大进给铣刀密切加工船用螺旋桨的原理与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船用螺旋桨属于典型的自由曲面类零件,其桨叶叶型复杂,制造精度及表面质量直接关系到舰船推进效率、振动、操纵性能及桨叶本身强度。近年来,加工船用螺旋桨往往使用五轴机床,而由于所用刀具和加工方法的限制,加工精度和效率仍不理想。此外,桨叶叶梢部分较薄,加工中易引起变形,这给加工系统的稳定性提出了更高的要求。因此,研究如何选择刀具类型和加工方法,保证切削加工的稳定性并提高加工精度和效率,具有极其重要的意义。
     本论文分析了船用螺旋桨桨叶的形成原理与特性,完成了桨叶切面数据到三维空间数据的转换。采用MATLAB语言编程,利用三次B样条插值理论完成了桨叶曲面的构造,进而完成了船用螺旋桨的造型,并基于MATLAB软件GUI平台设计了螺旋桨几何造型系统的图形用户界面。
     提出了大进给铣刀和基于大进给铣刀的密切加工曲面的方法,通过与环形刀的比较,分析了大进给铣刀的几何特性和切削受力特性,详细阐述了大进给铣刀进行曲面加工的密切刀位计算原理,并进一步分析了大进给铣刀采用密切法加工曲面的误差。结合桨叶曲面的微分几何特性和密切加工的条件,确定了大进给铣刀的刀具参数选择原则,并最终给出了大进给铣刀密切加工桨叶曲面的刀位计算实例。
     针对铸造毛坯螺旋桨,借助UG的多轴加工模块完成了其粗加工和仿真过程。针对桨毂通道的被加工区域提出了以插值思想为基础的刀具路径规划算法,之后给出了刀轴矢量的确定原则;此外,利用UG NX7.5版本的“mill multi blade”模块进行了桨毂的加工及仿真,将两种方法进行了对比,验证了本文所提算法的有效性。
Marine propeller is a kind of typical free-form surface part, its blade is complexity, machining accuracy and surface quality are directly related to the efficiency of ship propulsion, vibration, manipulation performance and blade strength. With the development of multi-axis numerical control technology, marine propeller are usually machined by5-axis machine tool, however, due to the restriction of tools and machining methods, the machining accuracy and efficiency are still not ideal. In addition, the tip of the blade is always thinner, which lead to deformation easily, so there is a higher demand for the stability of the machining system. Therefore, research of selecting tool types and machining methods is vital to ensure the stability of machining system, improve machining accuracy and efficiency.
     In this thesis, principle of blade formation and characteristics of blade are firstly analysised,then the section data is transformated into three-dimensional data.Using MATLAB programming language, and based on cubic B-Spline interpolation theory, blade surface and propeller model are constructed, furthermore, on basis of MATLAB software GUI platform, the graphical user interface of propeller geometric modeling system is designed.
     High feed cutter (HFC) is introduced and osculating machining method is presented, comparted with fillet-end mill, geometric properties and cutting force characteristics of HFC are analysised, the fundamental of calculation of osculating cutter location is investigated in detail, after that, the osculating machining error by HFC is given. Combining the differential geometry features of blade surface and the osculating condition between cutter and blade, the selection principle of tool parameters is discussed, finally, the osculating tool position of blade surfaces machining by HFC are calculated.
     For casting blank, with the help of multi-axis machining module in UG, rough milling and simulation process of propeller are carried out. For the hub, a tool path planning method based on interpolation is studied, and then, the determination of tool axis vector is given. Moreover, by use of "mill_multi_blade" module in UG, the hub of propeller is machined and simulated, which verified the former tool path planning method.
引文
[1]全荣.五坐标联动数控技术[M].湖南:湖南科学技术出版社,1995.
    [2]广东工学院造船系编写组.船用螺旋桨设计[M].北京:人民交通出版社,1976.
    [3]邹孝明.大型舰船用螺旋桨五轴加工技术研究[D].武汉:华中科技大学,2007.
    [4]周吉,尹冠群.基于Cimatron E的螺旋桨加工技术研究[J].制造技术与机床,2009(8):91-93.
