基于交流电磁场的缺陷智能可视化检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文受国家863青年基金项目“交流电磁场检测(ACFM)智能可视化技术研究”资助,针对ACFM技术缺陷智能识别和形状可视化的难题,通过理论分析和实验研究,系统地开展交流电磁场缺陷智能可视化检测系统开发的关键技术研究,在ACFM有限元仿真分析、缺陷定量识别以及形状可视化反演、ACFM缺陷智能可视化探头设计与优化、磁场信号软硬件处理技术、虚拟样机系统开发等方面均取得较大的研究进展,主要的研究成果总结如下:
     1 ACFM理论研究与数值模型建立
     结合ACFM检测原理和数值计算理论,引入矢量磁位A和标量势函数?,提出ACFM缺陷识别的理论模型。为了简化模型中缺陷附近电磁场分布的仿真分析和求解,引入有限元分析方法,针对分析对象和目的的不同,建立了3种不同的ACFM有限元分析模型:激励仿真模型、计算模型和探头运动仿真模型。激励模型可以准确的模拟检测中感应电磁场的分布规律,为探头设计和优化提供理论依据。计算模型能够完成稳定检测状态下缺陷上方磁通密度分布的分析和数值计算。探头运动仿真模型主要用于探头运动检测或大缺陷检测情况下磁场分布的分析和计算。以上3种专用的参数化仿真模型的建立,减少了ACFM电磁场仿真建模和计算的工作量,也为后续的研究奠定基础。
     2 ACFM缺陷智能识别与形状可视化算法研究
     鉴于目前ACFM缺陷识别方法中存在的人为误差大、无法实时识别和智能化程度低等方面的不足,对ACFM缺陷智能识别技术进行深入的研究。作为缺陷智能识别研究的基础,采用人工缺陷加工和仿真模拟相结合的方法,对缺陷进行分类制作,建立缺陷数据库,并在此基础上通过信号分析和特征提取,确定了用以标示缺陷信息,简化反演的缺陷信号特征量。分析当前ACFM缺陷判定方法的不足,借助相关检测,提出加入相位判据的直接判别法,实时判别缺陷的存在。统计分析缺陷数据库中部分缺陷的实验检测结果或仿真结果,基于缺陷尺寸对于磁场信号特征值影响的3条规律,提出基于插值的ACFM缺陷定量识别算法,为工程中含有大量检测数据的缺陷实时量化提供新途径。充分考虑缺陷尺寸和磁场特征分布之间存在的复杂非线性关系,引入非线性神经网络,建立基于BP神经网络和广义回归神经网络的缺陷定量识别模型,并对两种模型的量化精度以及推广性进行了对比分析。基于旋转感应磁场,提出了ACFM缺陷方位计算方法,为缺陷形状可视化奠定基础。
     针对目前国内外对于ACFM缺陷形状可视化技术研究的一些空白,通过大量的非规则形状缺陷的有限元仿真实验,分析由缺陷形状引起的磁场信号分布的变化。在此基础上,借鉴有限元分割思想,提出缺陷截面形状反演算法和缺陷表面形状反演算法以及缺陷三维重构方法,并进行仿真测试和误差分析,反演精度均超过90%。基于目标优化思想,融合缺陷形状反演算法和有限元仿真技术,设计缺陷可视化的智能实现流程,为缺陷形状可视化的计算机智能实现奠定基础。
     3 ACFM缺陷智能可视化检测系统研制
     针对ACFM磁场信号的特点,借助参数化激励仿真模型,探讨激励探头结构对感应电磁场的影响。基于旋转磁场理论,开发双U型ACFM正交激励阵列探头,为缺陷形状可视化和角度的检测提供必要的旋转匀强感应磁场,消除缺陷方向对检测灵敏度的影响。配合一维阵列检测线圈,设计一维ACFM智能可视化探头,为缺陷的智能可视化反演提供足够的磁场信息。考虑探头采集的磁场信号属于微弱、多干扰信号,对信号发生以及处理电路进行设计,实现信号的初步处理,为信号A/D转换和数字化信号处理奠定基础。
     结合A/D数据采集卡,在LabVIEW环境下设计信号采集与转换模块,本着简化硬件电路、降低仪器成本、提高系统参数化水平的目的,将部分硬件电路软件化,构建数字信号处理软件模块,设置专用滤波器,并参考正交锁相放大原理,开发互相关相位检测器,以正交激励信号为参考信号,实现信号的矢量测定,为后续的缺陷智能可视化反演奠定基础。鉴于MATLAB语言在数值分析和计算方面的独特优势,采用LabVIEW和MATLAB混合编程的方法编制缺陷智能可视化反演模块,开发ACFM缺陷智能可视化检测软件系统,实现缺陷的实时判别、自动量化及缺陷可视化描述。
     采用人工缺陷检测实验的测试方法,对开发的ACFM缺陷智能可视化检测系统的功能、精度以及不同环境下的检测性能进行测试,结果表明该系统量化精度不低于85%,反演所得缺陷外形可以较为准确的描述缺陷真实形状,而且对于水下结构物缺陷也能够实现智能可视化检测,量化精度也可达到85%。
     4 ACFM虚拟样机系统开发
     以交流电磁场检测原理为基础,利用数值仿真技术为主要设计手段,借助多领域集成仿真技术,对有限元仿真模型参数化设计与计算,仿真结果描述与特征提取,缺陷特征数据库维护,缺陷定量识别与可视化反演等ACFM相关的正、反问题进行模块设计和程序实现,开发ACFM缺陷智能可视化检测虚拟样机系统。该样机以ACFM仿真模型代替人工缺陷,以有限元计算结果作为原始磁场信号,自动完成数字信号的分析和特征提取、缺陷的智能定量识别以及形状反演和可视化描述,并提供与检测系统之间的数据通讯接口,利用检测系统调节虚拟样机中仿真模型的设计参数,利用虚拟样机的智能可视化子系统作为检测系统采集信号的后处理模块,有效提高ACFM缺陷检测系统的检测精度以及智能可视化水平。
The dissertation is focused on the technology of defect intelligent recognition and visualization based on the alternating current field measurement (ACFM), including the FEM simulating analysis, the intelligent recognition and visualization of defect, the design and optimization for probe, electromagnetic signals processing and the development of virtual prototype system and so on, which is supported by‘863’Youth Fund of the High Technology Research and Development Program of China (No. 2002AA616060). The main works are summarized as follows:
