混凝土材料与结构热变形损伤机理及抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥混凝土材料是一种非均质的多相复合材料,其中各组成物相的热膨胀性能均不相同。当环境温度发生剧烈变化时,混凝土内各组分间会产生不均匀的热膨胀,并由此产生热应力,以致界面出现微裂纹,严重时会引起混凝土结构的开裂。本论文针对大温差地区的气候特征,系统模拟研究了水泥混凝土材料在大温差环境(室温~85℃)服役下各组成相间热膨胀性能的差异。通过观察水泥混凝土材料在热疲劳循环作用下的性能变化,深入研究了硬化水泥石和水泥混凝土的热膨胀性能及物相间热相互作用机理。在此基础上,对比了不同掺量下粉煤灰、硅灰和苯丙乳液对水泥混凝土材料热膨胀性能的影响,探讨了适应于大温差地区下的热变形协调性混凝土制备技术。此外,本论文还采用了红外热像仪研究了混凝土结构的温度分布与热损伤趋势分析,并结合实体工程对我国北方大温差地区的空心薄壁墩结构进行了时变温度效应规律和热应力研究。
     试验结果表明,在室温~85℃的温度范围内,硬化水泥石和粗集料的热膨胀性能存在明显的差异。水泥混凝土经多次热疲劳循环后,界面过渡区产生微裂纹,并沿着集料边缘方向扩展,且微裂纹的宽度随热疲劳循环次数的增加而增大。随着热疲劳循环次数的增加,水泥混凝土的抗压强度逐渐降低。
     粉煤灰、硅灰和苯丙乳液的掺入,均能不同程度的降低硬化水泥石的热膨胀率和热膨胀系数,其降低程度随外掺物掺量的增加而增大。粉煤灰能降低升温早期的热膨胀率及热膨胀系数,硅灰对升温后期的热膨胀率及热膨胀系数影响较大,苯丙乳液能同时大幅降低水泥石最大热膨胀参数和最小热膨胀参数。
     粉煤灰、硅灰和苯丙乳液的掺入均能对混凝土的热膨胀系数有不同程度的降低效果,苯丙乳液影响效果最大,粉煤灰影响效果其次,硅灰影响效果最小。利用粉煤灰、硅灰和苯丙乳液制备的热变形协调性混凝土均能不同程度的改善混凝土热疲劳循环后的宏观和微观性能,宏观性能体现在热疲劳循环后,掺外掺物的混凝土抗压强度损失均能得到不同程度的减小,混凝土内部的微裂缝也得到一定程度的控制。
     粉煤灰、硅灰的掺入可降低水泥混凝土材料中Ca(OH)2的含量并改善其孔结构,从而能有效限制水泥混凝土材料的热膨胀性能。苯丙乳液的掺入能在水泥混凝土材料中的C-S-H凝胶和未水化水泥颗粒表面形成了一层密实的聚合物薄膜,因此增强了材料的韧性,形成了一个膨胀“缓冲区”,从而降低了水泥混凝土材料自身的热膨胀系数。
     在上述研究的基础上,通过采用矿物掺和料、有机聚合物等对水泥浆体热膨胀性能的调节,提高了水泥浆体、砂浆和粗集料之间的热变形协调性,从而发展了具有较高抗热膨胀变形能力的热变形协调性混凝土设计和制备技术。
     利用红外热像仪和温度传感器对大温差条件混凝土结构的温度分布进行了观察和分析,重点探讨了结构表面温度分布与其内部结构特征之间的关系。在此基础上,发展了基于温度分布的混凝土结构损伤发展趋势的无损评估方法。利用此方法,不但可以直接发现结构表面附近的宏观缺陷(空鼓、蜂窝等),还可以判断在大温差作用下,混凝土的温度场分布、结构热应力和热损伤发展趋势,为防止结构热损伤的发生提供技术支撑。论文还结合我国内蒙古阿尔山地区一座空心薄壁墩结构桥梁工程建设,开展了低热膨胀系数混凝土配合比设计和制备技术研究,且在服役期间利用红外热像仪对薄壁墩结构的实时温度监测,研究了薄壁墩结构的时变温度场与结构热应力。
The cement concrete is a heterogeneous material that is composed of multiple ingredients with different thermal expansion properties. A drastic temperature variation causes different thermal volumetric changes of the components and hence thermal stress in the interface is generated. If the stress is greater than the bond strength between paste matrix and the aggregate, thermal cracking takes place and thus degradation of the concrete is observed. The thermal behavior and migration of thermal cracking of concrete in an extremely cold and dry climate with large temperature variations is investigated in this thesis via thermal compatibility study of components in concrete. The thermal expansion/shrinkage of cement paste and concrete in the cyclic thermal treatment is tested, based on which the evolution of thermal interface cracking is revealed. The effects of fly ash, silica fume and styrene-acrylic latex on the thermal expansion of hardened concrete are tested and analyzed, based on which practical solution for preventing thermal microstructural cracking of concrete in cold climate with large temperature variations is proposed. Thermal methods for detecting defects in concrete structure are established, which is also tested with a highway bridge in the North China.
