基因组水平的基因进化分析与水平转移基因的识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划的完成和后基因组时代的到来,生物序列数据呈指数级增长,分析处理大批量数据,从中提取有价值的信息,成为生物信息研究中的首要任务。本文利用生物信息学方法在基因组水平对B7-H3基因进行了鉴定,探索B7-H3基因的进化过程;分析了杆状病毒基因组的遗传进化模式,并对其水平转移基因进行了识别研究。
     1.基因组水平上对B7-H3基因进行鉴定及系统发育分析
     B7-H3基因一个免疫共刺激分子,属于B7蛋白家族,分子中含一个IgV和一个IgC结构域。通过多重PCR,小鼠B7-H3基因中发现有一个胞外的IgV-IgC结构域(2IgB7-H3),而人的B7-H3基因中出现一个剪接变体,含有串联重复的IgV-IgC-IgV-IgC结构域(4IgB7-H3)。对仓鼠B7-H3基因进行结构预测,显示为2IgB7-H3,猴B7-H3基因的分析表明它的结构与人类基因相似。为了探索B7-H3基因的进化过程,基于现有的基因组序列对B7-H3进行了基因组水平上的结构和系统发育分析。17个哺乳动物的B7-H3基因被预测出有串联重复的4Ig结构域。通过对这些4IgB7-H3基因的结构与进化分析,得出这些基因产生的原因是结构域的复制。此外,2Ig和4Ig这两种结构亚型之间没有表现出功能的差异。这可能是发生在4IgB7-H3中的结构域复制事件导致了功能上的冗余。
     2.家蚕核型多角体病毒水平转移基因分析
     为了探讨杆状病毒基因组的遗传进化模式,利用家蚕核型多角体病毒(Bombyx mori nuclearpolyhedrosisvirus, BmNPV)和其宿主家蚕全基因组数据,进行了全基因组的同源性搜索和系统进化分析,结果显示,BmNPV的几丁质酶基因、凋亡抑制蛋白3基因和尿苷二磷酸葡萄糖转移酶基因为水平转移基因。这3个基因都来源于其宿主昆虫。通过核苷酸组成、密码子偏好性、选择压力等基因特征分析,发现BmNPV水平转移基因与其基因组序列存在明显差异,进一步验证水平转移基因的外源性。对3个水平转移基因的功能分析发现它们有利于杆状病毒在宿主昆虫中的侵染与繁殖,并提高杆状病毒在昆虫中的生存能力。
Currently, available biologic sequence data are increasing exponentially with the completion of human genomic project (HGP) and the coming of the post genome era. It becomes a very important task in the study of bioinformatics to analyze huge dataset and obtain the valuable information. In this study, we described the application of two different levels by methods of bioinformatics.
     1. Genome-wide identification and evolutionary analysis of B7-H3
     B7-H3 is an immune costimulatory molecule of the B7 family that contains a set of immunoglobulin-V (IgV) and immunoglobulin-C (IgC) domains. By multiplex PCR, mouse B7-H3 was found to have an extracellular IgV-IgC domain (2IgB7-H3), whereas the dominantly expressed form of human B7-H3 was found to be a splice variant containing tandemly duplicated IgV-IgC-IgV-IgC domains (4IgB7-H3). Hamster B7-H3 was predicted to be 2IgB7-H3, and the monkey B7-H3 gene was predicted to have a similar structure to the human gene. To explore the evolutionary process of B7-H3 gene, we conducted a genome-wide structure and phylogenetic analysis of B7-H3 genes in currently sequenced genomes. Based on the available data, seventeen mammalian B7-H3 genes were predicted to have tandemly duplicated 4Ig domains. The analysis of gene structure and phylogenesis reveal that these 4IgB7-H3 genes resulted from domain duplication. Nevertheless, no difference in function has been observed between the two isoforms. It is likely that domain duplication in 4IgB7-H3 leads to functional redundancy.