     1 Study of the Theory and Numerical Model of ACFM
     Based on the principle of ACFM and the theory of numerical calculation, the magnetic vector A and the scalar potential function ? are introduced, and the theory model of ACFM defect recognition is presented. To analyze and calculate the electromagnetic field distribution around the defect in that theory model, the finite element analysis (FEA) method is inducted, and three FEA models are built for different subjects and aims. The induction model is used to simulate the induced electromagnetic field distribution in ACFM, which provides the theoretical foundation to design and optimize the probe. The calculation model is used to analyze and calculate the distribution of the magnetic flux density above the defect in the state of stable measurement. And in the circumstance of moving scan or the measured defect is bigger than the area of the induced field, the probe moving simulation model will be used to analyze and calculate the distribution of the magnetic field. These three specific models mentioned above make the workload of building model and analysis of ACFM electromagnetic field distribution decreasing effectively, and provide the foundation of the following study.
     2 Research on the Algorithm of Defect Intelligent Recognition and Visualization
     Considering the deficiency of involving man made error, difficulties of real-time recognition and low degree of automation and intelligence in the field of defects recognition, a deep research on the technique of defect intelligent recognition in ACFM is performed. As the basis of intelligent defect recognition, the defect database is built by combining the artificial defects producing and simulating. The characteristic vectors of defect signals are determined to reveal the defect information and simplify the algorithm by signal processing and feature extraction. Analyzing the shortcoming of defect discrimination methods in ACFM, a phase involved direct method used in defects real-time discrimination is presented on the basis of cross-correlation detection method. Based on the three rules describing the relationship between the magnetic field distribution and the size of defects, a interpolation algorithm of quantitative recognition of defects for ACFM is proposed, which presents a new method of defect real-time recognition in engineering. Considering the complex nonlinear relationship between the size of the defect and the distribution of the characteristic signals, the nonlinear neural network is introduced, and the BP neural network model and the generalized regression neural network (GRNN) model for defect recognizing in ACFM are built. Based on the rotational induced magnetic field, a method for calculating the direction of the defect in ACFM is proposed, which makes the foundation of defect shape visualization.
