土体-复杂结构耦合系统地震响应数值模拟方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震灾害的频繁发生,给人们带来了极大的生命和财产损失,同时也加剧了结构抗震研究的紧迫性。城市化进程的加快,交通设施的大发展,导致高层建筑、桥梁、隧道等各类工程结构遍地开花,新的工程结构越来越追求大的结构规模,独特的造型特点以及完善的结构功能,这为工程抗震研究带来了极大的挑战。工程结构抗震研究往往存在土体-结构耦合,该问题包含了高度非线性,计算需求量巨大。数值模拟方法日益成为工程结构抗震研究的重要手段,尤其是并行计算技术的应用,为求解超大规模数值计算问题提供了可能。本文立足于工程实际,研究了土体-结构耦合系统的数值模拟方法,主要研究内容包括:
     研究了土体-复杂结构耦合系统的数值建模方法。采用分段的bucket分类搜索和双向对称接触方式实现土体-结构耦合模型。研究了土体分层建模方法,从而使土体模型与地质勘测情况相近,并且依据地震波的传播特征,对土体单元尺寸进行了控制。研究了粘弹性人工边界在半无限土体中的应用,并且对粘弹性边界和土体计算区域进行了分析和验证。
     研究了土体-复杂结构耦合系统的高性能计算方法。土体-复杂结构耦合系统计算规模巨大,模型中存在大量的几何非线性、材料非线性和接触非线性问题,采用显式积分算法,具有计算效率高,适合并行计算等优点。结合上海超算中心曙光5000A高性能计算平台,基于递归二分法,提出了土体-结构耦合均衡分区方法,以土体-建筑结构耦合系统、土体-桥梁结构耦合系统和土体-隧道结构耦合系统作为工程应用实例,证实了新的分区方法具有更好的加速比和并行效率。
     开展了土体-超高层建筑结构耦合系统数值模拟应用。以上海中心大厦结构抗震分析为工程应用对象,根据实际工程图纸,建立了土体-桩筏基础结构-建筑主体结构-建筑幕墙结构的全三维有限元模型。数值模拟选取四条结构响应较大的地震波作为输入激励。重点分析了建筑主体结构和幕墙结构不同地震烈度下的地震响应。为上海中心大厦结构抗震设计及安全评估提供了参考。
     开展了土体-桥梁结构耦合系统数值模拟应用。以闵浦二桥结构抗震分析为工程应用对象,根据实际工程图纸,建立了土体-桥梁结构的全三维有限元模型。数值模拟选取50年超越概率3%的基岩加速度时程作为输入激励,进行了一致激励下和行波激励下结构地震响应计算。重点分析了主塔的变形和内力,以及主梁的变形和应力。为闵浦二桥抗震设计及安全评估提供了参考。
     开展了土体-隧道结构耦合系统数值模拟应用。以上海崇明长江双线隧道结构抗震分析为工程应用对象,根据实际工程图纸,建立了土体-隧道结构的全三维有限元模型。数值模拟选取50年超越概率3%和50年超越概率10%的基岩加速度时程作为输入激励,进行了一致激励下和行波激励下结构地震响应计算。重点分析了普通隧道断面变形和应力,以及联络通道的应力和变形缝张开量。为长江隧道抗震设计及安全评估提供了参考。
Frequent earthquake disasters have brought a great loss of life and property to people, and they also increase the urgency of seismic analysis and research. With the rapid growth of the acceleration of urbanization and development of traffic facilities, large number of super-tall builds, bridges, and tunnels are constructed. These new projects usually require large-scale, unique shape and multi-functions, which imposes a great challenge on the seismic research of projects. Soil-structure interaction is a complex nonlinear problem and needs huge calculation consume, which is often included in engineering structure. Numerical simulation method is widely used in seismic research nowadays, and large-scale numerical simulation is feasible with the application of parallel computing. Based on the engineering practice, this paper studies the numerical simulation method of the soil-structure interaction system. The main contents include:
     Numerical modeling method of the soil-structure interaction system is studied. The soil-structure interaction model is established by the bucket sorting search method based on segment and bi-direction contact manner. The multi-layers modeling method of soil is researched, which makes the soil model more consistent to geological survey data. The maximum element size of soil is controlled by the propagation characteristics of seismic wave in soil. The semi-infinite foundation in the seismic analysis of soil-structures is simulated by artificial visco-elastic boundary, and several numerical tests are performed to verify the boundary.
