浮游甲壳动物对大型深水水库温度垂直分布的生态响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了阐明浮游甲壳动物对水温垂直分布演变的生态响应机制,本研究选取两处大型深水水库(新安江水库、三峡水库)水域生态系统为对象,研究了不同类型水库中浮游甲壳动物垂直分布演变模式的特点及其与水温垂直分布季节性差异的关系。具体结果如下:
     (1)、对新安江水库四季昼夜垂直水温数据的测定显示,新安江水库是典型的分层型水库,春季垂直断面即有分层现象,变温层分布在5-25m,水温最大变化梯度为0.70℃/m;夏季是温跃层最显著的季节,深度为10-25m,水温最大变化梯度为1.19℃/m;秋季和冬季坝前段水体水温呈混合型分布。
     (2)、对新安江水库浮游甲壳动物四季昼夜垂直样品的分析共鉴定枝角类5科8种,蚤状溞(Daphnia pulex)和透明溞(D. hyalina)为四季优势种,短尾秀体溞(Diaphanosoma brachyurum)和简弧象鼻溞(Bosmina coregoni)为夏季优势种。桡足类共鉴定3目5科12属19种,一种小剑水蚤(Microcyctops sp.)、粗壮温剑水蚤(Thermocyclops dybowskii)、广布中剑水蚤(Mesocyclops leuckarti)、绿色近剑水蚤(Tropocyclops prasinus prasinus)为四季优势种,透明温剑水蚤(T. hyalinus)为春、夏两季优势种,腹突荡镖水蚤(Neutrodiaptomus genogtbbosus)、台湾温剑水蚤( T. taihokuensis )为春季优势种,右突新镖水蚤( Neodiaptomus yangtsekiangensis)为夏季优势种。
     新安江水库浮游甲壳动物的主要优势种类在水柱的各个水层均有分布,垂直分布为聚集分布的格局,但程度不高;种群平均滞留水深各季节及各时间段变化较大,春、夏季节整体分布在变温层(10-25m)内,秋、冬季则涉及整个垂直水柱;昼夜迁移现象明显,迁移尺度依次为冬季>秋季>春、夏季,迁移模式类群间各不相同,枝角类在春、夏、冬季都为正常迁移,秋季为反向迁移,桡足类则四季均为正常迁移。
     总体而言,温跃层的出现对大多数浮游甲壳动物影响不大,表现仅为降低了他们昼夜垂直移动的幅度,而蚤状溞则是被温跃层阻挡其垂直迁移的种类。
     (3)、对三峡水库主要支流库湾(大宁河库湾、香溪河库湾)垂直水温数据的监测表明,三峡水库大宁河库湾四季水温垂直分布与水深呈线性相关,垂直水柱温度的差异按季节温度的升高而升高。三峡水库香溪河库湾,夏季0-5m温度下降相对较快,但不形成温跃层,春、秋、冬三季垂直水温呈混合型分布。
     (4)、对三峡水库大宁河库湾周年垂直水层样品分析共鉴定枝角类5科5属8种,简弧象鼻溞和透明溞是四季优势种,短尾秀体溞是夏秋两季优势种.共鉴定(木+尧)足类3目6科12种,汤匙华哲水蚤(Sinocalanus dorrii)为四季优势种,球状许水蚤(Schmackeria forbesi)和虫宿温剑水蚤(T. vermifer)为夏、秋两季的优势种。三峡水库香溪河库湾四季昼夜垂直样品分析共鉴定枝角类5科6属12种,冬季未鉴定到枝角类,简弧象鼻溞为三季的优势种,短尾秀体溞、长肢秀体溞(D. leuchtenbergianum)、多刺秀体溞(D. sarsu)和脆弱象鼻溞(B. fatalis)是夏季的优势种。桡足类则鉴定到3目3科7属8种,在垂直分布上并不形成季节性的优势种。
     三峡水库大宁河库湾浮游甲壳动物垂直分布的连续性在月份间不同,枝角类优势种类在春、夏两季垂直水层分布较为连续,桡足类种类多在春、夏、秋三季垂直水层分布较为连续,种类间差异较大。垂直分布格局整体呈现聚集分布,大部分种类聚集程度随水温下降而升高。香溪河库湾浮游甲壳动物的垂直分布格局同样体现着随水温升高而降低的趋势,一昼夜中以正午前的聚集程度最高。三峡水库大宁河库湾浮游甲壳动物平均滞留水深种间差异较大,春夏两季整体多分布在10-25m的水体中层,秋、冬季没有明显滞留水层;其中,短尾秀体溞会随水温的增加而下移。香溪河库湾枝角类垂直分布水层涉及整个水柱,昼夜迁移行为明显,均为正常迁移模式,迁移幅度各种类间差异极大,秀体溞和脆弱象鼻溞在温度较高时迁移尺度较大,简弧象鼻溞则随季节无明显变化。
     总体而言,三峡水库浮游甲壳动物垂直分布的变化受水温垂向分布差异性的影响较小,种群垂直分布仅是与温度的关系仅为季节性演替的所造成的个体滞育或食物水平变化的响应。三峡水库季节性调水加速水体的混合,有利于支流库湾浮游甲壳动物的垂直分布及昼夜迁移。
     (5)、不同类型水体水温垂直分布的演变对浮游甲壳动物垂直分布及昼夜迁移的影响不同,这与水文动力学因素有关。桡足类的垂直分布对于这种变化的响应机制为向上层食物密集处聚集,枝角类则进入温跃层;昼夜迁移的响应则均为提早向上迁移的时间(以延长上迁时间)。
In this study, two subtropical, lager, deepwater?reservoirs (Xin'anjiang Rerservior, Three Gorges Reservoir) were selectesd, investigated the relationship between the seasonal changes of vertical distribution and diel migration of pelagic crustacean in the water column and the seasonal vertical heterogeneity of water temperature in these two reserviors, to clarify the ecological responses of pelagic crustaceans to the vertical distribution of water temperature in large deepwater reservoirs. The main result are as follows:
     (1) In the investigation period, Xin’anjiang Reservior was represent to be a typical stratified reservior. In spring there is a week epilimnion between 5-25m, the temperature descend? gradient was 0.70℃/m. In summer there will be a strong themocline in the depth range from 10 to 25 m, the max temperature descend?gradient was 1.19℃/m. Then in autumn and winter, the water colum was represent to be homogeneous.