     The relationship between the distribution of the magnetic field signals and the defect shape is analyzed by lots of finite element numerical simulating experiments of arbitrary shape defects. On the basis of finite element segmentation method, the inversion algorithm of the section shape and surface shape of the defect and the reconstruction method of three dimensional profile of the defect are proposed. These algorithms and method are verified by simulation experiments, and the results show that the precision is higher than 85 percent. Combined the inversion algorithm of the defect shape with the finite element simulation technique, the intelligent process of defect shape visualization is designed by the optimization method.
     3. Development of ACFM Intelligent and Visual Recognition System
     Considering the characteristic of the magnetic field signals in ACFM, the relationship between the structure of the inducer and the induced magnetic field is discussed by parameterized induced simulation model. On the basis of the principle of rotational magnetic field, a double U-shaped orthogonal inducer for ACFM is presented, which could clear up the unfavorable influence of the defect direction on the sensitivity of measurement. A one dimensional defect intelligent and visual recognition probe of ACFM is developed with one dimension array detecting coils, which provides enough magnetic information for intelligent defect recognition and visualization. Considering the weakness of the signals and disturbance of noises, by designing the signal producing and processing current circuits, the primary signal process is realized, which makes the foundation for A/D conversion and digital signal process.
     Using an A/D data acquisition card, by the LabVIEW language, the signal acquisition and conversion module is developed. And aiming at simplifying current circuits, and decreasing cost, parts of current circuits are realized by computer software, and the digital signal process software module is designed. On the basis of the principle of orthogonal lock-in amplification, a cross-correlation phase detector is developed, by which both the phase and amplitude of signal are measured. Due to the advantage of MATLAB software in the field of numerical calculation and analysis, the defect intelligent and visual recognition module is produced by the method of mixed language programming. Finally, the ACFM defect intelligent and visual recognition software system is built by combining these modules mentioned above, which can be used to realize the real-time defect discrimination, intelligent quantifying recognition, and visual description of defect shape.