     2. Analysis of Horizontal Transfer Gene of Bombyx mori NPV
     For research on genetic characters and evolutionary origin of the genome of baculoviruses, three horizontally transferred genes were identified using the Blast search and phylogentic analysis method with Bombyx mori NPV and Bombyx mori genomic databases. These genes were origined from host insects, and the detected transferred directions are the HGT from insects to baculoviruses. The analysis results showed that baculovirus had obtained IAP and UGT gene through transfer of the transposon. There are lots of differences between the features of horizontal transferred genes and the ones of whole genomic genes, such as nucleotide composition, codon usagebias and selection pressure. These results reconfirm that the horizontally transferred genes are exogenous. Interestingly, these genes are all known tobe directly involved in the infection of insect hosts by baculoviruses. These findings suggested that horizontally transferred genes accuired from an ancestral host insect can control host physiology and increase the efficiency of baculoviruse transmission.
引文
[1] Bretscher PM Cohn. A theory of self-nonself discrimination. Science, 1970, 169:1042-1049.
    [2] Nurieva R, S Thomas, T Nguyen, et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. Embo J 2006, 25: 2623-2633.
    [3] TH Watts and MA DeBenedette. T cell co-stimulatory molecules other than CD28. Curr Opin Immunol 1999, 11:286-293.
    [4] Sharpe AH and Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol, 2002, 2(2):116-126.
    [5] Chapoval A I, Ni J Lau JS, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol, 2001, 2(3):269-274.
    [6] Hashiguchi M, Kobori H, Ritprajak P, et al. From the cover Triggering receptor expressed on myeloid cell-like transcript 2(TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc Natl Acd Sci USA, 2008, 105(30):10495-10500.
    [7] Sun M, Richards S, Prasad DV, et al. Characterization of mouse and human B7-H3 genes. J Immunol, 2002, 168(12):6294-6297.
    [8] Steinberger P, Majdic O, Derdak SV, et al. Molevular characterization of human4Ig-B7-H3, a member of the B7 family with four Ig like domains. J Immunol, 2004, 172(4):2352-2359.
    [9] Zhou YH, Chen Y J, Ma ZY, et al. 4Ig-B7-H3 is the major isoform expressed on immunocytes as well as malignant cells. Tissue Antigens, 2007, 70(2):96-104.
    [10] King RG, Herrin BR, Justement LB, et al. Trem-like transcript 2 is expressed on cells of the myeloid/granuloid and Blymphoid lineage and is up-regulated in response to inflammation. J Immuno, 2006, 176(10):6012-6021.
    [11] Ling V, Wu PW, Spaulding V, et al. Duplication of primate and rodent B7-H3 immunoglobulin V-and-C-like domains divergent history of functional redundancy and exon loss. Genomics, 2003, 82(3):365-377.
    [12] Suh WK, Gajewska BU, Okada H, et al. The B7 family member B7-H3 prefernetially down regulates T helper typeⅠmediated immune responses. Nat Immunol, 2003, 4(9):899-906.
    [13] Prasad DV, Nguyen T, Li ZX, et al. Murine B7-H3 is a negative regulator of T cells. J Immunol, 2004, 173(4):2500-2506.
    [14] Castriconi R, Dondero A, Augugliaro R, et al. Identifcation of 4IgB7-H3 as a neurob lastom a-associated molecule that exerts a protective role from an NK cell mediatedlysis. Proc Natl Acad Sci USA, 2004, 101(34):12640-12645.
    [1] Griffith F, The signi cance of pneumococcal types. J Hyg, 1928, 27 113-159.
    [2] Acery O T, McLeod C M, McCarthy M. Studies on the Chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus typeⅢ. J Exp Med, 1944, 79 137-158.
    [3] McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA, 1950, 36(6):344-355.
    [4] Bansal A K, Meyer T E. Evolutionary analysis by whole-genome comparisons. J Bacterilo, 2002, 184(8):2260-2272.
    [5] Ochman H, Lawrence J G, Groisman E A. Lateral gene transfer and the nature of bacterial innovation. Nature, 2000, 405(6784):299-304.
    [6] Keeling P J, Palmer J D. Horizontal gene transfers in eukaryotic evolution. Nat Rev Genet, 2008, 9(8):605-618.
    [7] Choi I G, Kim S H. Global extent of horizontal gene transfer. Proc Natl Acad Sci USA, 2007, 104(11):4489.
    [8] Jain R, Rivera M C, Lake J A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA, 1999, 96(7):3801-3806.