     (2) In the investigation we indentified 5 families 8 species of cladocera, in which the Daphnia pulex and D. hyalina was dominated species all year around, and Diaphanosoma brachyurum and? Bosmina coregoni was the dominated species mainly in summer. Besides, we indentified 3 orders 5 families 12 genera 8 species of copepod, in which Microcyctops sp., Thermocyclops dybowskii, Mesocyclops leuckarti, Tropocyclops prasinus prasinus was dominated species all year around, and T. hyalinus was the dominated specie mainly in spring and summer, Neutrodiaptomus genogtbbosus, T. taihokuensis was dominated mainly in spring, Neodiaptomus yangtsekiangensis was the dominated specie only in summer. The mainly dominated species was present in each layers, and be agminated, but not prominent. The main resident depth was varied in different season and time. In spring and summer the pelagic crustacean group was mainly stay at the depth of epilimnion (10-25m), while in autumn and winter rhe main resident depth was extend to the whole water column, and was totally accompanying with the phenomenon of diel vertical migration (DVM), which the amplitude was winter > autumn > spring and summer. Also, there were differences in the pattern among groups, such as cladoceras were normal migration in spring, summer and winter, while reverse migration in autumn, copepods were normal migration in 4 seasons. Overall, the thermocline has little influence to most pelagic crustacean species, only had reduced the amplitude of DVM, but for D. pulex, particularly, maybe was astricted under the thermocline.
     (3) The data of the vertical water temperature in the mainly tributary of Three Gorges Reservior (Daning Bay, Xiangxi Bay) show that, there was a linear correlation between the depth and water temperature in Daning Bay, the water column temperature difference was intensified with the rise of water temperature. Otherwise, in summer, water column temperature was descent fast from 0 to 5 m, but the therocline wasn’t shaped in Xiangxi Bay. Further more, in spring, autumn and winter the water column was homogeneous in temperature.
     (4) In the investigate period of Daning Bay, we indentified 5 families 5 gemus 6 species of cladocera, in which B. coregoni and D. hyalina was dominated in 4 seasons, and D. brachyurum was the dominated specie in summer and autumn. we also indentified 3 orders 6 families 12 species in copepod, in which, Sinocalanus dorrii was dominated all year around, Schmackeria forbesi and T. vermifer was the dominated species mainly in summer and autumn.
     In the investigate period of Xiangxi Bay, we indentified 5 families 5 genus 12 species in cladocera, except winter. B. coregoni was the dominated specie in the three seasons, D. brachyurum, D. leuchtenbergianum, D. sarsu, B. fatalis was the dominated species only in summer. And there was 3 order 3 families 7 genus 8 species in copepod, but didn’t have dominated species.
     The patterns in vertical distribution of pelagic crustacean in Daning Bay was varied each month, and the cladocera group represent to be successive in water column in spring and summer, while the copepod group was in spring, summer and autumn, varying in species. The pattern of vertical distribution was aggregated, more with the descend of water temperature. Spectacularly, the same as in Xiangxi Bay, indeed, the degree of agregatiton was highist in 10:00. The main resident depth in water column was varied in species, but mainly stay in the depth of 10-25m in spring and summer. In autumn and winter there was no clear MRD in water column, and the D. brachyurum was in deeper layer when the tenperature wans high. The nomal migration of cladocera was obviously and almost migration to all layers, different in species. The amplitude of DVM by Diaphanosoma and?B. fatalis was more in high temperature, B. coregoni was show no significant changes in any season.
     Totally speaking, the vertical distribution of pelagic crustacean in Three Gorges Rerservior changed little by the influence of water column temperature difference, and the vertical distribution of the group correlated with the temperature just to be seasonal changes in individual diapause or food level. What’s more, the seasonal dispatching of the Three Gorges Reservior was make for the vertical migration of pelagic crustacean.