    [5]彭勇.计算机辅助螺旋桨设计[D].武汉:华中科技大学,2007.
    [6]付大鹏,王小旭,程艳艳.船用螺旋桨的逆向造型方法与研究[J].制造业自动化,2011,33(8):125-127.
    [7]Xiuzi Ye. Geomeyric design of functional surfaces[J]. Computer-Aided Design,1996,28(9):741-752.
    [8]Lixin Cao, Jian Liu. An integrated surface modeling and machining approach for a marine propeller[J]. Int J Adv Manuf Technol,2008(35):1053-1064.
    [9]Yoo-Chul Kim, Youn-Mo Lee, Myeong-jo Son, Tae-wan Kim, Jung-Chun Suh. Generating cutter paths for marine propellers without interference and gouging[J]. J Mar Sci Technol,2009(14):275-284.
    [10]Cheol-Soo Lee, Jae-Hyun Lee. Geometric modeling and tool path generation of model propellers with a single setup change[J]. Int J Adv Manuf Technol,2010(50):253-263.
    [11]程奎.四轴数控机床运动分析及加工应用研究[D].陕西:西安理工大学,2010.
    [12]王培林.自由曲面多轴数控加工策略的研究[D].山东:山东大学,2007.
    [13]Ali Lasemi.Deyi Xue, Peihua Gu. Recent development in CNC machining of freeform surfaces:A state-of-the-art review[J]. Computer-Aided Design,2010(42):641-654.
    [14]吴宝海,罗明,张莹等.自由曲面五轴加工刀具轨迹规划技术的研究进展[J].机械工程学报,2008,44(10):9-15.
    [15]X. L. Susan, B. J. Robert. Five-axis machining of sculptured surfaces with a flat-end cutter[J]. Computer-Aided Design,1994,26(3):165-178.
    [16]B. K. Choi, J. W. Park, C. S. Jun. Cutter location data optimization in 5-axis surface machining[J]. Computer-Aided Design,1993,25(6):377-386.
    [17]华茂发,刘汉忠.自由曲面五坐标环形刀铣削加工刀位轨迹优化[J].现代制造工程,2010(11):25-32.
    [18]倪炎榕,马登哲等.圆环面刀具五坐标数控加工复杂曲面优化刀位算法[J].机械工程学报,2001,37(2):87-91.
    [19]曹利新,吴宏基,刘健.基于五坐标数控圆柱形刀具线接触加工自由曲面的几何学原理[J].机械工程学报,2003,39(7):134-137.
    [20]Li-Xin Cao, Hu Gong, Jian Liu. The offset approach of machining free form surface Part 2:Toroidal cutter in 5-axis NC maching tools[J]. Journal of Materials Processing Technology,2007(184):6-11.
    [21]王瑞秋,陈五一.多点切触加工的割线法[J].机械工程学报,2006,42(7):203-210.
    [22]樊文刚,王小椿,姜虹,蔡永林.一种开阔自由凹曲面五坐标加工多点刀位算法[J].西安交通大学学报,2010,44(9):69-73.
    [23]王小椿,吴序堂,李艳斌.密切曲率法—一种自由曲面加工的新概念[J].西安交通大学学报,1992,26(5):51-58.
    [24]张瑞乾,王小椿,吴序堂.用密切曲率法加工自由曲面及其刀位轨迹的排列[J].西安交通大学学报,1997,31(12):55-60.
    [25]于源,负敏,王小椿.汽轮机叶片五轴数控加工的一种实用方法[J].小型微型计算机系统,2002,23(10):1278-1280.
    [26]李晓丹.鼓风机叶片盘铣刀包络加工方法研究[D].沈阳:沈阳工业大学,2007.
    [27]孙兴伟,李洪军,王可.复杂曲面数控制造技术研究[J].机床与液压,2007,35(2):19-20.
    [28]徐汝峰,陈五一,陈志同.基于经线划分的非圆截面环形刀具刀位优化算法[J].航空学报,2010,31(2):410-417.