     The research results have shown that, distinct thermal mismatch between the hardened cement paste and a coarse aggregate in concrete exists in the range of room temperature to 85℃. After number of thermal cyclic shocks, cracks in the interfacial transition zone of concrete are observed, propagating along the edge of the aggregates. The thermal cyclic shocks lower the compressive strength of concrete. The water to cement ratio of cement paste is an important factor on the thermal expansion coefficient of the hardened paste.
     The addition of fly ash, silica fume and styrene-acrylic latex lowers the thermal expansion rate and coefficient of hardened paste. The increase of addition level is accompanied by the decrease of the thermal expansion coefficient. The styrene-acrylic latex is the most effective in lowering the thermal expansion coefficient.
     The effects of fly ash, silica fume and styrene-acrylic latex on the thermal properties of hardened concrete are similar to those on cement paste. By adding fly ash, silica fume or styrene-acrylic into concrete, the thermal sensitivity is greatly reduced and hence the thermal stability is optimized by changing the microstructure of concrete.
     The introduction of fly ash and silica fume could reduce the amount of Ca(OH)2 in concrete and improve its pore structure, while the thermal expansion rate of the materials was thus limited. Besides, the addition of styrene-acrylic latex in concrete formed a impermeable membrane on the surface between C-S-H gel and unhydrated cement particles. As a deformation adsorption layer, the membrane thus enhanced the ductility of the material and lowered its thermal expansion coefficient.
     Based on the studies below, the thermal expension properties of cement paste were midified by the use of mineral admixture, arganic polymers and so on. The thermal deformation capability among cement, mortar and coarse aggregate was improved, which leaded to the development of the design and preparation of concrete with higher thermal expansion resistance and thermal deformation coordination.
     By using infrared imaging and temperature sensors, the temperature distribution of concrete structure under large temperature difference was observed and analyzed, focusing on the relationship between its surface temperature distribution and internal structure characteristic. Based on this, the non-destructive damage assessment was developed on trends of temperature distribution of the concrete structure. With this method, not only macro-structural defects could be found directly near the surface (hollowing, cellular, etc.), you could also determine the temperature distribution, structure, thermal stress and thermal injury trends under large temperature difference, in order to provide technical support for preventing thermal injury of structures. This paper introduced a hollow thin-walled structure of the bridge in Aershan region of Inner Mongolia in China, and carried out the study of design and preparation for low thermal expansion concrete. What's more, time-varying temperature field and thermal stress of thin-walled pier were investigated by monitoring the real-time temperature using infrared imaging.
引文
[1]Mindess S, Young J F, Darwin D, et al.混凝土[M].北京:化学工业出版社,2005.
    [2]Sumarac D, Krasulja M. Damage of plain concrete due to thermal incompatibility of its phases [J]. International Journal of Damage Mechanism,1998, (7):129-142.
    [3]Venecanin S D. Thermal incompatibility of concrete components and thermal properties of carbonate rocks [J]. ACI Materials Journal,1990,87(6):602-607.