     (5) The spatially structured of water temperature in different reserviors result in the different vertical migration of pelagic crustacean, it can be due to the hydrological dynamics facters. In this habitat, for copepod groups, they will gather into the surface layer where has plenty of food, and for cladocera, they will gather into the thermocline. The reserponse of pelagic crustacean in DVM are all reprensent to be earlier the migration time to the surface layer (to lengthen the migration time).
引文
[1]韩博平.中国水库生态学研究的回顾与展望.湖泊科学, 2010, 22(2):151-160
    [2]林秋奇,韩博平.水库生态系统特征研究及其在水库水质管理中的应用.生态学报, 2001, 21(6): 1034-1040
    [3] Marzolf GR. Reservoirs as environments for zooplankton. In: Reservoir Limnology: Ecological Perspectives (eds Thornton KW, Kimmel BL, Payne FE). New York: John Wiley and Sons, 1990: 195-208
    [4]姚建良,薛俊增,王登元,等.三峡水库初次蓄水后干流库区桡足类的纵向分布与季节变化.生物多样性, 2007, 15(3): 300-305
    [5] Hart BT, yon Dok W, Djuangsih N. Nutrient budget for Saguling reservoir, west java, Indonesia. Water Research, 2002, 36: 2152-2160
    [6] Taylor M W..Zooplankton ecology of a Great Plalns Reservoir In[Dissertation]. Manhattan, Kansas State University, 1971
    [7] Lincoln, R.J. Observations of the effects of changes in hydrostatic pressure and illumination on the behaviour of some planktonic crustaceans. J. Exp. Biol., 1971, 54: 677-688
    [8] Loeb, J.. The control of heliotropic reactions in fresh water crustaceans by chemicals, especially CO2. Univ. Calif. Publ. Physiol., 1904, 2: 1-3
    [9]Mikkelsen, P.M.. Studies on euphausiacean crustaceans from the Indian River region in Florida. 1. Stylocheiron longicorne species-group, with emphasis on reproductive morphology. Proc. Biol. Soc. Wash., 1981, 94: 1174-1204
    [10]Nauwerck, A.. Migration strategies of crustacean zooplankton in lake Mondsee. Arch. Hydrobiol. Beih. Ergebn. Limnol., 1993, 39: 109-122
    [11] Rice, A.L.. The orientation of pressure responses of some marine crustacea. Proceedings of Symposium on Crustacea, 1965, 3:1124-1131
    [12]Tessier, A.J., Goulden, C.E. Estimating food limitation in cladoceran populations. Limnol. Oceanogr., 1982, 27: 707-717
    [13] Vijverberg, J.. Variability and possible adaptive significance of day-time vertical distribution of Leptodora kindtii Focke (Cladocera) in a shallow eutrophic lake. Hydrobiol. Bull.,1991, 25: 85-91
    [14]刘建康,朱宁生,王祖熊.淮河山谷水库的调查及其养鱼的利用.水生生物学集刊, 1955, (1): 45-66
    [15]波鲁茨基EB,伍献文,白国栋,等.丹江口水库库区水生生物调查和渔业利用的意见.水生生物学集刊, 1959, (1): 33-56
    [16]曹文宣.偏窗子水库库区水生生物和渔业调查.水生生物学集刊, 1959, (1): 58-72
    [17]何志辉,李永函.清河水库的浮游生物.水生生物学集刊, 1983, 8(1): 71-84
    [18]胡传林,董方勇.中国水库渔业的现状与趋势.湖泊科学, 1993, 5(4): 378-383
    [19]王卫民,谢从新,陈吕福,等.三道河水库浮游生物现状及其鱼产力的估算.湖泊科学, 1994, 6(1): 46-54
    [20]黄道明,杨汉运,等.福建省水库底栖动物及渔业利用前景.湖泊科学, 1995, 7: 164-172
    [21]李德尚,熊邦喜,李琪,等.水库对投饵网箱养鱼的负荷力.水生生物学报, 1994, 18(3): 223-229
    [22]牛运光.浅论水库.湖泊科学, 1990, 2(1): 85-87
    [23]郭起治,潘镜.大河水库及月子庄水库池沼公鱼的饵料基础.水利渔业, 1995, (5): 32-35
    [24]贾海峰,程声通,丁建华,等.水库调度和营养物消减关系的探讨.环境科学, 2001, 22(4): 104-107
    [25]王孟,邬红娟,马经安.长江流域大型水库富营养化特征及成因分析.长江流域资源与环境, 2004, 13(5): 478-481
    [26]徐祖信,叶建锋.前置库技术在水库水源地面源污染控制中的应用.长江流域资源与环境, 2005, 14(6): 792-795
    [27]林秋奇,胡韧,段舜山,等.广东省大中型供水水库营养现状及浮游生物的响应.生态学报, 2003, 23(6): 1101-1108
    [28]陈绵润,赵帅营,林秋奇,等.广东省水库枝角类组成特征的初步研究.湖泊科学, 2007, 19(1): 77-86
    [29]贺诗水,王洪凯,徐汗福.水库中枝角类种群数量变化与环境因子的关系.安徽农业科学, 2009, 37(3): 1128-1129
    [30]陈椽,龙胜兴,任启飞,等.亚热带喀斯特水库桡足类和枝角类动物群落的季节变化——以贵州红枫湖、百花湖、阿哈水库为例.中国岩溶, 2010 29(1): 55-61
    [31]薛俊增,叶麟,蔡庆华,等.三峡水库坝前段蓄水前后枝角类的周年变化.水生生物学报, 2006, 30(1): 58-63