     The ACFM defect intelligent and visual recognition system is tested by experiments of measuring artificial defects in the field of function precision and performance under some special circumstances. The results show that the quantifying precision of this system is about 90 percent, and the shape inversely calculated is similar to the real shape of the defect, and the defect under water can be also recognized by this system intelligently and visually, the precision about 85 percent.
     4 Design of Virtual Prototype System of ACFM
     Based on the principle of ACFM, researching on the forward and inverse problems such as design and calculation of the FEA parametrical model, simulation results process and feature extraction, maintenance of the defect characteristic database, and defect quantifying recognition and visual inversion and so on, a virtual prototype system for defect intelligent recognition and visualization based on ACFM is built by the numerical simulation technique by C++ BUILDER language. Aiming to adjust the parameters of virtual prototype and test the function of measurement system, an interface subsystem is designed to link the measurement system with the virtual prototype. In addition, the virtual prototype could be used as a post-processing module for signals acquired by the probe of measurement system.
引文
1 A.H.Salemi, S.H.H.Sadeghi, R.Moini. Thin-skin analysis technique for interaction of arbitrary-shape inducer field with long cracks in ferromagnetic metals. NDT&E International, 2004 (39): 471-479
    2 A.M.Lewis, D.H.Michael, M.C.Lugg, et al. Thin-skin electromagnetic fields around surface-breaking cracks in metals. J.Appl.Phys, 1998; 64: 3777-3784
    3 Alan Raine, Martin Lugg. Alternating current field measurement inspection technique. Sensor Review, 1999; 19 (3): 207-213
    4 陈建忠, 史耀武. 无损检测交变磁场测量法. 无损检测, 2001; 23 (3): 96-99
    5 李田生, 刘志远. 焊接结构现代无损检测技术. 北京: 机械工程出版社, 2000
    6 中国机械工程学会无损检测学会. 无损检测概率. 北京: 机械工程出版社, 1993
    7 Topp D, Jones BA. Operational experience with the ACFM inspection technique for sub-sea weld in spection. Environmental Engineering, 1994; 7 (1): 9-13
    8 W. D. Dover. 海上结构物的交流磁场测量检测技术.海上结构物检测、维护与修理技术文集. University College london M Lugg. TSC Ltd, 1995
    9 许亮斌, 陈国明. 近海水下结构无损检测新技术. 无损检测, 2003; 25 (7): 360-364
    10 陈建忠, 史耀武. 超声检测过程的数值模拟. 无损检测, 2001; 23 (5): 198-201
    11 简晓明, 李明轩. 超声检测中人工神经网络对缺陷定量评价. 声学学报, 2000; 15 (1): 71-77
    12 李家林, 董云朝, 马羽宽. 声发射源特性的神经网络模式识别研究. 无损检测, 2001; 23 (6): 231-233
    13 刘镇清. 超声无损检测与评价中的信号处理及模式识别. 无损检测, 2001; 23 (1): 31-34
    14 刘镇清, 刘骁. 超声无损检测的若干新进展. 无损检测, 2000; 22 (9): 403-405
    15 徐丽, 张幸红, 韩杰才. 射线检测在复合材料无损检测中的应用. 无损检测, 2004; 26 (9): 450-456
    16 郑世才. 中子射线照相检验技术. 无损检测, 2000; 22 (8): 376-380
    17 郑世才. 我国射线检测技术近年的发展. 无损检测, 2004; 26 (4): 163-167
    18 郑世才. 射线照相检验技术基础. 无损检测, 2000; 22 (1): 42-47
    19 郑世才. CT技术和康普顿散射成像检测技术. 无损检测, 2000; 22 (9): 423-428
    20 任吉林. 电磁无损检测的新进展. 无损探伤, 2001; (5): 1-4