    [4]周啸尘.温度对混凝土变形影响的机理[J].山东矿业学院学报(自然科学版),1999,18(6):114-116.
    [5]马新伟,钮长仁.混凝土硬化早期热膨胀的量化方法研究[J].低温建筑技术,2005,(2):8-9.
    [6]Xiao J Z, Konig G. Study on concrete at high temperature in China-an overview[J]. Fire Safety Journal,2004,39(1):89-103.
    [7]ACI Committee 216. Guide for determining the fire endurance of concrete elements[R]. ACI Manual of Concrete Practice Part 3,1996,216R-2.
    [8]Neville A M. Properties of concrete [M]. Pearson Education Limited, England,1995,374-390.
    [9]Poon C S, Shui Z H, Lam L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures [J]. Cement and Concrete Research,2004,34(12): 2215-2222.
    [10]Kaufmann J P. Experimental identification of ice formation in small concrete pores[J]. Cement and Concrete Research,2004,34(8):1421-1427.
    [11]Cai H, Liu X. Freeze-thaw durability of concrete:ice formation process in pores[J]. Cement and Concrete Research,1998,28(9):1281-1287.
    [12]Penttal V. Freezing-induced strains and pressures in wet porous materials and especially in concrete mortars[J]. Advanced Cement Based Materials,1998,7(1):8-19.
    [13]姚武,郑欣.配合比参数对混凝土热膨胀系数的影响[J].同济大学学报(自然科学版),2007,35(1):77-81.
    [14]Schulson E M., Swainson I P, Holden T M. Internal stress within hardened cement paste induced through thermal mismatch Calcium hydroxide versus calcium silicate hydrate[J]. Cement and Concrete Research,2001,31:1785-1791.
    [15]朱伯芳,王同生,丁宝瑛.水工混凝土结构的温度应力与温度控制[M].北京:水利电力 出版社,1976:142-145.
    [16]于淑秋.近50年我国日平均气温的气候变化[J].应用气象学报,2005,16(6):787-793.
    [17]新疆气象[web]. www.xjgx.gov.cn.
    [18]Mehta P K, Monteiro P J M. Concrete:microstructure, properties, and materials[M]. McGraw-Hill Companies, United States of America,2006.
    [19]Barnes P. Structure and Performance of Cements[M]. Applied Science Publishers LTD,1983: 290-301.
    [20]Sidney Mindess J, Francis Y, David Darwin. Concrete[M]. Prentice-Hall INC,2003:77-91.
    [21]吴兆琦.硅灰对C3S水化的影响[J].硅酸盐学报,1985,13(1):135-143.
    [22]Massazza F, Diamon M. Chemistry of Hydration of Cements and Cementitious Systems. Proccedings of 9th International Congress on the Chemistry of Cement[C]. New Delhi.1992: 169.
    [23]Grudemo A. Discussion of the Structre of Cement Hydration Compounds. Proceeding of the Third International Symposium on the Chemistry of Cement[C].London.1952:247.
    [24]Taylor H F W. Nanostructre of C-S-H:Current Status[J]. Advanced Cement Based Materials, 1993,1:38-46.
    [25]Wieker W, Hurbert C, Heidemann D. Recent Research of Solid-State NMR. Investigations and Their Possibilities of Use in Cement Chemistry[C]. Sweden.1997.
    [26]Grutzeck M W, Larosa T J, Kwan S. Characteristice of C-S-H gels. Proceeding of the 10th ICCC[C], Sweden, Gothenburg.1997.
    [27]Stade H, Wiecker W. On the structure of ill-crystallized calcium hydrogen silicates.I. Formation and properties on an ill-crystallized calcium hydrogen disilicate phase (in German) [J] Z. Anorg. Allg. Chem.1980,466:55-70.
    [28]Viehland D, Li JF, Yirlet J. Mesostructure of Calcium Silicate Hydrate(C-S-H) Gels in Portland Cement Paste:Short-range Ordering, Nanocrystallinity, and Local Compositional Order[J]. Journal of the American Ceramic Society,1996,79 (7):1581-1590.