    [32]张贵刚,韩博平.中国特有种大型桡足类舌状叶镖水蚤( Phyllodiap tomustunguidus)在广东水库中的分布特征.湖泊科学, 2010, 22(3): 445-457
    [33]赵帅营,韩博平.大型深水贫营养水库——新丰江水库浮游动物群落分析.湖泊科学, 2007, 19(3): 305-314
    [34]王新华,王宏鹏,纪炳纯.天津市团泊水库浮游动物研究与水环境评价.四川动物, 2008, 27(5): 807-809
    [35]龙胜兴,陈椽.乌江上游筑坝蓄水后各水库浮游硅藻及浮游动物群落生态特征.贵州师范大学学报(自然科学版), 2009, 27(3): 21-26
    [36]高永胜,王淑英,于松林.对水库生态调度问题的研究.人民黄河, 2009, 31(11): 12-13, 24
    [37]曹永强,张伟娜,张林,等.水库对河流生态系统服务功能影响的生态足迹评价研究.长江科学院院报, 2010, 27(8): 16-19
    [38]杨爱民,王浩,王建华.我国库坝建设对河流生态系统服务功能的影响与战略对策.中国水利, 2010, (21): 8-11
    [39]姜作发,刘青.蛤蟆通水库浮游生物的研究.水产学杂志, 1996, 9(2): 36-43
    [40]姜作发,赵国铎.双凤水库浮游生物的研究.水产学杂志, 1999, 12(2): 6-13
    [41]李喆,姜作发,李池陶,等.西泉眼水库冰下浮游动物种群结构的观察.水产学杂志, 2006, 19(1): 62-67
    [42]赵文,殷旭旺,王吉桥,等.英那河水库渔业生态学调查.大连水产学院学报, 2009, 24(3): 221-230
    [43]盖建军,王丽卿,刘其根,等.千岛湖浮游甲壳类群落结构特征初步研究.上海水产大学学报, 2007, 16(6): 560-565
    [44]薛俊增,韩新芹,蔡庆华,等.香溪河库湾枝角类的种类组成及垂直分布.水生生物学报, 2006, 30(1): 120~122
    [45]朱爱娇,姚建良,薛俊增.千岛湖蚤状溞垂直分布格局及其季节与昼夜变化.海洋湖沼通报, 2007, (4): 120-128
    [46]李荔,陈椽,龙胜兴.贵州兴西湖水库夏季浮游动物调查与水质评价.环境科学与技术, 2010, 33(12F): 540-543
    [47] Cuvier, Le. Baron: La règne animale, The animal kingdom. London: Whittaker, Teacher & Co., 1834: 1-540
    [48] Ohman M. D., Frost B. W., Cohen E. H.. Reverse diel vertical migration—an escape from invertebrate predators. Science, 1983, 220: 1404-1407
    [49] Cohen J. H., Forward Jr R. B.. Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle. Marine Biology, 2005, 147: 387-398
    [50]赵文.养殖水域生态学.北京:中国农业出版社, 2005: 1-296
    [51] Hays G. C., R. P. Harris, R. N. Head. The vertical nitrogen flux caused by zooplankton diel vertical migration. Mar. Ecol. Prog. Ser., 1997, 160: 57-72
    [52]Longhurst A., W. G. Harrison. The biological pump: profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr, 1989, 22: 47-123
    [53] Schnetzer A., D. K. Steinberg. Active transport of particulate organic carbon and nitrogen by vertically migrating zooplankton in the Sargasso Sea. Mar. Ecol. Prog. Ser., 2002, 234: 71-84
    [54] Lampert W.. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol., 1989, 3: 21-27
    [55]Lampert W., R-M. Schmitt, P. Muck. Vertical migration of freshwater zooplankton:test of some hypotheses predicting a metabolic advantage. Bull. Mar. Sci., 1988, 43: 620-640
    [56] Dawidowicz P., Loose C. J.. Trade-offs in diel vertical migration by zooplankton-the costs of predator avoidance. Ecology, 1994, 75: 2255-2263
    [57]Dodson S. I., Tollrian R., Lampert W.. Daphnia swimming behavior during vertical migration. J. Plankton Res., 1997, 19: 969-978
    [58] Cousyn C., De Meester L., Colbourne J. K., et al.. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc. Nati. Acad. Sci., 2001, 98: 6256-6260
    [59]De Robertis A., J. S. Jaffe, M. D. Ohman. Size-dependent predation risk and the timing of vertical migration in zooplankton. Limnol. Oceanogr., 2000, 45: 1838-1844
    [60] Wiebe P. H., N. J. Copley, S. H. Boyd. Coarse-scale horizontal patchiness and vertical migration of zooplankton in Gulf Stream warm-core ring 82-H. Deep Sea Rea., 1992, 39: 247-278
    [61]Hays G. C.. Ontogenetic and seasonal variation in the diel vertical migration of the copepods Metridia lucens and Metridia longa. Limnol. Oceanogr., 1995, 40: 1461-1465
    [62]Hays G. C., Warner A. J., Proctor C. A.. Spatio-temporal patterns in the diel vertical migration of the copepod Metridia lucens derived from the Continuous Plankton Recorder survey. Limnol. Oceanogr., 1995, 40: 469-475