     High performance computing method of soil-structure interaction system is studied. The soil-structure interaction system, which includes larger number of geometric nonlinear, material nonlinear, and contact nonlinear problems, requires huge computing consume. The explicit integration algorithm, with the advantages of higher computational efficiency and suitable for parallel computing, are used to solved this model. With high-performance computer Dawning 5000A of the Shanghai Supercomputer Center, a soil-structure interaction balanced algorithm for domain decomposition is designed and implemented according to the characteristics of soil-structure interaction model. Three engineering application examples of soil-building system, soil-bridge system and soil-tunnel system confirmed that the partition method has higher speedup and better parallel efficiency.
     Numerical simulation for soil-building interaction system is carried out in the application of Shanghai Center Tower in Shanghai. A 3D refined finite element of soil-pile raft foundation-main structure-curtain wall structure system is established according to engineering drawings. Four seismic accelerograms are selected as inputs in the seismic analysis. The seismic responses of the main structure and curtain wall structure are analyzed under different seismic intensity. The final results provide a reference for the seismic design of Shanghai Center Tower.
     Numerical simulation for soil-bridge interaction system is carried out in the application of Minpu II Bridge in Shanghai. A 3D refined finite element of soil-bridge system is established according to engineering drawings. A bedrock seismic accelerogram with 10% probability of exceedance in 50 years is selected as inputs in the seismic analysis. The seismic responses of the main tower and main truss are analyzed under uniform Excitations and non-uniform Excitations. The final results provide a reference for the seismic design of Minpu II Bridge.
     Numerical simulation for soil-tunnel interaction system is carried out in the application of Shanghai Chongming cross Yangtze tunnel in Shanghai. A 3D refined finite element of soil-tunnel system is established according to engineering drawings. A bedrock seismic accelerograms with 3% and 10% probability of exceedance in 50 years is selected as inputs in the seismic analysis. The seismic responses of lining and connectional passage are analyzed under uniform Excitations and non-uniform Excitations. The final results provide a reference for the seismic design of Shanghai Chongming cross Yangtze tunnel.
引文
[1]胡世德.我国高层、超高层建筑的发展和90年代需要解决的问题[J].建筑技术, 1995, (2): 67-72.
    [2]赵西安.世纪之交的高层建筑[J].建筑结构, 2002, (6): 40-48.
    [3]赵西安.建筑幕墙工程手册[M].北京:中国建筑工业出版社, 2003.
    [4] Lu WS, Huang BF, Cao, WQ. Seismic performance analysis methodology of large span architectural curtain walls [C]. Proceedings of the 7th international conference on tall buildings, Hong kong, China, 2010, pp. 399-408.
    [5]交通运输部规划司.中国公路水路交通运输行业发展统计公报.北京:中华人民共和国交通运输部, 2009.
    [6]王庆波.长大桥梁的技术与发展趋势[J].黑龙江交通科技, 2010, (2): 107-108.
    [7]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997.
    [8]曹志远.结构与介质相互作用理论及其应用[M].南京:河海大学出版社,1993: 243-266.
    [9]宰金眠,宰金璋.高层建筑基础分析与设计-土与结构物共同作用的理论与应用[M].北京:中国建筑工业出版社, 1993.
    [10]姜忻良,黄艳,丁学成.相邻建筑物-桩基-土相互作用[J].土木工程学报, 1995, 28(5): 32-38.
    [11] Carbonari S, Dezi F, Leoni Graziano. Seismic soil-structure interaction in multi-span bridges: Application to a railway bridge [J]. Earthquake Engineering & Structural Dynamics, 2011, 40(11): 1219-1239.
    [12] Ulker-Kaustell M, Karoumi R, Pacoste C. Simplified analysis of the dynamic soil-structure interaction of a portal frame railway bridge [J]. Engineering Structures, 2010, 32(11): 3692-3698.
