胶囊[J].山东食品科技,2002,11:25
    [33]Lemaire N, Pellerin J. Seasonal variations of physiological parameters in the blue mussel mytilus spp. from farm sites of eastern Quebec. Aquaculture,2006,261(2):729-751
    [34]Mohan M, Sena S D S. Mussel and Oyster Culture in the Tropics. Tropical Mariculture. London, Academic Press:1998, pp.309-360
    [35]苏秀榕,李太武,丁明进.紫贻贝和厚壳贻贝营养成分的研究[J].中国海洋药物,1998,17(2):30-32
    [36]李桂生,刘志峰.紫贻贝营养成分的分析及重金属的检测[J].烟台大学学报:自然科学与工程版,2002,15(2):147-150
    [37]Hess P, Nguyen L. Tissue distribution, effects of cooking and parameters affecting the extraction of azaspiracids from mussels, Mytilus edulis, prior to analysis by liquid chromatography coupled to mass spectrometry. Toxicon,2005,46(1):62-71
    [38]何建瑜,赵荣涛,刘慧慧.舟山海域厚壳贻贝软体部分营养成分分析与评价[J].南方水产科学,2012,4:3742
    [39]李庐峰,张农.贻贝保鲜加工与综合利用的现状及展望[J].福建水产,1996,3:65-70
    [40]宋广磊.贻贝的加工利用与开发[J].渔业现代化,2003,2:30-31
    [41]王松志.国外贻贝加工简况[J].国外水产,1983,4:33
    [42]关景象.贻贝加工前景可观[J].中国水产,1993,10:8-9
    [43]李庐峰,张农,王勤,陈冰.贻贝冷冻调理食品加工技术[J].福建水产,1995,4:40-42
    [44]王宏海,戴志远.冷冻调理贻贝的加工工艺[J].食品与发酵工业,2005,6:144-146
    [45]李梦娇,王燕芳,胡静,等.烟熏风味贻贝加工工艺的研究[J].安徽农业科学,2012,11:6507-6509
    [46]李庐峰,张农,王勤,陈冰.贻贝罐头加工技术研究[J].水产科技情报,1995,5:203-205
    [47]阎亚梅,卢长润.即食贻贝加工技术[J].农村实用工程技术,1996,1:22
    [48]刘昌衡,夏雪奎,袁文鹏,等.即食夏贻贝的加工方法的研究[J].现代食品科技,2010,4:375-376
    [49]童军锋,高锡永.贻贝软罐头加工技术与要点[J].北京水产,2002,1:21-22
    [50]廖永岩,高凤英,张聚杰.中国产章鱼的研究和增养殖[J].水产养殖,2006,5:11-15
    [51]郝振林,宋坚,常亚青.长蛸肌肉主要营养成分分析及评价[J].营养学报,2011,4:416-418
    [52]文松松,赵峡,高英霞,于广利.短蛸章鱼多糖的提取分离和基本性质分析[J].中国海洋药物,2010,1:24-31
    [53]徐英杰,丁立新.冰活章鱼的加工技术[J].中国水产,1998,9:41
    [54]梁晶晶.改善出口章鱼加工产品色泽的研究[D].浙江工商大学,2008
    [55]邱海燕.冷冻章鱼块的加工技术[J].农村实用技术,2011,3:54
    [56]何定芬.单冻熟切块章鱼加工工艺研究[J].浙江海洋学院学报(自然科学版),2002,2:176-177
    [57]山风.炭烤章鱼加工工艺[J].生意通,2009,6:116-117
    [58]Atrea I, Papavergou A. Combined effect of vacuum-packaging and oregano essential oil on the shelf-life of Mediterranean octopus (Octopus vulgaris) from the Aegean Sea stored at 4℃. Food Microbiology,2009,26(2):166-172
    [59]李伟青,王颉,孙剑锋,李伟硕.海湾扇贝营养成分分析及评价[J].营养学报,2011,33(6)
    [60]王厚全,任慧霞,程秀民,王培峻.栉孔扇贝边的营养价值和应用研究[J].中国海洋药物,1997,1:43-44
    [61]张新明,顾成柏,王秀敏.扇贝营养价值研究进展[J].养殖与饲料,2009,9:58-60
    [62]张林楠.日本的扇贝加工[J].中国水产,1991,11:37-38
    [63]倪学文.扇贝综合利用的研究进展[J].中国食物与营养,2006,10:19-21
    [64]周宏.船上扇贝及虾加工设备[J].渔业机械仪器,1987,4:42
    [65]刘昌衡,孟秀梅,袁文鹏,等.即食扇贝的加工技术[J].食品研究与开发,2011,7:69-71
    [66]Teixeira A A. Thermal Processing for Food Sterilization and Preservation. Handbook of Farm, Dairy, and Food Machinery; K. Myer. Norwich, NY, William Andrew Publishing:2007. 415-448
    [67]Chotyakul N, Velazquez G. Assessment of the uncertainty in thermal food processing decisions based on microbial safety objectives. Journal of Food Engineering,2011,102(3): 247-256
    [68]张华.食品杀菌高新技术及其应用[J].粮食与油脂,2007,4:20-22
    [69]王留留,李琦,邓秀霞,王芳.新技术在食品杀菌中的应用[J].今日科苑,2010,6:40-41
    [70]关秀丽.高新技术在食品杀菌工艺中的应用[J].食品与机械,1994,2:33-34
    [71]Ansari I A, Datta A K. An Overview of Sterilization Methods for Packaging Materials Used in Aseptic Packaging Systems. Food and Bioproducts Processing 2003,81(1):57-65
    [72]Cerf O, Davey K R An Explanation of Non-Sterile (Leaky) Milk Packs in Well-Operated UHT Plant. Food and Bioproducts Processing,2001,79(4):219-222
    [73]Ruiz-Matute A I, Corzo-Martinez M. Presence of mono-, di-and galactooligosaccharides in commercial lactose-free UHT dairy products. Journal of Food Composition and Analysis, 2012,28(2):164-169
    [74]Sopelana P, Perez-Martinez M. Effect of ultra high temperature (UHT) treatment on coffee brew stability. Food Research International,2013,50(2):682-690