    [63]Ringelberg J.. Changes in light intensity and diel vertical migration: a comparison of marine and freshwater environments. J. Mar. Biol. Ass. U.K., 1995, 75: 15-25
    [64] Ringelberg J.. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev., 1999, 74: 397-423
    [65]Kessler K., Lampert W.. Depth distribution of Daphnia in response to a deep-water algal maximum: the effect of body size and temperature gradient. Fres. Biol., 2004, 49(4): 392-401
    [66] Leech D. M., Williamson C. E.. In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnol. Oceanogr., 2001, 46: 416-420
    [67]王真良,刘晓丹.北黄海浮游动物昼夜垂直移动的初步研究.黄渤海海洋, 1989, 7(4): 50-54
    [68]刘晓丹,王真良.北黄海中华哲水蚤各期幼体昼夜垂直移动的初步研究.海洋学报, 1991, 13(2): 247-253
    [69]王克,王荣,高尚武.东海浮游动物昼夜垂直移动的初步研究.海洋与湖沼, 2001, 32(5): 534-540
    [70]张芳,孙松,张永山.南黄海中华哲水蚤昼夜垂直分布.海洋科学, 2005, 29(9): 9-13
    [71]左涛,王荣,王克.夏季南黄海浮游动物的垂直分布与昼夜垂直移动.生态学报, 2004, 24(3): 524-530
    [72]徐兆礼,王云龙,陈亚瞿,等.长江口河口峰区浮游动物生态研究Ⅲ.优势种的垂直分布.中国水产科学, 1995, 2(1): 64-70
    [73]刘顺会,孙松,韩博平.浮游动物昼夜垂直迁移机理的主要假说及其研究进展.生态科学, 2008, 27(6): 515-521
    [74] Weisman A.. Das Tierleben im Bodensee. Schr. Ver. Geschichte Bodense Umgebung, 1887, 7(2): 1-31
    [75] Fragopoulo N., Lykakis J. J.. Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Marine biology, 1990, 104(3): 381-387
    [76] Russell F.S.. Tehe vertical distribution of marine macroplankton. Mar. Biol. Assoc. U.K., 1928, 15: 429-454
    [77] Bogorov, B.G. Peculiarities of diurnal vertical migrations of zooplankton in polar seas. Mar. Res. 1946, 6: 25-32
    [78] Haney J. F.. Environmental control of diel vertical migration behavior. Ergeb. Limnol., 1993, 39(6): 1-17
    [79] Richards S.A., Possingham H. P., Noye J.. Diel vertical migration: modelling light-mediated mechanisms. J. Plankton Res., 1996, 18: 2199-2222
    [80]罗会明.光对中华哲水蚤昼夜垂直移动的影响.厦门大学学报(自然科学版),1983, 22(1): 82-87
    [81] Tarling G. A., J. Cuzin-roudy, F. Buchholz. Vertical migration behaviour in the northern krill Meganyctiphanes norvegica is influenced by moult and reproductive processes. Mar. Ecol. Prog. Ser., 1999, 190: 253-262
    [82] Kozhov M.. Lake baikal and its life. Netherlands: The Hague, 1963: 1-131
    [83]厦门水产学院主编.海洋浮游生物学.农业出版社, 1981: 1-234
    [84]Gliwicz Z. M.. Predation and the evolution of vertical migration in zooplankton. Nature, 1986a, 320: 746-748
    [85] Lampert W.. Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator avoidance hypothesis. Ergeb. Limnol., 1993, 39(4): 79~88
    [86] Huang C., Uye S., OnbéT.. Ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus in the inland Sea of JapanⅢ. Early summer and overall seasonal pattern. Marine Biology, 1993, 117: 259-99
    [87]张武昌.浮游动物的昼夜垂直迁移.海洋科学, 2000, 24(11): 18-21
    [88] Harris R. P.. Interactions between diel vertical migratory behavior of marine zooplankton and the subsurface chlorophyll maximum. Bulletin of Marine Science, 1988, 43(3): 663-674
    [89]李宝华,傅克忖,曾晓起.南黄海夏末叶绿素a的分布特征.海洋与湖沼, 1999, 30(3): 300-305
    [90]王保栋.黄海溶解氧垂直分布最大值的成因.黄渤海海洋, 1997, 15(3): 10-15
    [91] Enright J. T., Honegger W. H.. Diurnal vertical migration: adaptive significance and timing. Test of the model:details of timing. Limnol. Oceanogr., 1977, 22(5): 873-886
    [92] Leising A. W., Franks P. J. S.. Copepod vertical distribution within a spatially variable food source: a simple foraging-strategy model. J. Plankton Res., 2000, 22(6): 999-1024
    [93]尹健强,张谷贤,黄良民,等.三亚湾浮游动物的昼夜垂直移动.热带海洋学报, 2004, 23(5): 25-33
    [94]郑重.浮游生物学概论.北京:科学出版社, 1961: 1-302