    [9] Jordan IK, Matyunina LV, McDonald JF. Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci USA, 1999, 96(22):12621-12625.
    [10] Baur B, Hanselmann K, Schlimme W, Jenni B. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol, 1996, 62: 3673-3678.
    [11] CHEN Xiangdong, CHEN Qi, XIE Zhixiong, SHEN Ping. Bacillus subtilis undergo natural genetic transformation on agar pates. Acta Microbiologica Sinica, 2000, 40(1):95-99.
    [12] Lorenz M G, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Rev Microbiol, 1994, 58:564-583.
    [13] SHEN Ping, PENG Zhenrong. Progress in studies on natural transformation. Hereditas(Beijing),1995,17(Suppl.):89-91.
    [14] Jain R, Rivera M C, Moore J E, et al. Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Ecil, 2003, 20(10):1598-1602.
    [15] Gogarten J P, Townsend J P. Horizontal gene transfer, genome innovation and evolution.Nat Rev Microbiol, 2005, 3(9):679-687.
    [16] Zhou Guoqing. Species evolution by horizontal gene transfer. J Huzhou Teachers College, 2003, 25(3):66-70.
    [17] Lake JA, Rivera MC. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol Biol Evol, 2004, 21(4):618-690.
    [18] Delorme C, Poyart C, Ehrlich SD, Renault P. Extent of horizontal gene transfer inevolution of Streptococci of the Salivarius group. J Bacteriol, 2007, 189(4):1330-1341.
    [19] Doolittle W F. Phylogenetic classification and the universal tree. Science, 1999, 284(5423):21-24.
    [20] Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. A Vibrio cholera pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA, 1998, 95(6):3134-3319.
    [1]Chapoval, A.I., Ni, J., Lau, J.S., Wilcox, R.A., Flies, D.B., Liu, D., Dong, H., Sica, G.L., Zhu, G., Tamada, K. and Chen, L.: B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol, 2001, (2): 269-274.
    [2]Carreno, B.M. and Collins, M.: The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol, 2002, (20): 29-53.
    [3]Bajorath, J., Peach, R.J. and Linsley, P.S.: Immunoglobulin fold characteristics of B7-1 (CD80) and B7-2 (CD86). Protein Sci, 1994, (3): 2148-2150.
    [4]Agrewala, J.N., Kumar, B. and Vohra, H.: Potential role of B7-1 and CD28 molecules in immunosuppression in leprosy. Clin Exp Immunol, 1998, (111): 56-63.
    [5]Swallow, M.M., Wallin, J.J. and Sha, W.C.: B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity, 1999, (11): 423-32.
    [6]Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., Horton, H.F., Fouser, L., Carter, L., Ling, V., Bowman, M.R., Carreno, B.M., Collins, M., Wood, C.R. and Honjo, T.: ngagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000, (192): 1027-1034.
    [7]Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., Iwai, Y., Long, A.J., Brown, J.A., Nunes, R., Greenfield, E.A., Bourque, K., Boussiotis,V.A., Carter, L.L., Carreno, B.M., Malenkovich, N., Nishimura, H., Okazaki, T., Honjo, T., Sharpe, A.H. and Freeman, G.J.: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol, 2001, (2): 261-268.
    [8]Prasad, D.V., Richards, S., Mai, X.M. and Dong, C.: B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity, 2003, (18): 863-873.
    [9]Sica, G.L., Choi, I.H., Zhu, G., Tamada, K., Wang, S.D., Tamura, H., Chapoval, A.I., Flies, D.B., Bajorath, J. and Chen, L.: B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity, 2003, (18): 849-861.
    [10]Zang, X., Loke, P., Kim, J., Murphy, K., Waitz, R. and Allison, J.P.: B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci U S A, 2003, (100): 10388-10392.
    [11]Zang, X., Thompson, R.H., Al-Ahmadie, H.A., Serio, A.M., Reuter, V.E., Eastham, J.A., Scardino, P.T., Sharma, P. and Allison, J.P.: B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci U S A, 2007, (104): 19458-19463.
    [12]Petroff, M.G., Chen, L., Phillips, T.A. and Hunt, J.S.: B7 family molecules: novel immunomodulators at the maternal-fetal interface. Placenta 23 Suppl, 2002, (A): S95-101.