    [75]Vianna P C B, Walter E H M. Effect of addition of CO2 to raw milk on quality of UHT-treated milk. Journal of Dairy Science,2012,95
    [76]Tang Z, Mikhaylenko G. Microwave sterilization of sliced beef in gravy in 7-oz trays. Journal of Food Engineering,2008,89(4):375-383
    [77]Coronel P, Simunovic J. Sterilization solutions for aseptic processing using a continuous flow microwave system. Journal of Food Engineering,2008,85(4):528-536
    [78]Chen C, Abdelrahim K. Sensitivity analysis of continuous ohmic heating process for multiphase foods. Journal of Food Engineering,2010,98(2):257-265
    [79]Icier F. Ohmic Heating of Fluid Foods. Novel Thermal and Non-Thermal Technologies for Fluid Foods. P. J. Cullen, K. T. Brijesh, B. K. T. Vasilis ValdramidisA2-P.J. Cullen and V. Vasilis. San Diego, Academic Press:2012.305-367
    [80]Jakob A, Bryjak J. Inactivation kinetics of food enzymes during ohmic heating. Food Chemistry,2010,123(2):369-376
    [81]Sarkis J R., Jaeschke D P. Effects of ohmic and conventional heating on anthocyanin degradation during the processing of blueberry pulp. LWT-Food Science and Technology 2013,51(1):79-85
    [82]Zhu S, Marcotte M. Evaluation and comparison of thermal conductivity of food materials at high pressure. Food and Bioproducts Processing,2008,86(3):147-153
    [83]Ananta E, Heinz V. Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innovative Food Science & Emerging Technologies,2001,2(4):261-272
    [84]Poliseli-Scopel F H, Hernandez-Herrero M. Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT-Food Science and Technology,2012,46(1):42-48
    [85]Tsujimoto H, Huang C C. Ultra-high pressure sterilization of powdery food stuff-a new application of a roller compactor. Powder Technology,2004,146(3):214-222
    [86]Butz P, Fernandez Garcia A. Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering,2003,56(23):233-236
    [87]宋吉昌,李庆领.海虾超高压灭菌的试验研究[J].渔业现代化,2009,1:42-46
    [88]郝秦锋,许洪高,高彦祥.超高压灭菌及其对食品品质的影响[J].食品科学,2009,23:498-503
    [89]欧仕益,梁敏仪,黄才欢,等.超高压灭菌保存即食鲜虾的研究[J].食品科技,2012,7:150-152
    [90]马爽文,王鲜艳,李娟,张明铎.超声波杀菌机理及其影响因素[J].西安邮电学院学报,2011,2:39-41
    [91]刘丽艳,张喜梅,李琳,等.超声波杀菌技术在食品中的应用[J].食品科学,2006,12:778-780
    [92]Sobrino-L6pez A, Raybaudi-Massilia R. High-Intensity Pulsed Electric Field Variables Affecting Staphylococcus aureus Inoculated in Milk. Journal of Dairy Science,2006,89(10): 3739-3748
    [93]赵玉生,赵俊芳,周昇昇.初探非热力杀菌技术在食品工业中的应用[J].食品工业科技,2006,9:175-177
    [94]傅大放,周涛,钱科.生物固体微波杀菌及机理研究[J].微波学报,2003,4:70-72
    [95]李荣芬.微波的杀菌机理[J].中国消毒学杂志,1992,4:243-248
    [96]王弘.微波杀菌机理研究的现状[J].中国食品工业,2000,4:36
    [97]杭锋,陈卫,龚广予,等.微波杀菌机理与生物学效应[J].食品工业科技,2009,1:333-337
    [98]李荣芬,李素卿.微波杀菌机理研究:对细菌通透性影响的观察[J].中国消毒学杂志,1995,3:129-132
    [99]Ballardin M, Tusa I. Non-thermal effects of microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2011,716(12):1-9
    [100]Porcelli M, Cacciapuoti G. Non-thermal effects of microwaves on proteins:thermophilic enzymes as model system. FEBS Letters,1997,402(23):102-106
    [101]Shazman A, Mizrahi S. Examining for possible non-thermal effects during heating in a microwave oven. Food Chemistry,2007,103(2):444-453
    [102]Edward E. Microwave sterilization of dried pretein:US,1979/4250139.1981-02-10
    [103]Yoshihiro N. Microwave irradiating sterilization process:US,1987/4808782.1989-02-28
    [104]Eisai C. Method and apparatus for microwave sterilization of ampoules:US,1989/5061443. 1991-10-29
    [105]Helmut K. Microwave sterilization device:US,2000/6524539.2003-02-25.
    [106]潍坊紫鸢牧业发展有限公司.一种牛奶用微波杀菌装置:中国,201020117256.8[P].2010-11-10