    21 解源, 彭超男. 磁性无损检测技术. 集美大学学报(自然科学版), 2001; 6 (4): 322-326
    22 Sadeghi SHH, Mirshekar-Syahkal D. Surface potential distributions due to eddy currents around long cracks in metals, induced by U-shaped current-carrying wires. IEEE Trans Magn, 1991; 27: 674-679
    23 雷银照, 马信山. 涡流法缺陷识别的研究现状. 无损检测, 18 (3): 81-83
    24 亓和平. 交流电磁场检测技术装备及应用. 石油机械, 33 (6): 77-80
    25 Raine G A. The alternating current field measurment crack detection and sizing technique and its application to in-service inspection, NDTMA Conference, Las Vegas, USA, 1999
    26 Martines M.V.M, Marques F.C.R. Technique ACFM-Resultados preliminares Promissores NA Petrobras. 17th Conaend Congress, 1999.
    27 K.Chen, F.P.Brennan, W.D.Dover. Thin-skin AC field in anisotropic tectangular bar and ACPD stress measurement. NDT&E International, 33 (2000): 317-323
    28 Gangzhu Chen, Astumori Yamaguchi, Kenzo Miya. A novel signal processing technique for eddy-current testing of steam generator tubes. IEEE Transactions on Magnetics, 1994; (2): 1271-1274
    29 杨宾峰, 罗飞路. 脉冲涡流无损检测技术应用研究. 仪表技术与传感器, 2004; (8): 44-45
    30 张立东, 张光沛. 涡流检测与远场涡流检测的对比. 兵工自动化, 2003; 22 (5): 52-53
    31 陈建忠, 史耀武. 表面裂纹的无损评价---交流磁场测量法. 新技术新工艺, 1998; 3: 20-22
    32 齐玉良, 陈国明, 张彦廷. ACFM的数值模拟及信号敏感性仿真分析. 中国石油大学学报(自然科学版), 28 (3): 65-68
    33 李伟, 陈国明, 郑贤斌. 交流电磁场检测中裂纹形状反演研究. 无损检测, 28 (11): 573-576
    34 齐玉良. ACFM的数值模拟及反演初探: [硕士学位论文], 中国石油大学, 东营: 2003
    35 Raine G A, Smith N. NDT of on and off-shore oil and gas installations using the ACFM technique. Materials Evaluation, 54 (4): 461-465
    36 W.D.Dover, F.D.W. Charlesworth, K.A. Taylor, et al. The use of AC field measurements to determine the size and shape of a crack in a metal. ASTM STP 722, ASTM Philadelphia, 401-427
    37 Laenen C. The use of the ACFM Non-Destructive Testing Technique for the Inspection of Dockside Lifting Equipment, BINDT Seminar, Northampton UK, 1999
    38 Raine A, Laenen C. Applications using the alternating access. Insight, 43 (5): 318-321
    39 W.D.Dover, C.C.Monahan. the measurement of surface breaking cracks by the electrical systems ACPD/ACFM. Fatigue fract. Engng Mater. Struct, 1994; 17 (12): 1485-1492
    40 胡媛媛, 罗飞路, 曹雄横, 等. 交变磁场测量系数数值仿真分析. 仪表技术与传感器, 2003 (6): 48-50
    41 康中尉, 罗飞路, 陈棣湘. 交变磁场测量的缺陷识别模型. 无损检测, 27 (3): 123-126
    42 孙瑜, 罗飞路, 赵东明. 利用交变磁场测量法的金属表面缺陷检测. 兵工自动化, 2004; 23 (2): 44-45
    43 Jianwei Zhou, Martin C.Lugg, Roy Collins. A non-uniform model for alternating current field measurement of fatigue cracks in metals. Int.J.of Applied Electromagnetics and Mechanics, 1999 (10): 221-235
    44 A.Taflove, K.R.Umashankar, B.Beker, et al. Detailed FD-DE analysis of electromagnetic fields penetrating narrow slot and lapped joints in thick conducting screens. IEEE Trans. Antennas Propagat, 1988; 36 (2): 247-257
    45 K.S.Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat, 1966; 14: 302-307