    [13] Asgarian B, Lesani M. Pile-soil-structure interaction in pushover analysis of jacket offshore platforms using fiber elements [J]. Journal of Constructional Steel Research, 2009, 65(1): 209-218.
    [14] Shamsabadi A, Rollins K.M, Kapuskar M. Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720.
    [15] Kocak S, Mengi Y. A simple soil-structure interaction model [J]. Applied Mathematical Modelling, 2000, 24: 8-9.
    [16]沈聚敏,周锡元,高小旺等.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [17]刘立平.水平地震作用下桩-土-上部结构弹塑性动力相互作用分析[D].重庆大学博士学位论文, 2004.
    [18]赵广宇,徐建新.综述土-结构动力相互作用[J].河北理工大学学报, 2009, 31(2): 104-106.
    [19]林皋.土-结构动力相互作用[J].世界地震工程, 1991(1): 4-21.
    [20]窦立军,杨柏坡,刘光和.土-结构动力相互作用几个实际应用问题[J].世界地震工程, 1999, 15(4): 62-68.
    [21]梁青槐.土-结构动力相互作用数值分析方法的评述[J].北方交通大学学报, 1997, 21(6): 690-694.
    [22]熊建国.土-结构动力相互作用问题的新进展(?) [J].世界地震, 1992, (3): 22-29
    [23]熊建国.土-结构动力相互作用问题的新进展(Ⅱ) [J].世界地震, 1992, (4): 22-29
    [24]肖晓春,林皋,迟世春.桩-土-结构动力相互作用的分析模型与方法[J].世界地震工程, 2002, 18 (4): 123-130.
    [25]尹华伟.土-结构动力相互作用的计算方法研究[D].湖南大学博士学位论文, 2005.
    [26] Wolf J P. Soil-structure interaction analysis in time domain [J]. Englewood Cliffs, NJ: Prentice Hal1, 1988, 11-35.
    [27] Jean W Y, Lin T W, Penzien J. System parameters of soil foundations for time domain dynamic analysis [J]. Earthquake Engineering & Structural Dynamics, 1990, 19(4): 541-553.
    [28] Penzien J, Scheffey C F, Parmelee R A. Seismic analysis of bridges on long piles [J]. Eng. Mech. Div., 1964, 90:223-253.
    [29]王有为,王开顺.建筑物-桩-土相互作用地震反应分析的研究[J].建筑结构学报,1985, 6(5): 64-73.
    [30] J.P. Wolf,吴世明.土-结构动力相互作用[M].北京:地震出版社, 1989.
    [31] M.N. Aydmoglu. Consistent Formulation of Direct and Substructure Methods in nonlinear Soil-Structure Interaction [J]. Soil Dynamics and Earthquake Engineering, 1993, 12: 403-410.
    [32]张楚汉.结构-地基动力相互作用.结构与介质相互作用理论及其应用[M].南京:河海大学出版社, 1993.
    [33]宋二祥.无限地基数值模拟的传输边界[J].工程力学, 1997: 613-619.
    [34]廖振鹏.近场波动的数值模拟[J].力学进展, 1997, 27(2): 193-216.
    [35] J.P. Wolf, G.R. Darbre, Non-linear soil-structure-interaction analysis based on the boundary-element method in time domain with application to embedded foundation [J]. Earthquake engineering &structure dynamics, 1986, 14: 83-101.
    [36]陈清军,徐植信.层状土介质中群桩及其上部结构体系对任意入射地震波的响应[J].地震工程与工程振动, 1994, 14(1): 36-44.
    [37] Bettess P, Zienkiewica O.C. Diffraction and Refraction of Surface Waves Using Finite and Infinite elements [J]. Int. J. for Num.Meth. in eng, 1977, 11: 1271-1290.
    [38]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报, 1986, (3): 51-64.
    [39] Matsuda T, Tomura H, Hayashi M. Shear Stack Tests on Soil-Structure Interaction [C]. Proceedings of the Tenth World Conference on Earthquake Engineering, MADRID, SPAIN,1992.