    [29]Parrott L J, Kantro M G. A development of the molybdate complexing method for the analysis of silicate mixtures[J]. Cement and Concrete Research,1979, (9):483-488.
    [30]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1990.
    [31]杨南如.C-S-H凝胶结构模型研究新进展[J].南京化工大学学报,1998,20(2):78-85.
    [32]Schneider J, Cincotto M A, Panepucci H.29Si and 27Al High-resolution NMR Characterization of Calcium Silicate Hydrate Phases in Activated Blast-Furnace Slag Pastes[J]. Cement and Concrete Research,2001,31(7):993-1000.
    [33]Tsuji M, Komarneni S, et al.27A1 and 29Si MAS NMR, Cation Exchange, and Water Sorption Studies[J]. Journal of the American Ceramic Society,1991,74(2):274-279.
    [34]Kawaguchi T, Nakane S. Investigation on Determining Thermal Stress in Massive Concrete Structures[J]. ACI Materials Journal,1996,93(1):23-31.
    [35]Richardson I G, Groves G W. The Composition and Structure of C-S-H in Hardened Slag Cement Pastes. Proceedings of the 10th ICCC, vol II[C]. Sweden, Gothenburg:1997.
    [36]Taylor H F W. Proposed Structure for Calcium Silicate Hydrates Gel[J]. Journal of the American Ceramic Society,1986,69(6):464-467.
    [37]S.Tsivilis, et al. The permeability of Portland limestone cement concrete[J]. Cement and Concrete Research,2003,33(9):1465-1471.
    [38]Ghorab H Y, Kishar E A, Abou Elfetouh S H. Studies on the Stability of the Calcium Sulphoaluminate Hydrate, Part Ⅱ:Effect of Alite, Lime, and Monocarboaluninate Hydrate[J]. Cement and Concrete Research,1998,28(1):53-61.
    [39]Ghorab H Y, Kishar E A, Abou Elfetouh S H. Studies on the Stability of the Calcium Sulfoaluminate Hydrate,PartⅢ:the Monophases[J]. Cement and Concrete Research,1998, 28(5):763-771.
    [40]Staszczuk P, Sternik D, Chadzyoski W Q et al. Characterization of physicochemical properties of high-temperature superconductor surfaces using nitrogen adsorption [J]. J Alloys Compounds,2004,367:277-282.
    [41]Huang F C, Lee J F, Lee C K, et al. Effects of cation exchange on the pore structure and adsorption characteristics of montmorillonite[J]. Colloids Surfaces A:Physicochem Eng Aspects,2004,239:41-47.
    [42]Diamond S. Proceedings of Fifth International Symposium on the Chemistry of Cement PartⅢ[C]. Tokyo,1968:33.
    [43]陆平.水泥材料科学导论[M].上海:同济大学出版社,1989:145-156.
    [44]Verbeck G J. "Pore Structure" Significance of Tests and Properties of Concrete and Concrete-making Materials[C]. Philadelphia:American Society for Testing and Materials.1978, (169):262-274.
    [45]关振铎,张太中,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992:119-131.
    [46]章瑞.水泥基材料热膨胀及热膨胀研究[D].武汉:武汉理工大学,2010.
    [47]Y.S.杜洛金.固体热物理性质导论——理论和测量[M].北京:中国计量出版社,1987:280-319.
    [48]丁士卫.水泥石热变形性能试验研究[D].南京:东南大学,2006.
    [49]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991:200-201.
    [50]A.M.内维尔,李国泮,马贞勇译.混凝土的性能[M].北京:中国建筑工业出版社,1983.
    [51]Lars Kraft, Hakan Engqvist, Leif Hermansson. Early-age deformation,drying shrinkage and thermal dilation in a new type of dental restorative material based on calcium aluminate cement[J]. Cement and Concrete Research,2004(34):439-446.
    [52]Glisic B, Simon N. Monitoring of Concrete at Very Early Age Using Stiff SOFO Sensor[J]. Cement Concrete Composites,2000,22(12):115-119.