    46 R.F, 哈林登, 王尔杰, 等译. 计算电磁场的矩量法. 北京: 国防工业出版社, 1983
    47 张钧. 电磁场边值问题的积分方程解法. 北京: 高等教育出版社, 1989
    48 卢义刚, 杨启洪. 时域有限差分法在建筑声学中的应用及前景. 应用声学, 25 (3): 193-196
    49 郭春波. 时域有限差分法的Matlab仿真. 现代电子技术, 2003 (11): 61-63
    50 徐涵, 常文蔚, 银燕. 时域有限差分法中电磁场的吸收边界条件. 计算物理, 20 (3): 326-330
    51 黄重庆, 刘靖, 罗文华, 等. 电磁场计算中的时域有限差分法. 岳阳师范学院学报:自然科学版, 16 (1):75-78
    52 董晓婷, 汪文秉. 时域有限差分法通用可视化计算的面向对象设计. 西安交通大学学报, 35 (6): 652-654
    53 朱燕杰, 陈迎潮. 时域有限差分法在光波导分析中的应用及改进. 光电子技术, 21 (4): 251-258
    54 闫淑辉, 王秉中, 易春, 等. 基于时域有限差分法的电磁仿真软件研制. 电子科技大学学报, 33 (4): 353-356
    55 张芸潇. 现代计算电磁学中的矩量法与快速算法. 南通纺织职业技术学院学报, 6 (3): 30-32
    56 温定娥, 郑生全, 王海婴, 等. 矩量法分析三维介质目标的电磁散射. 舰船工程研究, 2005 (3): 40-43
    57 宋占海, 刘元安, 刘腾蛟, 等. 基于矩量法对连接器内电磁干扰的分析. 北京邮电大学学报, 27 (5): 99-103
    58 李长俊, 李丙文. 迦辽金法在管道不稳定流动分析中的应用. 油气储运, 21 (4): 31-34
    59 高俊吉, 刘大明, 姚琼荟, 等. 用边界元法进行潜艇空间磁场推算的试验检验. 兵工学报, 27 (5): 869-872
    60 张国良, 尹洪军, 刘振林. 用边界元法计算任意形状混合边界的油藏压力. 水动力学研究与进展:A辑, 21 (4): 544-548
    61 李普. 微机电系统中基于模态展开和边界元法的静电-结构耦合高效分析方法. 机械工程学报 42 (7): 153-158
    62 黄军涛, 赫冀成. 应用有限元和边界元法计算方坯软接触结晶器的电磁场. 计算物理, 19 (1): 43-50
    63 刘姜玲, 王泽忠. 三维静电场边界元法的积分精度问题. 高电压技术, 31 (9): 21-24
    64 邱兆杰, 侯新宇, 许家栋, 等. 三维目标电磁散射矢量有限元/边界元法的公式研究. 电子学报, 34 (9): 1734-1737
    65 赵阳, UDPA Lalita, UDPA Satish. 电磁场有限元分析的快速数值方法研究. 南京师范大学学报:工程技术版, 6 (6): 1-4
    66 康晓明. 应用有限元分析电压互感器电磁场. 天津师范大学学报:自然科学版, 26 (3): 53-55
    67 梁振光, 唐任远. 电磁场三维有限元结果的显示. 高电压技术, 31 (12)
    68 吴金富, 许雪峰. 感应加热工件内电磁场计算及其有限元模拟. 浙江工业大学学报, 23 (1): 56-62
    69 周怡彦, 罗谷怀. 正交各向异性媒质中电磁场的有限元法. 水电能源科学, 19 (2): 68-70
    70 马西奎. 电磁场理论及应用. 西安: 西安交通大学出版社, 2000
    71 黄临平 戴世坤. 复杂条件下3D电磁场有限元计算方法. 地球科学:中国地质大学学报, 27 (6): 775-779
    72 孙瑜. 圆柱体表面缺陷检测的ANSYS仿真. 兵工自动化, 25 (2): 38-39
    73 李伟, 陈国明, 倪春生. 基于ANSYS的结构裂纹交流电磁场仿真研究. 中国造船, 2004 (45): 262-266
    74 傅佳挥, 吴群. 微波EDA电磁场仿真软件评述. 微波学报, 2004; 20 (2): 91-94
    75 康宜华, 武新军, 杨叔子. 磁性无损检测技术中的信号处理技术. 无损检测, 2000; 22 (6): 255-259
    76 黄松岭, 李路明, 鲍晓宇, 等. 管道漏磁检测中的信号处理. 无损检测, 2000; 22 (2): 55-57
    77 胡阳, 康宜华, 卢文祥, 等. 钢丝绳无损检测中的一些算法-信号的预处理和特征提取. 无损检测, 2000; 22 (11): 48-50
    78 王太勇, 蒋奇, 薛国光. 钢管漏磁在线检测技术的研究. 计量学报, 2002; 23 (4): 299-302
    79 Charles, K. Chui. Approximation Theory and Functional Analysis. Academic Press, 1990: 47-71
    80 I.Daubechies. Communications on Pure and Applied Mathematics. vol. XLI, 1988: 909-996
    81 吴耀军, 史习进, 陈进. 小波变换时频特征信号的信号识别. 上海交通大学学报, 1999; 33 (8): 1055-1058
    82 张静远, 张冰, 蒋兴舟. 基于小波变化的特征提取方法分析. 信号处理, 2000; 16 (2): 156-162
    83 杨涛, 王太勇. 油气管道缺陷漏磁检测实验. 天津大学学报, 37 (8): 686-689
    84 M.P.Connolly, D.H.Michael, R.Collins. The inversion of surface potential measurements to determine crack size and shape J.Appl.Phys, 1998; 65 (2): 2638-2647
    85 陆玲, 陈国明, 林红. 水下结构物点蚀缺陷的识别与定量分析. 石油大学学报(自然科学版), 2004; 29 (3): 79-82
    86 康中尉, 罗飞路, 胡媛媛, 等. 交变磁场测量数学模型及类匀强场的建立. 无损检测, 2004; 26 (11): 545-551
    87 曲利岩. 电磁场有限元分析技术的研究和实现: [硕士学位论文], 浙江大学, 杭州: 2002
