深基坑支护结构变形对周围地表沉降的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着软土地区城市建设的迅速发展,基坑工程常处于密集的既有建(构)筑物附近,基坑施工受到更加严格的环境制约。预测基坑施工支护结构的变形及其对周围地表沉降的影响,对于软土地区深基坑的设计与施工具有重要指导意义。本文结合南京地铁十号线深基坑工程实践,采用理论分析、实测分析和数值模拟等方法,对深基坑开挖引起的支护结构变形对周围地表沉降的影响进行了研究,主要工作和成果如下:
     (1)将围护结构地下连续墙数值模拟计算结果和现场监测结果进行了对比分析,墙身最大水平位移、地表沉降、连续墙及地表沉降曲线等模拟结果和实测基本一致,说明模拟结果是可行的。
     (2)通过墙体水平位移面积Aq和墙后周围地表沉降面积Ad的关系研究,发现Ad/Aq因工况不同,其比值也不同,并且随着开挖深度的增加,比值是减小的,说明Ad的增速是小于Aq的,同时也反映周围地表沉降具有滞后性;通过各工况定量分析,Ad/Aq大致位于0.4到0.6之间。
     (3)基坑开挖对墙后地表沉降的的影响范围主要分布在距基坑边沿的1.5倍最终开挖深度,主要影响区在d/H为0~1.0之间,次要影响区在d/H为1.0~1.5之间;沉降最大值出现在d/H比值为0.5区域。
     (4)从设计因子、施工因子和土的物理性质因子三个角度研究了影响支护结构变形的各因子对周围地表沉降的敏感性。
     ①设计因子:周围地表垂直沉降随着地下连续墙刚度的增加,沉降值逐渐减小,但当墙体刚度增加到一定程度时,再通过增加墙体刚度来减小地表沉降作用不明显;随着围护结构地下连续墙入土深度的增加,地表沉降减小,但在满足嵌固深度达到基坑稳定的要求下,再增加入土深度对减少周围地表沉降不是很明显。水平支撑的刚度和间距或者数量对抑制地下连续墙变形,减小周围地表沉降有较大影响;钢支撑施加设计预加轴力的100%和75%效果差不多,地表沉降只减小了4.8%。
     ②施工因子:基坑开挖后支撑时间或者暴露时间对周围地表沉降影响较大,2天后支撑比立即支撑地表沉降最大值大1.5mm,5天后支撑比立即支撑大3.9mm,并且是一个加速沉降的态势。在基坑“先撑后挖”和“先挖后撑”的施工方法对比中,前者相比后者,沉降最大值减小约7.1%。地面超载对墙后周围地表沉降是直接和较为敏感的,墙后地表沉降随地面超载值的加大而增大,沉降曲线凹形逐渐加深,地表沉降最大值逐渐增大。
     ③土的物理性质因子:土体的弹性模量对墙后周围地表沉降的影响是显著的,增加土体的模量,可以有效减小地表沉降,控制基坑的变形。当土体的内摩擦角和粘聚力增大时,墙后地表沉降都是减小的,且内摩擦角对地表沉降的影响相比粘聚力稍微大一点。
Deep excavations with complicated environment conditions have sprung up during urbanunderground space developing process;these deep excavations are usually surrounded bybuildings and utilities. More severe restrictions are required for these deep excavations. Toensure safety of those adjacent structures and the influence of the ground surface settlementaround of deformation of the supporting structure are needed to be predicted in advance.This isvery important guiding significance about deep foundation pit design and construction in soft soilarea.This thesis carried out researches on the influence of the ground surface settlement aroundof deformation of the supporting structure about deep foundation pit engineering of metro lineNo.10in Nanjing,by means of theoretical analysis,measurement analysis and numericalsimulation.The main work and achievements are as following:
     (1)According to a contrast and analysis,the simulation results are in accord with measuredresults about the maximum horizontal displacement of wall body,surface subsidence,diaphramwall,and the ground surface settlement curve.Thus the simulation results is feasible.
     (2)Through the relation research between the horizontal displacement area of wall body ofAqand the ground surface settlement area of Ad, the ratio of Ad/Aqwas different with differentworking conditions.With the increase of excavation depth,the ratio became smaller.At the sametime,it also reflected the surface settlement around with a time lag.The ratio of Ad/Aqlocated at0.4to0.6roughly by quantitative analysis of the conditions.