    [53]玄东兴,水中和,曹蓓蓓,等.水泥基材料组分热膨胀差异性研究[J].武汉理工大学学报,2007,29(1):30-32.
    [54]Meyers SL. Thermal Expansion Characteristics of Hardened Cement Paste and of Concrete[J]. Proc Highway Res Board 1950,30:193-200.
    [55]王华生,赵慧如.混凝土技术禁忌手册[M].北京:中国机械工业出版社,2003.
    [56]Turcry P, Loukili A, Barcelo L, et al. Can the Maturity Concept be Used to Separate the Autogenous Shrinkage and the Thermal Deformation of a Cement Paste at Early Age?[J]. Cement and Concrete Research,2002, (32):1443-1450.
    [57]Schutter G D. Finite Element Simulation of Thermal Cracking in Massive Hardening Concrete Elements Using Degree of Hydration Based Material Laws[J]. Computers and Structures,2002, (80):2035-2042.
    [58]丁士卫,钱春香,陈德鹏.水泥石热变形性能试验[J].东南大学学报(自然科学版),2006,(1):113-117.
    [59]许溶烈.近代混凝土技术[M].陕西科学技术出版社,2002.
    [60]李清海.硬化水泥基材料热膨胀性能的研究[D].北京:中国建筑材料科学研究总院,2007.
    [61]Wostenholm G.H. Apparatus for the absolute measurement of the linear thermal expansion coefficient of solids over a wide temperature range[J]. Journal of Physics E:Scientific Instruments,1989,22:222-229.
    [62]Smith M R, Collis L. Aggregates:Sand, gravel and crushed rock aggregates for construction purpose [M]. The Geological Society, United States of America,2001.
    [63]郭成举.混凝土的物理和化学[M].北京:中国铁道出版社,2004.
    [64]S.L.Meyers. Thermal expansion characteristics of hardened cement paste and of concrete [J]. Proceeding of Highway Research Board,1950,30:193-200.
    [65]Zolders N.G. Thermal properties of hardened portland cement paste [R]. ACI,1972, SP-25.
    [66]Schulson E.M, Swainson I.P, Holden T.M. Internal stress within hardened cement paste induced through thermal mismatch Calcium hydroxide versus calcium silicate hydrate[J]. Cement and Concrete Research,2001,31(12):1785-1791.
    [67]玄东兴.水泥混凝土材料组成材料的热相互作用与热再生体系[D].武汉:武汉理工大学, 2010.
    [68]杨小波,李进洲,王晓东.西藏尼木大桥病害原因分析及加固措施[J].公路,2005,(7):57-60
    [69]欧建广,邓四东,陈远方,等.寒冷地区高温干燥条件下混凝土面板裂缝控制[J].水力发电,2003,29(8):42-44.
    [70]张涛,覃维祖.混凝土早期变形与开裂敏感性评价[J].建筑技术,2005,36(4):296-300.
    [71]Ai-Tayyib AJ, Baluch M.H, Sharif A.M, et al. The effect of thermal cycling on the durability of concrete made from local materials in the Arabian Gulf countries [J]. Cement and Concrete Research,1989,19(1):131-142.
    [72]Hassan K.E, Cabrera J.G, Maliehe R.S. The effect of mineral admixtures on the properties of high-performance concrete[J]. Cement Concrete Composites,2000,22(4):267-271.
    [73]万惠文,徐金龙,水中和,等.再生混凝土ITZ结构与性质的研究[J].武汉理工大学学报,2004,26(11):28-31.
    [74]Xiong GJ, Luo B.Y, Wu X, et al. Influence of silane coupling agent on quality of interfacial transition zone between concrete substrate and repair materials[J]. Cement Concrete Composites,2006,28(1):97-101.
    [75]Scrivener K.L, Nemati K.M. The Percolation of pore space in the cement paste/aggregate interfacial zone of concrete[J]. Cement and Concrete Research,1996,26(1):35-40.
    [76]水中和,万惠文.老混凝土中集料-水泥界面过渡区(ITZ)(二)元素在界面区的分布特征[J].武汉理工大学学报,2002,24(5):26-28.