    [95] Morioka Y., Shinohara F., Nakashima J., et al. A diel vertical migration of the Copepod Calanus sinicus in relation to well-developed thermocline in the Yellow Sea, October 1987. Bulletin Seikai National Fishery Research Institnte, 1991, 69: 79-85
    [96] Joop Ringelberg. Diel vertical migration of zooplankton in lakes and oceans. Netherlands: Spinger Sci. and Business Media B.V., 2010: 1-356
    [97]栗运华.新安江水库水温分层及其规律探讨.水资源保护, 1987, (04): 21-29
    [98] Ruttner F. Fundamentals of Limnology. London: Oxford University Press, 1953: 1-346
    [99] Hecky R. E., Kling H. J..The phytoplankton and the protozooplankton of the euphotic zone of Lake Tanganyika: Species composition biomass chlorophyll content and spatial-temporal distribution. Limnology and Oceanography, 1981, 26(3): 548-564
    [100] Burns C.W., Mitchell S.F.. Seasonal succession and the vertical distribution of zooplankton in Lake Hayes and Lake Johnson. NZ. J. Mar. freshwater Res., 1980, 14: 189-204
    [101] Marcogliese D.J., Esch G.W.. Alterations of vertical distribution and migration of zooplankton in relation to temperature. Am. Midl. Nat., 1992, 128: 139-155
    [102] Hofmann W. The influence of spring circulation on zooplankton dynamics in Plussee. Verh. Int. Verein. Theor. Angew. Limnol. 1975, 19: 1241-1250
    [103] Miracle M.R. 1977. Migration, patchiness, and distribution in time and space of planktonic rotifers. Ergebn. Limnol. 8: 19-37
    [104]李共国,虞左明.千岛湖枝角类的群落结构.浙江万里学院学报, 2001, 14(2): 52-55
    [105]李共国,虞左明.千岛湖浮游动物的群落结构.生态学报, 2002, 22(2): 156-162
    [106]李共国,虞左明.浙江千岛湖桡足类的群落结构.生物多样性, 2002, 10(3): 305- 31
    [107]李共国,虞左明.大型深水湖泊——千岛湖枝角类的多样性.动物学杂志,2002, 37(3): 41-44
    [108]陈来生,洪荣华,任丽萍,等.新型分层浮游生物采集器的试用——千岛湖浮游动物自然分布的定性分析与鱼产潜力评估初步研究.渔业现代化, 2006, (2): 32-34
    [109]王先云,王丽卿,盖建军,等.千岛湖浮游甲壳动物垂直分布与昼夜垂直移动.生态学杂志, 2010, 45(5): 95-104
    [110]严力蛟,虞左明,黄迅刃,.千岛湖浮游藻类的群落特征与优势种.当代生态农业, 2001, Z2: 84-88
    [111]韩伟明,胡水景,金卫,等.千岛湖水环境质量调查与保护对策.湖泊科学, 1996, 8(4): 337-344
    [112]吕焕春,王飞儿,陈英旭,等.千岛湖水体叶绿素a与相关环境因子的多元分析.应用生态学报, 2003, 14(8): 1347-1350
    [113] Sun Yu-ping, You Jian-tao, Lei La-mei, et. al.. The feature of particulate fatty acids composition in a dinoflagellates bloom in Huanglongdai Reservoir, South China. Ecological Science, 2008, 27(5): 394-397
    [114]钟佳.九龙甸水库突发水华的影响因子分析.云南师范大学学报, 2007, 27(4): 68-73
    [115] Lampert W., Sommer U.. Limnoecology. The Ecology of Lakes and Streams. London: Oxford University Press, 1997: 1-120
    [116]沈嘉瑞.中国动物志·节肢动物门·甲纲壳·淡水挠足类.北京:科学出版社, 1979: 1-508
    [117]蒋燮治,堵南山.中国动物志·节肢动物门·甲纲壳·淡水枝角类.北京:科学出版社, 1979: 1-297
    [118]章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社, 1991: 1-201
    [119]陈雪梅.淡水挠足类生物量的测算.水生生物学集刊, 1981, 7(3): 397-408
    [120] Elliott J.M. Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates. Freshwater Biological Association. Great Britain: Scientific Publication, 1977: 1-203
    [121] Stephen J. Thackeray, D. Glen George, Roger I. Jones, et al. Statistical quantification of the effect of thermal stratification on patterns of dispersion in a freshwater zooplankton community. Aquatic Ecology, 2006, 40: 23-32
    [122] Cruz Pizarro L. Comparative vertical zonation and diurnal migration among Crustacea and Rotifera in tlle small light mountain lake Caldera (Granada, Spain). Verh. internat. Verein. Limnol., 1978, 20: 1026-1032
    [123] Armengol X, Miracle MR. Diel vertical movements of zooplankton in Lake La Cruz (Cuenca, Spain). J Plankton Res, 2000, 22: 1683-1703
    [124] Taylor L.R. Aggregation, variance and the mean. Nature, 1961. 189: 732-735.