    [107]馥雅食品科技(深圳)有限公司.一种五谷精磨设备微波杀菌装置:中国,201020105278.2[P].2010-11-03
    [108]新疆大学.一种微波杀菌方法及设备:中国,200910113234.6[P].2009-08-19
    [109]王承辉.一种能在低温及常压下进行高效杀菌的微波杀菌机:中国,200610034908.X[P].2007-10-10.
    [110]徐云升.一种微波杀菌机:中国,200320132207.1[P].2005-04-27
    [111]株式会社籴田制作所.微波杀菌装置:中国,CN95197265.0[P].1998-01-28
    [112]胡伟仲.微波杀菌循环装置:中国,201020268596.0[P].2011-02-09
    [113]Kashyap S C, Wyslouzil W. Method for improving heating uniformity of microwave ovens. Journal of Microwave Power and Electromagnetic Energy,1977,12(3):223-230
    [114]Plaza-Gonzalez P, Monzo-Cabrera J, Catala-Civera J M, Sanchez-Hernandez D. Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators. IEEE Trans. Microwave Theory Tech.,2005,53(5):1699-1706
    [115]Pitarch J, Canos A J, Penaranda-Foix F L, Catala-Civera J M, Balbastre J V. Synthesis of uniform electric field distributions in microwave multimode applicators by multifeed techniques. Proc.9th Conf. Microwave & High-Frequency Heating, Loughborough, U.K. 2003,221-224
    [116]Pedreno-Molina J L, Monzo-Cabrera J, Pinzolas M, Perez M E. A new predictive neural architecture for modelling electric field patterns in microwave-heating processes. International Journal of Materials & Product Technology,2007,29(1-4):185-199
    [117]Monzo-Cabrera J, Diaz-Morcillo A, Dominguez-Tortajada E. Genetic algorithm optimization of dielectric casts for uniform electric field pattern synthesis. Proc.9th Seminar Computer Modeling & Microwave Power Engineering, Valencia, Spain,2007,6-7
    [118]程尚智,房秉仁,邹蕤宾.915兆赫微波辐射器辐射均匀性的改进[J].湖南师范大学自然科学学报,1984,3:81-86
    [1]Nelson S O. Electrical properties of grain and other food materials. J. Food Process Preservation,1978,137-154
    [2]Schiffmann R F. Problems in standardizing microwave oven performance. Microwave World, 1990,20-24
    [3]Nelson S O, Bartley P G. Measuring frequency and temperature dependent dielectric properties of food materials. The 2000 ASAE Annual International Meeting, Milwaukee, Wisconsin July 9-12,2000. ASAE paper No.006096
    [4]Nelson S O, Samir T. Factors influencing the dielectric properties of agricultural and food products. Journal of Microwave Power and Electromagnetic Energy,2012,93-107
    [5]Tang J, Feng H, Lau M. Microwave heating in food processing. In:Young X, Tang J (Eds.), Adv. Agri. Eng. Sci. Press, New York,2002,1-43
    [6]Bengtsson N E, Risman P O. Dielectric properties of food at 3 GHz as determined by a cavity perturbation technique. Journal of Microwave Power,1971,107-123
    [7]Mudgett R E. Microwave food processing. Food Technol.,1989,117
    [8]Zhang L, Lyng J G, Brunton N P. The effect of fat, water and salt on the thermal and dielectric properties of meat batter and its temperature following microwave or radio frequency heating. Journal of Food Engineering,2007,142-151
    [9]Tang J. Dielectric properties of foods. The microwave processing of foods. Woodhead Publishing,2005.25-75
    [10]Ohlsson T, Bengtsson N E, Risman P O. The frequency and temperature dependence of dielectric food data as determined by a cavity perturbation technique. Journal of Microwave Power,1974,129-145
    [11]Ohlsson T, Henriques M, Bengtsson N. Dielectric properties of model meat emulsions at 900 and 2800 MHz in relation to their composition. J. Food Sci.,1974,1153-1156
    [12]Guan D S, Cheng M, Wang Y, Tang J. Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. J. Food Sci.,2004, 30-37
    [13]Debye P. Polar Molecules. New York:The Chemical Catalog Co.1929