    [77]水中和,万惠文.老混凝土中集料-水泥界面过渡区(ITZ)(一)元素在界面区的分布特征[J].武汉理工大学学报,2002,24(4):24-26.
    [78]张国学,刘晓航.温度对混凝土材料性能的影响[J].华东公路,2000,(122):56-58.
    [79]Kanellopoulos A, Farhat F A, Nicolaides D, et al. Mechanical and fracture properties of cement-based bi-materials after thermal cycling[J]. Cement and Concrete Research,2009, 39(11):1087-1094.
    [80]杨锐玲.红外热成像法探测混凝土缺陷的实验及理论研究[D].武汉大学,2004.
    [81]刘莹,张记龙.材料的红外无损检测技术及其进展[J].华北工学院测试技术学报,2001,(4):275-279.
    [82]Abdel-qader I, Yohali S, Abudayyeho, et al. Segmentation of thermal images for nondestructive evaluation of bridge decks[J]. NDT and E International,2008,41(5):395-405.
    [83]Breysse D, Klysz G X, Derobert C, et al. How to combine several non-destructive techniques for a better assessment of concrete structures[J]. Cement and Concrete Research,2008, 38(6):783-793.
    [84]Malerhofer C, Arndt R, Rollig M. Influence of concrete properties on the detection of voids with impulse-thermography[J]. Infrared Physics and Technology,2007,49(3):213-217.
    [85]赵为民,赵鸿,赵鸣.红外热像技术在检测建筑物渗漏中的应用[J].住宅科技,2004,(5):38-40.
    [86]Cheng C C, Cheng T M, Chiang C H. Defect detection of concrete structures using both infrared thermography and elastic waves[J]. Automation in Construction,2008,18:87-92.
    [87]Huon V, Cousin B, Wattrisse B, et al. Investigating the thermo-mechanical behaviour of cementitious materials using image processing techniques[J]. Cement and Concrete Research, 2009,39:529-536.
    [88]Luong M P. Infrared observation of failure processes in plain concrete[C]. Durability of Building Materials and Component,4 DBMC. Singapore:Pergamon,1987:870-878.
    [89]Luong M P. Infrared thermovision of damage processes in concrete and rock[J]. Engineering Fracture Mechanics,1990,35(1):127-135.
    [90]Toshimitsu I,Yoshizo O. Investigation of Qualification, Certification and Reference Testing Methods on Nondestructive Inspection by Means of Infrared Thermography[J].非破坏检查, 1999,48(10):642-652(In Japanese).
    [91]Legrand A C, Meriaudeau F, Gorria P. Active Infrared Non-destructive Testing for Glue occlu-sion Detection within Plastic Lids[J]. NDT and E International,2002,35(3):177-187.
    [92]Dattoma V, Marcuccio R, Pappalettere C, et al. Thermography Investigation of Sandwich Structure Made of Composite Material [J]. NDT and E International,2001,34(8):515-520.
    [93]杜耀峰,郭子雄,吴毅彬.红外热像技术在高温后混凝土损伤探测中的应用[J].四川建筑科学研究,2007,33(2):65-69.
    [94]谢春霞,余金凯,郭艳伟.红外热像技术在混凝土无损检测中的探索[J].路基工程,2009,(2):163-164.
    [95]赵鸿.混凝土缺陷红外无损检测试验研究[J].住宅科技,2010,(1):46-49.
    [96]杨锐玲,朱永华,陈思作,等.利用时变温度场探测混凝土缺陷[J].无损检测,2003,25(8):418-419.
    [97]陈珏.红外无损检测技术的传热学分析[J].红外与毫米波学报,2000,(4):285-288.
    [98]Kehlbeck F. Einfluss der Sonnenstrahlung bei Bruckenbauwerken[M]. Dusseldorf:Werner Verlag,1975.
    [99]Priestley M J N. Design of Concrete Bridges for Thermal Gradients[J]. ACI Materials Journal, 1978,75(5):209-217.