    [125] McLaren, I.A. Effects of temperature on growth of zooplankton, and the adaptive value of vertical migration. J. Fish. Res. Bd. Can., 1963, 20:685-727
    [126] Manca, M., De Bernardi, R., Savia, A. Effects of fluctuating temperature and light conditions on the population dynamics and life strategies of migrating and non-migrating Daphnia species. Mem. Ist. Ital. Idrobiol. Pallanza., 1986, 44:177-202
    [127] Bollens, S.M., Frost, B.W., Cordell, J.R. Chemical, mechanical and visual cues in the vertical migration behavior of the marine planktonic copepod Acartica hudsonica. J. Plankton Res., 1994, 16: 555-564
    [128] De Meester, L.. Genotype, fish-mediated chemicals, and phototactic behavior in Daphnia agna. Ecology, 1993c, 74: 1467-1474
    [129] Begon, M., Harper, J.L., Townsend, C.R. Ecology: Individuals, Populations and Communities. Oxford: Blackwell Scientific Publications,1990:1-100
    [130] Moore, H.B. Variations in temperature and light response within a plankton opulation. Biol. Bull.,1955,108: 75-81
    [131] Kersting, K. Annual and diel oxygen and temperature regime of the Lakes Maarsseveen. Hydrobiol. Bull., 1981, 15: 10-28
    [132] Orcutt, J.D., Porter, K.G. Diel vertical migration by zooplankton: Constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol. Oceanogr., 1983, 28: 720-730
    [133] Sameoto, D.D. Vertical distribution of zooplankton biomass and species in Northeastern Baffin Bay related to temperature and salinity. Polar Biol., 1984, 2: 213-224
    [134] Svetlichny, L.S., Hubareva, E.S., Erkan, F., Gucu, A.C. Physiological and behavioral aspects of Calanus euxinus females (Copepoda: Calanoida) during vertical migration across temperature and oxygen gradients. Mar. Biol., 2000, 137: 963-971
    [135] T. Matsumura-Tundisi, J. G. Tundisi, L. S. Tavares. Diel migration and vertical distribution of Cladocera in Lake D. Helvecio (Minas Gerais, Brazil). Hydrobiologia, 1984, 113(1): 299-306
    [136] Hofmann W. The influence of spring circulation on zooplankton dynamics in Plussee. Verh. Int. Verein. Theor. Angew. Limnol., 1975, 19: 1241-1250
    [137] Work K.A., Gophen M. Factors which affect the abundance of an invasive cladoceran, Daphnia lumholtzi, in U.S. reservoirs. Freshwater Biol., 1999, 42: 1-10
    [138] Hall C.J., Burns C.W. Mortality and growth responses of Daphnia carinata to increases in temperature and salinity. Freshwater Biol., 2002, 47: 451-458
    [139] Halsband-Lenk C., Hirche H.J., Carlotti F. Temperature impact on reproduction and development of congener copepod populations. J. Expl. Mar. Biol. Ecol., 2002, 271: 121-153
    [140] Kessler K., Lampert W. Fitness optimization of Daphnia in a trade-off between food and temperature. Oecologia, 2004, 140: 381-387
    [141] Ringelberg J. Changes in light intensity and diel vertical migration: a comparison of marine and freshwater environments. J. Mar. Biol. Ass. UK, 1995, 75: 15-25
    [142] Wetzel, R.G. Limnology. Lake and river systems. New York: Academic Press, 2001: 1-1066
    [143] Calaban, M.J., Makarewicz, J.C. The effect of temperature and density on the amplitude of vertical migration of Daphnia magna. Limnol. Oceanogr., 1982, 27: 262-271
    [144] Loose, C.J., Dawidowicz, P. Trade-offs in diel vertical migration by zooplankton:The costs of predator avoidance. Ecology, 1994, 75: 2255-2263 [1451] Langford, R.R. Diurnal and seasonal changes in the distribution of limnetic Crustacea of Lake Nipissing. Univ. Toronto Stud. Biol., 1938, 45: 1
    [146] Schr (o|¨)der, R., Vertikalverteilung des Zooplanktons und Thermokline. Arch. Hydrobiol., 1962, 25(suppl.): 401-410