    [13]Zhou, Y.H., Chen, Y., J., Ma, Z., Y., Xu, L., Wang, Q., Zhang, G., B., Xie, F., Ge, Y., Wang, X., F. and Zhang, X., G 4IgB7-H3 is the major isoform expressed on immunocytes as well as malignant cells. Tissue Antigens, 2007, (7): 96-104.
    [14]Suh, W.K., Gajewska, B.U., Okada, H., Gronski, M.A., Bertram, E.M., Dawicki, W., Duncan, G.S., Bukczynski, J., Plyte, S., Elia, A., Wakeham, A., Itie, A., Chung, S., Da Costa, J., Arya, S., Horan, T., Campbell, P., Gaida, K., Ohashi, P.S., Watts, T.H., Yoshinaga, S.K., Bray, M.R., Jordana, M. and Mak, T.W.: The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol, 2003, (4): 899-906.
    [15]Sun, X., Vale, M., Leung, E., Kanwar, J.R., Gupta, R. and Krissansen, G.W.: Mouse B7-H3 induces antitumor immunity. Gene Ther, 2003, (10): 1728-1734.
    [16]Luo, L., Chapoval, A.I., Flies, D.B., Zhu, G., Hirano, F., Wang, S., Lau, J.S., Dong,H., Tamada, K., Flies, A.S., Liu, Y. and Chen, L.: B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol, 2004, (173): 5445-50.
    [17]Zhang, G.B., Chen, Y.J., Shi, Q., Ma, H.B., Ge, Y., Wang, Q., Jiang, Z., Xu, Y. and Zhang, X.G.: Human recombinant B7-H3 expressed in E. coli enhances T lymphocyte proliferation and IL-10 secretion in vitro. Acta Biochim Biophys Sin (Shanghai), 2004, (36): 430-6.
    [18]Xu, J., Huang, B., Xiong, P., Feng, W., Xu, Y., Fang, M., Zheng, F. and Gong, F.: Soluble mouse B7-H3 down-regulates dendritic cell stimulatory capacity to allogenic T cell proliferation and production of IL-2 and IFN-gamma. Cell Mol Immunol, 2006, (3): 235-40.
    [19]Fukushima, A., Sumi, T., Fukuda, K., Kumagai, N., Nishida, T., Yamazaki, T., Akiba, H., Okumura, K., Yagita, H. and Ueno, H.: B7-H3 regulates the development of experimental allergic conjunctivitis in mice. Immunol Lett, 2007, (113): 52-7.
    [20]Sun, M., Richards, S., Prasad, D.V., Mai, X.M., Rudensky, A. and Dong, C.: Characterization of mouse and human B7-H3 genes. J Immunol, 2002, (168): 6294-7.
    [21]Ling, V., Wu, P.W., Spaulding, V., Kieleczawa, J., Luxenberg, D., Carreno, B.M. and Collins, M.: Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss. Genomics, 2003, (82): 365-77.
    [22]Prasad, D.V., Nguyen, T., Li, Z., Yang, Y., Duong, J., Wang, Y. and Dong, C.: Murine B7-H3 is a negative regulator of T cells. J Immunol, 2004, (173): 2500-6.
    [23]McGinnis, S. and Madden, T.L.: BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res, 2004, (32): W20-5.
    [24]Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C., Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I. and Clamp, M.: The Ensembl genome database project. Nucleic Acids Res, 2002, (30): 38-41.
    [25]Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu, Y.T., Roskin, K.M., Schwartz, M., Sugnet, C.W., Thomas, D.J., Weber, R.J., Haussler, D. and Kent, W.J.: The UCSC Genome Browser Database. Nucleic Acids Res, 2003, (31): 51-4.
    [26]Geer, L.Y., Domrachev, M., Lipman, D.J. and Bryant, S.H.: CDART: protein homology by domain architecture. Genome Res, 2002, (12): 1619-23.
    [27]Schultz, J., Milpetz, F., Bork, P. and Ponting, C.P.: SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A, 1998, (95): 5857-64.
    [28]Bendtsen, J.D., Nielsen, H., von Heijne, G. and Brunak, S.: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004, (340): 783-95.
    [29]Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E.L.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001, (305): 567-80.