    [40] Kagawa T, Taji Y, Sato M. Soil-pile-structure interaction in liquefying sand from large-scale shaking-table tests and centrifuge tests [C]. Session on Seismic Analysis and Design for Soil-Pile-Structure Interactions at the National Convention of the American-Society-of-Civil-Engineers, MINNEAPOLIS, MN, 1997.
    [41] Sugawara Y, Uetake T, Kobayashi T. Forced vibration test of the Hualien large scale soil structure interaction model [J]. Nuclear Engineering and Design, 1997, 172(3): 273-280.
    [42] Konagai K, Mikami A, Nogami T. Simulation of soil-structure interaction effects in shaking table tests [J]. Geotechnical Earthquake Engineering and Solid Dynamics, 1998, 75: 482-493.
    [43] Helwany SMB, Chowdhury A. Laboratory impulse tests for soil-underground structure interactions [J]. Journal of Testing and Evaluation, 2004, 32(4): 262-273.
    [44] Matsui T, Chung JS, Michel JL. Centrifuge tests on some soil-structure interaction problems [C]. Proceedings of the Fourteenth International Offshore and Polar Engineering Conference, Toulon, FRANCE, 2004.
    [45] Hdajina, A H, Tseng, W S, Chang, C Y, et al.罗东(台湾)土-结构相互作用大比例模型试验的启示(I) [J].谢君斐译.世界地震工程, 1993, 9(3): 41- 52.
    [46] Hdajina, A H, Tseng, W S, Chang, C Y, et al.罗东(台湾)土一结构相互作用大比例模型试验的启示(Ⅱ) [J].谢君斐译.世界地震工程,1993, 9(4): 49-59.
    [47] Jun-Seong C, Chung-Bang Y, Jae-Min K. Earthquake response analysis of the Hualien soil-structure interaction system based on updated soil properties using forced vibration test data [J]. Earthquake Engineering and Structure Dynamics, 2001, 30(l): l-26.
    [48]徐炳伟,姜忻良.大型土-桩-复杂结构振动台模型试验研究[J].天津大学学报, 2010, 43(10): 912-918.
    [49] Matthees W, Magiera G. A sensitivity study of seismic structure-soil-structure interaction problems for nuclear power plants [J]. Nuclear Engineering and Design, 1982, 73(3): 342-363.
    [50] Tang H.T., Tang Y.K., Stepp J.C. Lotung large-scale seismic experiment and soil-structure interaction method validation [J]. Nuclear Engineering and Design, 1990, 123(3): 397-412.
    [51] Hashash YMA, Tseng WS, Krimotat A. Seismic soil-structure interaction analysis for immersed tube tunnels retrofit [J]. Geotechnical Earthquake Engineering and Solid Dynamics, 1998, 75: 1380-1391.
    [52] Spyrakos CC, Xu CJ. Seismic soil-structure interaction of massive flexible strip-foundations embedded in layered soils by hybrid BEM-FEM [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(5): 383-389.
    [53] Celebi Erkan, G. A. Necmettin. An efficient seismic analysis procedure for torsionally coupled multistory buildings including soil-structure interaction [J]. Turkish Journal of Engineering and Environmental Sciences, 2005, 29(3): 143-157.
    [54] Spyrakos C.C., Koutromanos I.A., Maniatakis Ch. A. Seismic response of base-isolatedbuildings including soil-structure interaction [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(4): 658-668.
    [55] Dutta SC, Bhattacharya K, Roy R. Response of low-rise buildings under seismic ground excitation incorporating soil-structure interaction [J]. Soil Dynamics and Earthquake Engineering, 2004, 24(12): 893-914.
    [56] Shakib H, Fuladgar A. Dynamic soil-structure interaction effects on the seismic response of asymmetric buildings [J]. Soil Dynamics and Earthquake Engineering, 2004, 24(5): 379-388.
    [57] Stewart JP, Fenves GL, Seed RB. Seismic soil-structure interaction in buildings. I: Analytical methods [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(1): 26-37.
    [58] Spyrakos C.C., Koutromanos I.A., Maniatakis Ch. A. Seismic response of base-isolated buildings including soil-structure interaction [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(4): 658-668.