    [13]Hu X, Mallikarjunan P. Thermal and dielectric properties of shucked oysters. Food Science and Technology,2005,489-494
    [14]Kent M. Determination of added water in pork products using microwave dielectric spectroscopy. Food Control,2002,143-149
    [15]Basaran P, Basaran-Akgul N, Rasco B A. Dielectric properties of chicken and fish muscle treated with microbial transglutaminase. Food Chemistry,2010,120(2):361-370
    [16]Al-Holy M. Dielectric properties of salmon (Oncorhynchus keta) and sturgeon (Acipenser transmontanus) caviar at radio frequency (RF) and microwave (MW) pasteurization frequencies. Journal of Food Engineering,2005,70(4):564-570
    [17]Wang Y. Dielectric properties of salmon fillets as a function of temperature and composition. Journal of Food Engineering,2008,87(2):236-246
    [18]Nyfors E, Vainikainen P. Industrial Microwave Sensors, chapter 2. Boston, MA:Artech House, Norwood.1989
    [19]Engelder D S, Buffer C R. Measuring dielectric properties of food products at microwave frequencies. Microwave world,1991,2-11
    [20]Hewlett P. Dielectric probe kit 85070A. Palo Alto, CA:Research and Development Unit, Test and Measurements Laboratories, Hewlett Packard Corporation.1992
    [21]Wang Y. Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering,2003,257-268
    [22]Padua G W. Proton NMR and dielectric measurements on sucrose filled agar gels and starch pastes. Journal of Food Science,1993,58(3),603-604
    [23]Van Dyke D, Wang D I C, Goldblith S A. Dielectric loss factor of reconstituted ground beef: The effect of chemical composition. Food Technology,1969,23:84-86
    [24]潘学军,刘会洲,徐永源。微波辅助提取(MAE)研究进展。化学通报,1999,7-14
    [25]Ryynanen S. The electromagnetic properties of food materials:a review of the basic principles. Journal of Food Engineering,1995,409-429
    [26]Sun E, Datta A, Lobo S. Composition-based prediction of dielectric properties of foods. Journal of Microwave Power and Electromagnetic Energy,1995,30(4):205-212
    [27]Venkatesh M S, Raghavan G S V. An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering,2004,88(1):1-18
    [28]Guan D, Cheng M, Wang Y. Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science,2004, 69(1):30-37
    [1]Hendrick M, Maesmans G, Van L A. Evaluation of the integrated time-temperature effect in thermal processing of foods. Cri. Rev. Food Sci.& Nut.,1995.231-262
    [2]Sakai N, Mao W. A method for developing model food system in microwave heating studies. J. Food Eng.,2005,525-531
    [3]Bajaj I B, Survase S A, Saudagar P S, Singhal R S. Gellan gum:fermentative production, downstream processing and applications. Food Technology and Biotechnology,2007,45(4): 341-354
    [4]Omoto T, Uno Y, Asai I. The latest technologies for the application of gellan gum. In: Nishinari, K. (Ed.), Physical Chemistry and Industrial Application of Gellan Gum. Springer, Berlin/Heidelberg.1999
    [5]Huang Y Q, Tang J M, Swanson B G, Rasco B A. Effect of calcium concentration on textural properties of high and low acyl mixed gellan gels. Carbohydrate Polymers,2003,54(4):517-522
    [6]Shah M J N, Jani G K, Parikh J R. Gellan gum and its applications-a review. Pharmaceutical Reviews,2007
    [7]Wang S, Tang J, Cavalieri R P, Davis D C. Differential heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments. Transactions of the ASAE, 2003,46(4):1175-1182
    [8]Birla S, Pitchai K, Subbiah J, Jones D D. Development of Novel Microwave Cooking Model for Not-Ready-to Eat Foods. Paper read at International Microwave Power Institute's 43rd Annual Symposium,2009,Washington, DC.