    [30]Tsuyoshi, S.: Prediction of Sugar-Binding Sites on Proteins Experimental Glycoscience, 2008, (1): 111-114.
    [31]Wilgenbusch, J.C. and Swofford, D.: Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics, 2003, Chapter 6: Unit 6 4.
    [32]Guindon, S., Lethiec, F., Duroux, P. and Gascuel, O.: PHYML Online--a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res, 2005, (33): W557-9.
    [33]Hasegawa, M., Kishino, H. and Yano, T.: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 1985, (22): 160-174.
    [34]Shlmodalra, H. and Hasegawa, M.: Multiple comparisons of log-likehoods with applications to phylogenetic inference. Mol. Biol. Ecol. 1999, (16): 1114-1116.
    [35]Gardiner, A., Barker, D., Butlin, R.K., Jordan, W.C. and Ritchie, M.G.: Evolution of a complex locus: exon gain, loss and divergence at the Gr39a locus in Drosophila. PLoS One, 2008, (3): e1513.
    [36]Finnerty, J.R., Mazza, M.E. and Jezewski, P.A.: Domain duplication, divergence,and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers. BMC Evol Biol, 2009, (9): 18.
    [37]Kondrashov, F.A. and Koonin, E.V.: Origin of alternative splicing by tandem exon duplication. Hum Mol Genet, 2001, (10): 2661-9.
    [38]Kopelman, N.M., Lancet, D. and Yanai, I.: Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms. Nat Genet, 2005, (37): 588-9.
    [39]Su, Z., Wang, J., Yu, J., Huang, X. and Gu, X.: Evolution of alternative splicing after gene duplication. Genome Res, 2006, (16): 182-9.
    [40]Talavera, D., Vogel, C., Orozco, M., Teichmann, S.A. and de la Cruz, X.: The (in)dependence of alternative splicing and gene duplication. PLoS Comput Biol, 2007, (3): e33.
    [41]Jin, L., Kryukov, K., Clemente, J.C., Komiyama, T., Suzuki, Y., Imanishi, T., Ikeo, K. and Gojobori, T.: The evolutionary relationship between gene duplication and alternative splicing. Gene, 2008, (427): 19-31.
    [42]Nagai, Y., Aso, H., Ogasawara, H., Tanaka, S., Taketa, Y., Watanabe, K., Ohwada, S., Rose, M.T., Kitazawa, H. and Yamaguchi, T.: Anterior pituitary progenitor cells express costimulatory molecule 4Ig-B7-H3. J Immunol, 2008, (181): 6073-81.
    [43]Alekseyenko, A.V., Kim, N. and Lee, C.J.: Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. Rna, 2007, (13): 661-70.
    [44]Hashiguchi, M., Kobori, H., Ritprajak, P., Kamimura, Y., Kozono, H. and Azuma, M.: Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc Natl Acad Sci U S A, 2008, (105): 10495-500.
    [1]欧剑虹,谢志雄,陈向东,倪丽娜,沈萍.水平基因转移.遗传, 2003, 25(5):623-627.
    [2] Than C, Sugino R, Innan H, Nakhleh L. Efficient inference of bacterial strain trees from genome-scale multilocus data. Bioinformatics (Oxford, England), 2008, 24(13):i123-131.
    [3] Whitaker JW, McConkey GA, Westhead DR. Prediction of horizontal gene transfers in eukaryotes: approaches and challenges. Biochemical Society transactions, 2009, 37(Pt 4):792-795.
    [4]程延才,夏庆友,刘春,赵萍,查幸福,徐汗福,向仲怀.家蚕chi、gluE和fruA基因与微生物相应基因的同源性及基因水平转移初探.遗传学报, 2004, 31(10):1082-1089.
    [5] Buckley CO, Stephens D, Herring PA, Jackson JH. % (G+C) variation and prediction by a model of bacterial gene transfer and codon adaptation. Omics, 2002,6(3):259-272.
    [6] Dufraigne C, Fertil B, Lespinats S, Giron A, Deschavanne P. Detection and characterization of horizontal transfers in prokaryotes using genomic signature. Nucleic acids research, 2005, 33(1):e6.
    [7] Pal C, Papp B, Lercher MJ. Horizontal gene transfer depends on gene content of the host. Bioinformatics (Oxford, England), 2005, 21 Suppl 2:ii222-223.