    [59]王有为,王开顺.建筑物-桩-土相互作用地震反应分析的研究[J].建筑结构学报, 1985, (5): 64-73.
    [60]刘季,维明.土-高层建筑-高耸结构相互作用地震反应分析[J].哈尔滨建筑工程学院学报, 1988, 21(4): 11-28.
    [61]林皋,来茂田,陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报, 1993, 26(4): 1-13.
    [62] A. Kiefer, P. Leger. Semi-continuum seismic analysis of soil–building systems [J]. Engineering Structures, 1999, 21: 332-340.
    [63] T. Inabaa, H. Dohia, K. Okutaa. Nonlinear response of surface soil and NTT building due to soil-tructure interaction during the 1995 Hyogo-ken Nanbu (Kobe) earthquake [J]. Soil Dynamics and Earthquake Engineering, 2000, 20: 289-300.
    [64]熊仲明,赵鸿铁.高层结构-桩-土共同作用的地震反应分析[J].世界地震工程, 2002, 18(2): 99-104.
    [65]熊仲明,赵鸿铁,俞茂宏.高层建筑上部结构桩-土共同作用下随机地震响应分析[J]. 2003, 22(2): 60-62.
    [66]李培振,吕西林.考虑土-结构相互作用的高层建筑抗震分析[J].地震工程与工程振动, 2004, 24(3): 130-138.
    [67] L.A.Padron, J.J.Aznarez, O.Maeso. Dynamic structure-soil-structure interaction between nearby piled buildings under seismic excitation by BEM-FEM model[J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 1084-1096.
    [68] C.C. Spyrakos, I.A.Koutromanos, Ch.A.Maniatakis. Seismic response of base-isolated buildings including soil-structure interaction [J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 658-668.
    [69] C.C. Spyrakos, Ch.A.Maniatakis, I.A.Koutromanos. Soil-structure interaction effects on base-isolated buildings founded on soil stratum [J]. Engineering Structures, 2009, 31: 729-737.
    [70]徐静,李宏男,李钢.考虑桩-土-结构动力相互作用的输电塔地震反应分析[J]. 2009, 26(9): 24-29.
    [71]张令心,刘洁平,石磊.高层建筑土-结构相互作用地震反应分析方法及应用[J].北京工业大学学报, 2010, 36(1): 25-33.
    [72] Shizhu Tian, Changming Zhang, Weibing Luo. Analyzing the Influence of Pile Soil Structure Interaction on Seismic Response of Cable-Stayed Bridge Tower [J]. Advanced Materials Research, 2011, 168: 2580-2589.
    [73] Vasheghani-Farahani Reza, Zhao Qiuhong, Burdette Edwin G. Seismic Analysis of Integral Abutment Bridge in Tennessee, Including Soil-Structure Interaction [J]. Transportation Research Record, 2010, 22(1): 70-79.
    [74] Ucak Alper, Tsopelas Panos. Effect of soil-structure interaction on seismic isolated bridges [J]. Journal of Structural Engineering-ASCE, 2008, 134(7): 1154-1164.
    [75] M.T.A. Chaudhary, M. Abe, Y. Fujino. Identification of soil–structure interaction effect in base-isolated bridges from earthquake records [J]. Soil Dynamics and Earthquake Engineering, 2001, (21): 713-725.
    [76] Shamsabadi Anoosh, Rollins Kyle M, Kapuskar Mike. Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720.
    [77] Jingzhe Zheng, Tetsuo Takeda. Effects of soil-structure interaction on seismic response of PC cable-stayed bridge [J]. Soil Dynamics and Earthquake Engineering, 1995, (14): 427-437.
    [78] R.A. Dameron, V.P. Sobash, I.P. Lam. Nonlinear seismic analysis of bridge structures. foundation-soil representation and ground motion input [J]. Computers and Structures, 1997, 64(5): 1251-1269.
    [79] A.S. Al-Homoud, R.V. Whitman. Seismic analysis and design of rigid bridge abutments considering rotation and sliding incorporating non-linear soil behavior [J]. Soil Dynamics and Earthquake Engineering, 1999, 18(4): 247-277.