    [100]Thurston S J, Pr iestley M J N, Cooke N. Thermal Analysis o f Thick Concrete Sections[J]. ACI Materials Journal,1980(9/10):347-357.
    [101]Elbadry M M, Ghali A. Temperature Variation in Concrete Bridges[J]. Journal of Structural Engineering, ASCE,1983,109(10):2355-2374.
    [102]Elbadry M M, Ghali A. Thermal Stresses and Cracking of Concrete Bridges[J]. ACI Materials Journal,1986,83(6):1001-1009.
    [103]Dilger W H, Ghali A, Chan M. Temperature Stresses in Composite Box Girder Bridges[J]. Journal of Bridge Engineering ASCE,1983,109(6):1460-1478.
    [104]王昌洪,施香娇.温度变化对大体积混凝土温度应力影响的有限元分析[J].建筑施工,2008,30(6):442-444.
    [105]舒开鸥.大型桥墩的温度场及温度应力的有限元分析[J].山西建筑,2010,36(5):308-309.
    [106]何福渤,路新瀛.材料参数波动对混凝土温度应力计算的影响[J].混凝土,2010,(1):15-17.
    [107]Hansen T C. Physical structure of hardened cement paste[J]. A Classical Approach Material Structure,1986,19(114):42.
    [108]Fu Y F, Wong Y L, Tang C A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures— Part I:Thermal cracking around single inclusion [J]. Cement and Concrete Composites,2004,26 (2):99-111.
    [109]佘安明,水中和,王树和.干燥大温差条件下混凝土界面过渡区的研究[J].建筑材料学报,2008,11(8):485-488.
    [110]Srivastava S K. Model for Evaluating and Predicting Thermal Expansivity at High Temperatures for Geophysical Minerals[J]. Physica B,2005,355(1/2/3/4):32-36.
    [111]Zolders N G Thermal properties of hardened portland cement paste [M]. ACI,1972.
    [112]Castellote M, Alonso C, Andrade C, et al. Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction[J]. Cement and Concrete Research,2004,34(9):1633-1644.
    [113]Alarcon-Ruiz L, Platret G, Massieu E, Ehrlacher A. The use of thermal analysis in assessing the effect of temperature on a cement paste[J]. Cement and Concrete Research,2005, 35(3):609-613.
    [114]Handoo SK, Agarwal S, Agarwal SK. Physicochemical, miner-alogical, and morphological characteristics of concrete exposed to elevated temperatures[J]. Cement and Concrete Research,2002,32(7):1009-1018.
    [115]Gao G, Qian C, Zhu C, Ding S. Research on influence factors of coefficient of thermal expansion of concrete.4th International Conference on Structural Engineering and Construction[C]. Melbourne:Innovations in Structural Engineering and Construction,2007: 567-572.
    [116]申爱琴,李祝龙,王小明.聚合物乳液改性水泥混凝土的微观结构[J].混凝土,2001,(3):40-42.
    [117]Jan B. Benefits of Slag and Fly Ash[J]. Construction and Building Materials,1996, 10(5):309-314.
    [118]Sabir B B, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete:a review[J]. Cement and Concrete Composites,2001,23:441-454.
    [119]唐祖全,李卓球,钱觉时.碳纤维导电混凝土在路面除冰雪中的应用研究[J].建筑材料学报,2004,7(2):215-220.
    [120]周克印,周在杞,姚恩涛,等.建筑工程结构无损检测技术[M]].化学工业出版社,2006.
    [121]陈伟,丁沙,陈波,等.基于红外热成像与温度场有限元模拟的混凝土无损检测研[J].混凝土,2011,(8):140-143.
    [122]Dilger W H, Ghali A, Chan M. Temperature stresses in composite box girder bridges[J]. Journal of Bridge Engineering ASCE,1983,109(6):1460-1478.
    [123]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [124]Bathe K J.Finite element procedures[M]. New Jersey:Prentice-Hall,1996.
    [125]唐囡,陈波.混凝土屋面太阳辐射温度场模拟研究[J].武汉理工大学学报,2011,33(4):73-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700