    88 樊明武, 颜威利. 电磁场积分方程法. 北京: 电子工业出版社, 1988
    89 张俊芳, 康明才. 遗传算法在配电网停电恢复中的应用. 电力自动化设备, 2002; 22 (12): 55-56
    90 虞和济, 陈长征, 张省, 等. 基于神经网络的智能诊断. 北京: 冶金工业出版社, 2005
    91 张东来, 徐殿国, 王炎. B小波的特点及在钢丝绳断丝信号处理中的应用. 哈尔滨工业大学学报, 1998; 30 (4): 107-112
    92 孙晓云, 袁斌, 盛剑霓. 神经网络方法在涡流无损检测定量分析中的应用. 西安交通大学学报, 2000; 34 (6): 517-522
    93 杨志晓, 冯冬青, 陈铁军, 等. 人工神经网络技术在无损检测中的应用. 无损检测, 2002; 24 (6): 244-249
    94 蒋奇. 管道缺陷漏磁检测量化技术及其应用研究: [博士学位论文], 天津大学, 天津: 2002
    95 汪良生. 南海惠州油田水下无损检测.中国船级社, 1996
    96 TSC. ACFM Arrays with Workclass ROV 2002
    97 TSC. AMIGO PROBES. http://www.tscinspectionsystems.com, 2005
    98 Topp, David A., Lugg, et al. Invention, 5574376, the United States, 1996
    99 Roy, George. Invention, 6400146, the United State, 2002
    100 金建华. 海洋平台结构缺陷的电磁导波检测装置和方法. 发明专利, CN1584582, 中国, 2005
    101 刘学柱, 魏玉贤. 智能电磁监测机. 实用新型, CN2630848, 2004
    102 曲民兴, 司家屯. 电磁无损检测与数值计算. 无损检测, 1994; 16 (4): 109-110
    103 金建铭, 王建国, 葛德彪. 电磁场有限元方法. 西安: 西安电子科技大学出版社, 1998
    104 Jianwei Zhou, William D. Dover. Electromagnetic induction in anisotropic half-space and electromagnetic stress model. J.Appl.Phys, 83 (3): 1694-1700
    105 倪光正, 杨仕友, 钱秀英, 等. 工程电磁场数值计算.北京: 机械工业出版社, 2004
    106 王世山, 王德林, 李彦明. 大型有限元软件ANSYS在电磁领域的使用. 高压电器, 38 (3): 27-33
    107 张玉华. 金属平板表面缺陷扰动的磁场量分布研究: [硕士学位论文], 国防科技大学, 长沙: 2003
    108 王泽新. 阵列交流电磁场检测(ACFM)的探头设计与试验研究: [硕士学位论文], 中国石油大学, 东营: 2006
    109 倪春生. ACFM探头设计及检测信号处理研究: [硕士学位论文], 中国石油大学, 东营: 2005
    110 康中尉, 罗飞路. 矩形线圈的磁场分析. 传感器世界, 9 (2): 7-12
    111 H.Hoshikawa, K.Koyama. Basic study of a new ECT Probe using uniform rotating direction eddy current. Review of Progress in Quantitative Nondestructive Evaluation, 1997 (16): 1067-1074
    112 孙玉魁. 金属软磁材料及其应用.北京: 冶金工业出版社, 1986
    113 孙瑜. 金属平板表面缺陷扰动的磁场量分布研究: [硕士学位论文], 国防科技大学, 长沙: 2004
    114 柳春图, 陈卫江. 缺陷识别反问题的研究状况与若干进展. 力学进展, 28 (3): 361-373
    115 傅淑芳, 朱仁益. 地球物理反演问题. 北京: 地震出版社, 1998
    116 R.LeTessier, R.W.Coade, B.Geneve. Sizing of crack using the alternating current field measurement technique. International Journal of Pressure Vessels and Piping, 79: 549-554
    117 章毓晋. 图像处理和分析. 北京: 清华大学出版社, 1999
    118 蒋奇, 隋青美. 基于波形特征提取的管道腐蚀裂纹量化研究. 中国机械工程, 15 (2): 2074-2077
    119 Raine A, Laenen C. Applications using the alternating current field measurement(ACFM) technique. Using Ropess Access, Insight, 43 (5): 318-321
    120 David. T. Operational Experience with the ACFM Inspection Technique for subsea Weld Inspection. Environmental Engineering, 7 (1): 9-13
    121 Jiannong Zhou, Brian Stephen Wong, Gerald G L Seet. An ACFM Automated Crack Detection System Deployed By An Underwater Roving Vehicle NDT.net, 9 (9)
    122 马风铭, 李国军. BP神经网络在管道缺陷定量识别中的应用. 鞍山师范学院学报, 7 (4): 16-18
    123 刘明亮. 基于BP神经网络输油泄漏检测识别技术研究. 信息技术, 2006 (3): 49-51
    124 张晓光, 李浴, 徐健健. 基于神经网络的焊缝缺陷识别专家系统. 计算机工程, 29 (17): 22-23
    125 戚得虎, 康继昌. BP神经网络的设计. 计算机工程与设计, 19 (2): 48-50