    [147] Worthington, E.B., Ricardo, C.K. Scientific results of the Cambridge expedition to the East African lakes 1930-1931, No. 17. The vertical distribution and movements of the plankton in Lakes Rudolf, Naivasha, Edward and Bunyoni. J. Linn. Soc. Zool., 1936, 40: 33-69
    [148] Schr (o|¨)der, R. Die Vertikalwanderungen des Crustaceen Planktons der Seen des südlichen Schwarzwaldes. Arch. Hydrobiol., 1959, 25(Suppl.): 1-43
    [149] Williamson, C. E., R. W. Sanders, R. E. Moeller, et al.. Utilization of subsurface food resources for zooplankton: implications for diel vertical migration theory. Limnology and Oceanography, 1996, 41: 224-233
    [150] Kwang-Hyeon Chang, Takayuki Hanazato.?Diel vertical migrations of invertebrate predators (Leptodora kindtii, Thermocyclops taihokuensis, and Mesocyclops sp.) in a shallow, eutrophic lake. Hydrobiologia, 2004, 528: 249-259
    [151] Meryem Beklioglu, Ayse Gul Gozen, Feriha Y?ld?r?m, et al..? Impact of food concentration on diel vertical migration behaviour of Daphnia pulex under fish predation risk. Hydrobiologia, 2008, 614: 321-327
    [152]邵景安.三峡水库蓄水后长江水系重庆段河道形态的变化特征.资源科学, 2008, 30(9): 1431-1436
    [153]蔡庆华胡,征宇.三峡水库富营养化问题与对策研究.水生生物学报, 2006, 30(1): 7-11
    [154]周广杰,况琪军,胡征宇,等.香溪河库湾浮游藻类种类演替及水华发生趋势分析.水生生物学报, 2006, 30(1): 42-46
    [155]张敏,蔡庆华,王岚.三峡水库香溪河库湾蓝藻水华生消过程初步研究. 2009, 7(7): 230-236
    [156]郭劲松,李哲,张呈.三峡小江回水区藻类集群与主要环境要素的典范对应分析研究.长江科学院院报, 2010, 27(10): 60-64, 87
    [157] Byron, E. R. et al.. Copepod and cladoceran success in an oligotrophic lake. J. Plankton Res., 1984, (6): 45-65
    [158]韩德举,胡菊香,高少波,等.三峡水库浮游生物对蓄水(135m)过程的响应.见首届长江论坛论文集, 2005, 139-143
    [159]姚建良.三峡水库蓄水后浮游甲壳动物生态学研究[学位论文].新疆,新疆农业大学, 2007
    [160]姚建良,薛俊增,王登元,等.三峡水库初次蓄水后干流库区桡足类的纵向分布与季节变化.生物多样性, 2007, 15(3): 300-305
    [161]吴恢碧.长江宜昌至城陵矶江段渔业生态环境状况及保护对策研究[学位论文].武汉,华中农业大, 2005
    [162]朱爱娇.三峡水库蓄水后坝前段枝角类生态学研究[学位论文].杭州,杭州师范大学, 2007
    [163]吴惠仙,姚建良,刘艳,等.三峡水库初次蓄水后干流库区枝角类的空间分布与季节变化.生物多样性, 2009, 17(5): 512-517
    [164]杨健.三峡水库澎溪河回水区浮游生物组成及水质评价[学位论文].重庆,西南大学, 2010
    [165]周淑婵.香溪河水系浮游动物生态学研究[学位论文].武汉,中国科学院水生生物研究所, 2007
    [166]郭沛涌,沈焕庭,刘阿成,等.长江河口浮游动物的种类组成、群落结构及多样性.生态学报, 2003, 23(5): 892-90
    [167]刘光兴,陈洪举,朱延忠,等.三峡工程一期蓄水后长江口及其邻近水域浮游动物的群落结构.中国海洋大学学报(自然科学版), 2007, 37(5): 790-794
    [168]刘学斌,刘晓霭,付道林.三峡水库蓄水前后大宁河水体中营养盐时空分布及水质变化趋势探讨.环境科学导刊, 2009, 28(2): 22-24
    [169]张述太.三峡水库大宁河库湾浮游甲壳动物生态学研究[学位论文].杭州,杭州师范大学, 2010
    [170]Thorp JH, AR Black, KH Haag. Zooplankton Assemblages in the Ohio River: Seasonal, Tributary, and Navigation Dam Effects. Can. J. Fish. aquat. Sci, 1994, 51: 1634-1643
    [171]陈受忠.四川沱江口浮游甲壳动物记述.海洋湖沼通报, 1990, (3): 86-90
    [172] J. C. H. Carter. Seasonal and Spatial Planktonic Crustacea Distribution of in the Lower Saint John River, a Multibasin Estuary in New Brunswick, Canada. Estuaries, 1983, 6(2): 142-153
    [173] Sommer U. Toward a Darwinian Ecology of Plankton. In: Sommer U. (Ed.), Plankton ecology: Suecession in plankton eommunities. New York: Springer-Verlag, 1989:1-56
    [174] Dodson, S.I.. Introduction to Limnbology. New York: McGraw-Hill Higer Educstion, 2003: 1-204
    [175]望甜.捕食与竞争——流溪河水库浮游动物群落的中间关系研究[学位论文].广州,暨南大学, 2010
    [176]潘继征,熊飞,李文朝,等.抚仙湖浮游甲壳动物群落结构与空间分布.湖泊科学, 2009, 21(3): 408-414
    [177]郭晓鸣,陈伟民.哈纳斯湖浮游动物的初步研究.湖泊科学, 1990, 2(1): 68-75
    [178]邓道贵,谢平,周琼,等.巢湖微囊藻和浮游甲壳动物昼夜垂直迁移的初步研究.生态科学, 2006, 25(1): 8-12
    [179]陈伟民,秦伯强.太湖梅梁湾冬末春初浮游动物时空变化及其环境意义.湖泊科学, 1998, 10(4): 10-16
    [180]薛俊增,蔡桢,方伟,等.淀山湖养殖围网拆除后昆山水域浮游生物生态现状初步研究.上海海洋大学学报, 2010, 9(4): 514-520
    [181]赖伟,李逸平,堵南山.上海淀山湖浮游桡足类群落组成与季节变动研究.水生生物学报, 1987, 11(2): 173-183
    [182]赖伟,林汉刚,堵南山.淀山湖三种枝角类种群动态初步研究.海洋与湖沼, 1988, 19(2): 101-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700