    [80]孙利民,张晨南,潘龙等.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报, 2002, 30(4): 409-415.
    [81]王浩,杨玉冬,李爱群等.土_桩_结构相互作用对大跨度CFST拱桥地震反应的影响[J].东南大学学报, 2005, 35(3): 432-437.
    [82]陈清军,姜文辉,李哲明.桩-土接触效应及对桥梁结构地震反应的影响[J].力学季刊, 2005, 26(4): 609-613.
    [83] Ahmed Elgamal, Linjun Yan, Zhaohui Yang et al. Three-Dimensional Seismic Response of Humboldt Bay Bridge-Foundation-Ground System [J]. Journal of Structural Engineering, 2008, 134(7): 1165-1176.
    [84]鲍宸民,丁海平,李纬.桥梁-桩-土相互作用三维地震反应分析方法[J]. 2008, 24(3): 131-134.
    [85]李纬,丁海平.考虑土-结构相互作用的大跨度斜拉桥非线性地震反应分析[J]. 2009, 29(5): 555-560.
    [86] J.M. Mayoral, Y. Alberto, M.J. Mendoza. Seismic response of an urban bridge-support system in soft clay [J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 925-938.
    [87]李悦,宋波,川岛一彦.考虑土、上部结构和桥台相互作用的桥台抗震性能研究[J].岩石力学与工程学报, 2009, 28(6): 1162-1168.
    [88] Molins Climent, Arnau Oriol. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 1: Test configuration and execution [J]. Tunnelling and Underground Space Technology, 2011, 26(6): 764-777.
    [89] Idinger Gregor, Aklik Pelin, Wu Wei. Centrifuge model test on the face stability of shallow tunnel [C]. International Workshop on Multiscale and Multiphysics Processes in Geomechanics, Stanford Univ, Stanford, CA, 2010.
    [90] He Ben-guo, Zhu Yong-quan, Ye Chao-liang. Model test for dynamic construction mechanical effect of large-span loess tunnel [J]. Journal of Shanghai Jiaotong University, 2011, 16(1): 112-117.
    [91] Canetta G, Cavagna B, Nova R. Experimental and numerical tests on the excavation of a railway tunnel in grouted soil in Milan [C]. International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, LONDON, 1996.
    [92] Lee Yong-Joo, Bassett Richard H. Influence zones for 2D pile-soil-tunnelling interaction based on model test and numerical analysis [J], Tunnelling and Underground Space Technology, 2007, 22(3): 325-342.
    [93]杨辉,陆建飞,王建华等.黄浦江过江隧道的动力抗震分析[J].上海交通大学学报, 2001, 35(10): 1512-1516.
    [94]祝彦知,冯紫良,方志.地震动下考虑各向异性土体-盾构隧道数值模拟[J].岩土力学, 2005, 26(5): 710-716.
    [95]陈健云,刘金云.地震作用下输水隧道的流-固耦合分析[J].岩土力学, 2006, 27(7): 1077-1081.
    [96] L. Anastasopoulos, N. Gerolymos, V. Drosos. Nonlinear Response of Deep Immersed Tunnel to Strong Seismic Shaking [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1067-1090.
    [97]耿萍,何川,晏启祥.盾构隧道纵向地震响应分析[J].西南交通大学学报, 2007, 42(3): 283-287.
    [98] Duhee Park, Myung Sagong, D.Y. Kwak. Simulation of tunnel response under spatially varying ground motion [J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 1417-1424.
    [99]王国波,马险峰,杨林德.软土地铁车站结构及隧道的三维地震响应分析[J].岩土力学, 2009, 30(8):
    [100] G.D. Hatzigeorgiou, D.E. Beskos. Soil-structure interaction effects on seismic inelastic analysisof 3-D tunnels [J]. Soil Dynamics and Earthquake Engineering, 2010, 30: 851-861.
    [101] I. Shahrour, F. Khoshnoudian, M. Sadek. Elastoplastic analysis of the seismic response of tunnels in soft soils [J]. Tunnelling and Underground Space Technology, 25: 478-482.