    126 王赟松, 徐洪国. 快速收敛的BP神经网络算法. 吉林大学学报(工学版), 33 (4): 79-84
    127 Noritaka Yusa, Weiying Cheng, Zhenmao Chen, et al. Generalized neural network approach to eddy current inversion for real cracks. NDT & E International, 35: 609-614
    128 Specht D F. The general regression neural network-rediscovered. Neural Networks, 1993 (6): 1033-1034
    129 周建萍, 闫澍旺. 广义回归神经网络预测加强筋土支档结构高度. 岩土力学, 23 (4): 486-490
    130 M. Enokiaono, S. Nagata. Non-destructive testing with magnetic sensor using rotational magnetic flux. J.Magnet. Soc. Jpn, 15 (2): 455-460
    131 刘志平, 康宜华, 杨叔子. 漏磁检测信号的反演. 无损检测, 25 (10): 531-535
    132 殷春浩, 崔亦飞. 电磁场测量原理及应用.江苏: 中国矿业大学出版社, 2003
    133 ICL8038 Manual. Intersil Americas Inc, 2001
    134 陈泽宗, 张锴, 屠忠遂. 单片精密函数发生器ICL8038及其应用. 电子技术应用, 1997 (9): 49-50
    135 刘爱元, 卢建华. 一种基于ICL8038芯片的模拟信号源. 半导体技术, 26 (4): 33-35
    136 雍广虎, 崔文兵, 马良, 等. 集成移相网络分析与实现. 微电子技术, 28 (6): 5-11
    137 王梅香, 黄太军. 远场涡流检测“猪”微弱信号的抗干扰研究. 数据采集与处理, 13 (1): 88-91
    138 AD620. Analog Devies, Inc., 1999
    139 曹茂永, 王霞, 孙农亮. 仪器放大器AD620及其应用. 电测与仪表, 37 (418): 49-52
    140 宋浩威, 杨芃原. 微弱信号检测仪的研制. 分析仪器, 2000 (2): 24-26
    141 PCI2300数据采集卡使用说明书. 北京阿尔泰科贸有限公司
    142 汤宝平. 新一代虚拟仪器--智能控件化虚拟仪器系统的研究: [博士学位论文], 重庆大学, 重庆: 2003
    143 张民, 徐迅. 用LabVIEW和数据采集卡实现信号检测. 北方交通大学学报, 2005; 24 (5): 78-81
    144 Gary W.Jonson, Richard Jennings. LabVIEW图形编程.武嘉澍 and 陆劲昆译 北京: 北京大学出版社, 2002
    145 张凯, 周陬, 郭栋. Labview虚拟仪器工程设计与开发.北京: 国防工业出版社, 2004
    146 任冠众, 宁永兰. 相位测量技术. 电测与仪表, 27 (9): 41-60
    147 马晋国, 罗飞路, 沈国际. 锁定放大器在涡流探伤仪中的应用. 仪表技术, 1999 (4): 32-33
    148 郭训华, 邵世煌. Simulink建模与仿真系统设计方法及应用. 计算机工程, 2005; 31 (22): 127-129
    149 杨乐平, 李海涛, 赵勇, 等. LabVIEW高级程序设计.北京: 清华大学出版社, 2003
    150 张志平, 刘正平. 在LabVIEW中调用MATLAB的一种方法. 计算机与现代化, 2004 (5): 94-95
    151 李伟, 陈国明, 齐玉良. 交流电磁场裂纹检测反演算法研究. 中国机械工程, 2007; 18 (1): 13-15
    152 Wang G Gary. Definition clarification and review on virtual prototyping. Proceeding of the 2001 ASME Design Technical Conference and Computers in Engineering Conference, Pittsburgh, Pennsylvania, 2001
    153 肖文生. 顶部驱动钻井装置动力学分析与虚拟样机技术的研究: [博士学位论文], 华中科技大学, 上海: 2004
    154 Lombardo Joseph S, Mihalak Edward, Osborne Scott R. Collaborative virtual prototyping. JohnsHopkins Apl. Technical Digest, 17 (3): 295-303
    155 陈曦, 王执铨, 吴慧中. 复杂产品虚拟样机技术研究. 计算机仿真, 2005; 22 (12): 132-135
    156 曹雷, 武玉强. MATLAB与C++Builder混合编程的实现. 计算机工程, 2006; 32 (2): 274-276
    157 刑辉, 武玉强. 基于Borland C++ Builder 和MATLAB混合编程的仿真应用. 计算机与现代化, 2005 (10): 54-56
    158 刘军, 沈勇, 王海东. MATLAB与C++Builder结合编程技术分析. 西南民族大学学报, 2006; 32 (1): 202-206
    159 任远, 张洛平. Matlab/Borland C++Builder/SQL Server混合编程及应用. 计算机工程与应用, 2002, 38 (15): 105-106
    160 邸彦强, 李伯虎, 柴旭东, 等. 多学科虚拟样机协同建模与仿真平台及关键技术研究计算机集成制造系统-CIMS, 2005, 11(7): 901-908
    161 王鹏, 李伯虎, 柴旭东, 等. 复杂产品虚拟样机协同建模技术研究. 系统仿真学报, 2004, 16(2): 274-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700