    [9]Shah D P, Jani, G K. Modification and characterization of gellan gum. Pharmaceutical Technology,2009,33(7):48-58
    [10]Okiror G P. and Jones C L. Effect of temperature on the dielectric properties of low acyl gellan gel. Journal of Food Engineering,2012,113(1):151-155
    [1]Kim H J, Taub I A. Intrinsic chemical marker for aseptic processing of particulate foods. Food Technology,1993,47(1):91-97
    [2]Kim H J, Taub I A, Choi Y M, Prakash A. Principles and application of chemical marker of sterility in high-temperature-short time processing of particulate foods. In T. C. Lee,& H. J. Kim (Eds.), Chemical markers for processes and stored foods. Washington, DC:American Chemical Society.1996, pp 54-69
    [3]Lau H, Tang J, Taub I A, Yang T C S, Edwards C G, Mao R. Kinetics of chemical marker formation in whey protein gels for studying high temperature short time microwave sterilization. J. Food Eng.,2003,60:397-405
    [4]Wang Y, Wig T D, Tang J, Hallber L M. Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering.2003,57(3):257-268
    [5]Haralick R M, Miller R K. Computer and Robot Vision. Addision-Wesley Publishing Company, Reading, MA, USA.1972
    [6]Baxes G A. Digital Image Processing Principle and Application. Wiley, New York, USA.1994
    [7]Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine Vision. PWS Publishing, California, USA.1999
    [8]Lu R. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technolgy,2004,31:147-157
    [9]Kondo N, Ahmad U, Monta M, Murase H. Machine vision based quality evaluation of Iyokan orange fruit using neural network. Computers and Electronics in Agricultural,2000,29:135-147
    [10]Tao Y, Heinemann P H, Varghese Z, Morrow C T, Sommer H J. Machine vision color inspection of potatoes and apples. Transaction of the ASAE,1995,38:1555-1561
    [11]Andersen J O, Henriksen C B, Laursen J, Nielsen A. Computerized image analysis to biocrystallograms originating from agricultural products. Computers and Electronics in Agriculture,1999,22:51-69
    [12]Du C J, Sun D W. Recent developments in the application of Image processing techniques for food quality evaluation. Trends in Food Science and Technology,2004,15:230-249
    [13]Wang H H, Sun D W. Assessment of cheese browing affected by baking conditions using computer vision. Journal of Food Engineering,2003,56:339-345
    [14]Du C J, Sun D W. Comparison of three methods for classification of pizza topping using different colour space transformations. Journal of Food Engineering,2005,67:427-433
    [15]Munkevik P, Hall G, Duckett T. A computer vision system for appearance-based descriptive sensory evaluation of meals. Journal of Food Engineering,2005,78(1):246-256.