    [29]吴宝海,张莹,张定华.基于广域空间的自由曲面宽行加工方法[J].机械工程学报,2011,47(15):181-187.
    [30]任秉银,唐余勇,郭兴家,詹为渊.用端面铣刀铣削等螺距螺旋桨曲面的模型研究[J].机械设计,1998(11):42-44.
    [31]任秉银,刘华明,唐余勇.螺旋桨叶片曲面数控加工几何模型研究[J].哈尔滨工业大学学报,1999,31(4):84-87.
    [32]刘鸪然,王武东,徐建辉,等.五轴联动数控铣床高效加工螺旋桨曲面[J].机电设备,2005,22(1):41-43.
    [33]曹利新,杨延峰,刘健.圆柱形刀具侧铣船用螺旋桨原理与方法[J].大连理工大学学报.2006.
    [34]Geoffery W Vickers. Computer-aided manufacture of marine propellers[J]. Computer-Aided Design,1977,9(4):267-274.
    [35]Hsing-Chia Kuo, Wei-Yuan Dzan. The analysis of NC machining efficiently for marine propellers[J]. Journal of Materials Processing Technology,2002(124):389-395.
    [36]JAE-WOONG YOUN. Interference-free tool path generation in five-axis machining of a marine propeller[J]. INT. J. PROD. RES.,2003,41(18):4383-4402.
    [37]Jung-Whan Park, Jung-Geun Lee, Cha-Soo Jun. Near Net-Shape Five-axis Face Milling of Marine Propellers[J]. International Journal of Precision Engineering and Manufacturing,2009,10(4):5-12.
    [38]王知行,陈辉.并联机床加工船用螺旋桨及CAM技术研究[J].机械设计与研究,2003,19(6):55-60.
    [39]臧亚伟,胡建武.七轴五联动机床填补国内空白[N].机电商报,2007,(10).
    [40]朱国力,龚时华,李斌.七轴五联动螺旋桨加工机床控制系统关键技术[J].华中科技大学学报(自然科学版),2007,35(3):77-79.
    [41]李艳聪.基于UG-18的螺旋桨建模与加工[J]CAD/CAM与制造业信息化,2002(12):69-73.
    [42]张善青,孙其新,牛兴华.加工自由曲面的刀具选择研究[J].机械工程师,2006(8):85-86.
    [43]刘雄伟.数控加工理论与编程技术[M].北京:机械工业出版社,1994.
    [44]王爱玲,李梦群,冯裕强.数控加工理论与实用技术[M].北京:机械工业出版社,2009.
    [45]杨延峰.船用螺旋桨曲面造型及五轴数控加工刀位规划[D].大连:大连理工大学,2005.
    [46]赵书兰.MATLAB R2008图形与动画编程实例教程[M].北京:化学工业出版社,2009.
    [47]S. Engin, Y. Altintas. Mechanics and dynamics of general milling cutters. Prat I:helical end mills[J]. International Journal of Mechine Tools & Manufacture,2001(41):2195-2212.
    [48]Y. Altintas, S. Engin. Generalized Modeling of Mechanics and Dynamics of Milling Cutters[J]. CIRP Annals-Manufacturing Technology,2001,50(1):25-30.
    [49]E. Budak, Y. Altintas, E. J. A. Armarego. Prediction of Milling Force Coefficients From Orthogonal Cutting Data[J]. J. Manuf. Sci. Eng.,1996,118(2):216-224.
    [50]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [51]樊文刚,王小椿.快速进给铣刀五坐标端铣加工刀位计算[J].北京交通大学学报,2010,34(1):154-157.
    [52]宫虎.五坐标数控加工运动几何学基础及刀位规划原理与方法的研究[D].大连:大连理工大学,2005.
    [53]王学文.船用螺旋桨五坐标数控CAD/CAM系统[D].大连:大连理工大学,2005.
    [54]谢捷.螺旋桨叶轮自由曲面造型与五轴高速数控加工技术的研究[D].合肥:合肥工业大学,2008.
    [55]梅向明,黄敬之.微分几何[M].北京:高等教育出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700