    [102]钟红,林皋.高拱坝地震损伤破坏的并行计算研究[J].计算力学学报, 2010, 27(2): 218-224.
    [103] Chen, GX, Chen, L, Jing, LP. Comparison of explicit and implicit finite element methods with parallel computing for seismic response analysis of subway underground structure [J]. Geomechanics & Geotechnics, 2011, (1): 1021-1029.
    [104]阚圣哲,陈国兴,陈磊.基于Abaqus软件的并行计算集群平台构建与优化方法[J].防灾减灾工程学报, 2009, 29(6): 644-651.
    [105] Guo, Y, Jin, X, Ding, J. Parallel numerical simulation with domain decomposition for seismic response analysis of shield tunnel [J]. Advances in Engineering Software, 2006, 37(7): 450-456.
    [106] Guo, Y, Jin, X, Ding, J. Parallel computing for seismic response analysis of immersed tunnel with domain decomposition [J]. Engineering Computations, 2007, 24(1): 182-199.
    [107] Yamada, T. Parallel Distributed Seismic Analysis of an Assembled Nuclear Power Plant [C]. The 1st International Conference on Parallel, Distributed and Grid Computing for Engineering, Pollack Mihaly Fac Engn, Pecs, HUNGARY, 2009.
    [108]姜忻良,丁学成.桩土物理模型及结构-桩-土相互作用[J].振动工程学报, 1993, 6(2): 143-152.
    [109]贺广零.考虑土_结构相互作用的风力发电高塔系统地震动力响应分析[J].机械工程学报, 2009, 45(7): 87-94.
    [110] Hallquist J.O. A numerical treatment of sliding interface and impact [C ]. In: K.C. Park and D.K. Gartling (eds.) Computational techniques for interface problems, ASME, New York, 1978.
    [111] Haug E. Contact-impact problems for crash [C]. Proceedings of second international symposium of plasticity, Nagoya, Japan, 1981.
    [112]赵隆茂.结构动力响应分析中接触-碰撞界面算法研究[J].大连理工大学学报, 2001, 32(5): 459-462.
    [113] Hallquist J O. LS-DYNA Theory Manual [M]. California: Livermore Software Technology Corporation, 2006.
    [114] Zhu Changming. A finite element-mathematical programming method for elastoplastic contact problems with friction [J]. Finite Element in Analysis and Design, 1995, (20): 273-282.
    [115]曾丁,黄文彬,华云龙.库仑摩擦接触问题的位移-力混合接触单元[J].中国农业大学学报, 1998, 3(2): 23-28.
    [116] SPENCER J W. Stress relaxation at low frequencies in fluid-saturated rock attenuation and modulus dispersion [J]. Journal of Geophysical Research, 1981, 86(B3): 1803- 812.
    [117] NUR A, JONES T D. Velocity and attenuation in sandstone at elevated temperatures and pressures [J]. Geophysical Research Letters, 1983, 10(2): 140-143.
    [118] Peets T,Randruut M,Englbrecht J. On modeling dispersion in microstructured solids [J]. Wave Motion, 2008, 45(4): 471-480.
    [119]刘永贵,徐松林,席道瑛.节理玄武岩体弹性波频散效应研究[J].岩石力学与工程学报, 2010, 29(5): 3314-3320.
    [120]杜修力.工程波动理论与方法[M].北京:科学出版社, 2009.
    [121]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社, 2002.
    [122] Zerwer, G. Cascante, J. Hutchinson. Parameter Estimation in Finite Element Simulations of Rayleigh Waves [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 118-126.
    [123]徐志英.岩石力学[M].北京:水利电力出版社, 1986.
    [124] Krajcinovic D, Silva M A G. Statistical aspects of the continuous damage theory [J]. International Journal of Solids Structures, 1982, 18(7): 551-516.
    [125]刘晶波,李彬.三维黏弹性静-动力统一人工边界[J].中国科学(E), 2005, 35(9): 966-980.
    [126]何建涛,马怀发,张伯艳.黏弹性人工边界地震动输入方法及实现[J]. 2010, 41(8): 960-969.