    [16]Hatcher D W, Symons S J, Manivannan U. Developments in the use of analysis for the assessment of oriental noodle appearance and colour. Journal of Food Engineering,2003,61: 109-117
    [17]Carpenter C E, Cornforth D P, Whittier D. Consumer preference for beef colour and packaging did not affect eating satisfaction. Meat Science,2001,66:301-306
    [18]Gunasekaran S. Computer vision technology for quality assurance. Trends in Food Science & Technology,1996,7:245-256
    [19]单再成,邓林伟。F值、C值、E值及热力杀菌的最佳条件[J]。中国果菜,2000,6:24-25
    [20]Lu J, Tan J, Shatadal P, Gerrard D E. Evaluation of pork color by using computer vision. Meat Science,2000,56:57-60
    [21]Abriel H, Campo M M, Onenc A, Sanudo C, Alberti P, Neguerela A I. Beef colour evaluation as a function of ultimate pH. Meat Science,2001,58:69-78
    [22]Chaoxin Z, Sun D W, Zheng L. Correlating color to moisture content of large cooked beef joints by computer vision. Journal of Food Engineering,2006,77(4):858-863
    [23]Prakash A, Kim H J, Taub I A. Assessment of microwave sterilization of foods using intrinsic chemical markers. Journal of Microwave and Electromagnetic Energy,1997,32(1):50-57
    [24]Liu F, Tang Z. Inoculated pack studies to validate microwave sterilization processes for packaged food. IMPI's 46th Annual Microwave Power Symposium,2012
    [1]Ayappa K G, Davis H T, Davis E A, Gordon J. Analysis of microwave-heating of materials with temperature-dependent properties. AIChE Journal,1991,37(3):313-322
    [2]Guo W, Tiwari G, Tang J, Wang S. Frequency, moisture and temperature-dependent dielectric properties of chickpea flour. Biosystems Engineering,2008,101(2):217-224
    [3]Basaran-Akgul N, Basaran P, Rasco B A. Effect of temperature (-5 to 130℃) and fiber direction on the dielectric properties of beef Semitendinosus at radio frequency and microwave frequencies. Journal of Food Science,2008,73(6):243-249
    [4]Pandit R B, Tang J, Liu F, Mikhaylenko G. A computer vision method to locate cold spots in foods in microwave sterilization processes. Pattern Recognition,2007,40(12):3667-3676
    [5]Grellinger D J, Janney M A. Ceramic Trans.,1993,36:529-532
    [6]Dibben D C, Metaxas A C. Frequency domain vs time domain finite element methods for calculation of the fields in multimode cavities.7th Biennial IEEE Conference on Electromagnetic Field Computation, Okayama Japan:1996.322-325
    [7]Marra F, Romano V. A mathematical model to study the influence of wireless temperature sensor during assessment of canned food sterilization. Journal of Food Engineering,2003,59: 245-252
    [8]Iciek J, Papiewska A. Inactivation of Bacillus stearothermophilus spores during thermal processing. Journal of Food Engineering,2006,77(3):406-410
    [1]Venkatesh M S, Raghavan G S V. An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering,2004,88(1):1-18
    [2]Martin-Esparza M E, Martinez-Navarrete N. Dielectric behavior of apple (var. Granny Smith) at different moisture contents:Effect of vacuum impregnation. Journal of Food Engineering, 2006,77(1):51-56
    [3]Hu X, Mallikarjunan P. Thermal and dielectric properties of shucked oysters. Food Science and Technology,2005,38(5):489-494
    [4]何天宝,程裕东.温度和频率对鱼糜介电特性的影响[J].水产学报,2005,29(2):252-257
    [5]贾敏,薛长湖,丛海花,等.频率和温度对鲍鱼介电特性的影响[J].食品工业科技,2012,18:182-185
    [6]Sharma G P, Prasad S. Dielectric properties of garlic (Allium sativum L.) at 2450 MHz as function of temperature and moisture content. Journal of Food Engineering,2002,52(4): 343-348.
    [7]Ohlsson T, Henriques M, Bengtsson N E. Dielectric properties of model meat emulsions at 900 and 2800 MHz in relation to their composition. Journal of Food Science,1974,39:1153-1156
    [8]Wang Y, Tang J. Dielectric properties of salmon fillets as a function of temperature and composition. Journal of Food Engineering,2008,87(2):236-246
    [9]Wang Y, Tang J, Rasco B. Dielectric properties of salmon fillets as a function of temperature and composition. Journal of Food Engineering,2008,87:236-246
    [10]Tanaka F, Mallikarjunan P, Hung Y C. Dielectric properties of shrimp related to microwave frequencies:from frozen to cooked stages [J]. Journal of Food Processing Engineering,1999, 22:455-468
    [11]Zheng M, Huang Y W, Nelson S O. Dielectric properties and thermal conductivity of marinated shrimp and channel catfish [J]. Journal of Food Science,1998,63(4):668-672
    [12]Hu X P, Parameswarakumar M. Thermal and dielectric properties of shucked oysters [J]. Journal of Food Science,2005,38:489-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700