    [8] Tsirigos A, Rigoutsos I. A new computational method for the detection of horizontal gene transfer events. Nucleic acids research, 2005, 33(3):922-933.
    [9]吴建盛,谢建明,周童,翁建洪,孙啸.基于支持向量机的细菌基因组水平转移基因预测.生物化学与生物物理进展, 2007, 34(7):724-731.
    [10]陈阳,王守觉.仿生模式识别在细菌基因组水平转移基因预测中的.现代生物医学进展, 2008, 8(8):1518-1521.
    [11] Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. Versatile and open software for comparing large genomes. Genome biology, 2004, 5(2):R12.
    [12] Li Z, Wang L, Zhong Y. Detecting horizontal gene transfer with T-REX and RHOM programs. Briefings in bioinformatics, 2005, 6(4):394-401.
    [13] Hamady M, Betterton MD, Knight R. Using the nucleotide substitution rate matrix to detect horizontal gene transfer. Bmc Bioinformatics, 2006, 7:-.
    [14]吴小锋.家蚕核型多角体病毒的基因组结构及其表达模式.病毒学报, 2006, 22(4):324-328.
    [15] Hughes AL, Friedman R. Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Molecular biology and evolution, 2003, 20(6):979-987.
    [16] Katsuma S, Kawaoka S, Mita K, Shimada T. Genome-wide survey for baculoviral host homologs using the Bombyx genome sequence. Insect biochemistry and molecular biology, 2008, 38(12):1080-1086.
    [17] Wang J, Xia Q, He X, Dai M, Ruan J, Chen J, Yu G, Yuan H, Hu Y, Li R et al. SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic acids research, 2005, 33(Database issue):D399-402.
    [18] Guindon S, Delsuc F, Dufayard JF, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods in molecular biology Clifton, NJ, 2009, 537:113-137.
    [19] Edgar RC, Myers EW. PILER: identification and classification of genomic repeats. Bioinformatics (Oxford, England), 2005, 21 Suppl 1:i152-158.
    [20] Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in bioinformatics, 2008, 9(4):299-306.
    [21]张瑞,姚青,彭建新,洪华珠.杆状病毒IAP基因的结构、功能及其进化.微生物通报, 2006, 33(1): 128-132.
    [22]包人月,吴金美,吴小锋.昆虫杆状病毒细胞凋亡抑制基因.细胞生物学杂志, 2006, 28:676-680.
    [23]贡成良,薛仁宇,曹广力,石晓燕,马志明.家蚕核型多角体病毒几丁质酶基因.蚕业科学, 2001, 27(4):283-287.
    [24]曹广力,贡成良,薛仁宇,朱越雄,魏育红.家蚕核型多角体病毒egt基因的分子进化分析.昆虫学报, 2008, 51(12):1244-1254.
    [25] Fraser MJ, Smith GE, Summers MD. Acquisition of Host Cell DNA Sequences by Baculoviruses: Relationship Between Host DNA Insertions and FP Mutants of Autographa californica and Galleria mellonella Nuclear Polyhedrosis Viruses. Journal of virology, 1983, 47(2):287-300.
    [26] Daimon T, Hamada K, Mita K, Okano K, Suzuki MG, Kobayashi M, Shimada T. A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect biochemistry and molecular biology, 2003, 33(8):749-759.
    [27] Hawtin R E,Arnold K, Ayres M D. Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology, 1995, 212:673-685.
    [28] Saville G P, Patmanidi A L, Possee R D. Deletion of Autographa californica nucleopolyhedrovirus chitinase KDEL motif and in vitro and in vivo analysis of the modified virus. Journal of General Virology, 2004, 85:821-831.
    [29] Euans O P, O'Reilly D R. Purification and kinetic analysis of a baculovirus ecdysteroid UDP-glucosyltransferase. Biochem, 1998, 330:1265-1270.
    [30] Manji G A, Hozak R R, LoCount D J. Baculovirus inhibitor of apoptosis functions at or upstream of the apoptotic suppressor p35 to prevent programmed cell death. J Virol, 1997, 71(6):4509-4516.
    [31] Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature, 2000, 405(6784):299-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700