    [127]谷音,刘晶波,杜义欣.三维一致粘弹性人工边界及等效粘弹性边界单元[J]. 2007, 24(12): 31-37.
    [128] Walter E.H., James A.S., Frederick J.S. Development and Evaluation of Solution Procedures for Geometrically Nonlinear Structural Analysis [J]. AAIA Journal, 1997, 10(3): 264-272.
    [129]钟万勰,刘元芳,纪峥.斜拉桥施工中的张拉控制和索力调整.土木工程学报, 1992, 25(3): 9-15.
    [130]金明.非线性连续介质力学[M].北京:北方交通大学出版社, 2005.
    [131] K. Mattiasson, A. Samuelsson. Total and Updated Lagrangian forms of the Co-rotational Finite Element Formulation in Geometrically and Material Nonlinear Analysis [J]. Numerical Methods for Non-linear problems, 1984, 6: 316-325.
    [132] K. Mattiasson, A. Bengtsson, A. Samuelsson. On the Accuracy and Efficiency of Numerical Algorithms for Geometrically Nonlinear Structural Analysis [C]. Finite Element Methods for Nonlinear Problems, Berlin, 1986.
    [133]张武功.节理岩体多层弹粘塑性模型的隐式积分算法[J].岩土工程学报, 1996, (6): 42-54.
    [134] Chiang K.N., Fulton R.E. Structural dynamics methods for concurrent processing computers. Comput Struct, 1990, 36 (6): 1031-1037.
    [135]程建钢,姚振汉,李明瑞.结构动力分析显式积分并行算法与实现[J].清华大学学报, 1996, 36: 80-85.
    [136]张庆礼,王晓梅,殷绍唐.高阶高斯积分节点的高精度数值计算[J].中国工程科学, 2008, 10(2): 35-40.
    [137] Mackerle J. Parallel finite element and boundary element analysis: theory and applications: A bibliography (1997-1999). Finite elements in analysis and design, 2000, 35:283-296.
    [138] Danielson K.T., Namburu R.R. Nonlinear dynamic finite element analysis on parallel computersusing Fortran90 and MPI. Advances in Engineering Software, 1998, 29(3):179-186.
    [139] Topping B, Sziveri J, Bahreinejad A. Parallel processing, neural networks and genetic algorithms. Advances in engineering software, 1998, 29(10):763-786.
    [140]曾宇,王洁,孙凝晖.曙光5000A高效能计算节点的设计与实现[J].计算机工程, 2009, 3: 17-22.
    [141]王婷,孙相征,张云泉.曙光5000A天体大规模数值模拟软件性能测试[J].西安交通大学学报, 2009, 43(10): 71-75.
    [142] C Farhat. A simple and efficient automatic FEM domain decomposer. Computers and structures, 1988,28(5): 579-602.
    [143] S.T.Barnard, H.S. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Tech Rep. RNR-92-033, NASA Ames Research Center, Moffett Field, CA, April 1993.
    [144]江小松,刘建军. MPI环境下并行程序准确性验证及效率分析[J].航空动力学报, 2007, (12): 2043-2049.
    [145]丁洁民,巢斯,赵昕.上海中心大厦结构分析中若干关键问题[J].建筑结构学报, 2010, 31(6): 122-131.
    [146]陆天天,赵昕,丁洁民.上海中心大厦结构整体稳定性分析及巨型柱计算长度研究[J].建筑结构学报, 2011, 32(7): 8-14.
    [147]李承铭.钢-钢筋混凝土杆系结构三维地震作用下弹塑性时程分析[D].同济大学博士学位论文, 2007.
    [148] GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001.
    [149]闵浦二桥新建工程施工图设计计算报告.上海市城市建设设计研究院, 2007.
    [150]阎兴非,彭俊,周良.公轨两用斜拉桥-闵浦二桥总体设计分析.中国市政工程. 2008.
    [151]龚士良,吴继红.上海长江隧桥工程地质灾害危险性评价与防治对策[J].长江科学院院报, 2008, 25(6): 62-66.
    [152]龚士良,李采.上海长江隧桥工程环境地质问题与技术对策[J].水文地质工程地质, 2008, (3): 81-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700