     (3) The influence scope of the surface subsidence mainly distributed in the edge of1.5timeseventually excavation depth.The ratio of d/H between0~1.0was the main effect area;The ratioof d/H between1.0~1.5was secondary influence area.About the ratio of0.5of the d/Happeared the maximum settlement.
     (4)The affection factors of the deformation of the supporting structure were supplied to thesensitivity of surface subsidence around,including factors of design,construction and soilphysical properties.
     1)Design factors: With the increasing stiffness of underground continuous wall, thesedimentation value of the vertical surface subsidence around was decreasing, but when the wallrigidity increased to certain degree, increasing wall rigidity to reduce the surface settlement didnot play a significant role.As the buried depth of underground continuous wall increased, theground surface settlement reduced, but meeting the stability of foundation pit request in theembedded depth of solid, adding depth to reduce the ground surface settlement was not obvious.The stiffness and spacing or quantity of the level of support had a great influence on controlingthe deformation of underground continuous wall and reducing the surface settlement around. Compared with the effect of100%and75%design axial force of steel support, the groundsurface settlement was only reduced by4.8%.
     2)Construction factors: The support time or exposure time after the foundation pitexcavation had a great influence on the ground surface settlement.Compared with immediatesupport,the maximum ground surface settlement of the2days later support inceeased1.5mm,5days later,increasing3.9mm, then it was a trend to speed up.Between the two constructionmethods of“no excavation without support” and “no support without excavation”,themaximum ground surface settlement of the former reduced about7.1%.Overloading effected theground surface settlement directlyand sensitively.with increasing overloading value,themaximum surface subsidence also increased gradually.
     3)Physical properties of soil factors: The modulus of elasticity of soil to effect of surfacesubsidence was very significant.Increasing the soil modulus could effectively reduce the surfacesettlement and control the deformation of foundation pit.When the internal friction angle of soiland the cohesion increased, the surface subsidence reduced.And compared to the cohesion, theinternal friction angle had more effection on the ground surface settlement.
引文
[1]王卫东,王建华.深基坑支护结构与主体结构相结合的设计、分析与实例[M].北京:中国建筑工业出版社,2007
    [2]唐业清,李启民,崔江余.基坑工程事故分析与处理[M].北京:中国建筑工业出版社,1999
    [3]刘国斌,刘卫东.基坑工程手册(第二版)[M].北京:中国建筑工业出版社,2009
    [4]龚晓南.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998
    [5]Mo,Y.L.&Hwang,J.M.Seismic Response of Reinforced Concrete Buildings Close to Deep Excavation,Computer Methods in Applied Mechanics and Engineering,1997,145:117-130
    [6]Boston.Behavior of Diaphragm Walls in Clay Prior to Collapse[J].Geote-chinique,1988,38(2)
    [7]Abdulaziz,I.&Mana,G.&Wayne Clough.Predicition of Movement for Braced Cut in Clay,ASCE,1981,107(6)
    [8]Hashash,Ground Movement Prediction for Deep Excavation in Soft Clay[J]. Journal of Geotechnical Engineering,1996,122(6)
    [9]Paice,G.M.&Griffiths,D.B.&Fenton, G.A.Finite Element Modeling of Settlements on Spatially Random Soil[J].Journal of Geotechnical Engineering,1996,9:777-779
    [10]杨林德,仇圣华,杨志锡.基坑支护位移量及其稳定性预测[J].岩土力学,2001,22(3):267-270
    [11]胡孔国,吴京,宋启根.深基坑开挖和支护全过程分析的弹塑性有限元法[J].建筑结构,1999,3:34-36
    [12]黄宏伟,支国华.基坑围护结构系统的性态及其状态变量[J].岩土力学,1997,18(3):7-12
    [13]Huang Hong wei.Reliability Predietion Around Openings in Roek Engineering[J].Safety and Environmental Issues in Roek Engineering,EUROCK’93,A.A.Baklema publisher,1993,129-134
    [14]俞建林,龚晓南.深基坑工程的空间性状分析[J].岩土工程学报,1999,21(1):21-25
    [15]张启辉,赵锡宏.基坑开挖引起变形的时效性回归分析[J].岩土工程师,1999,2:1-4
    [16]陈灿寿,张尚根,余有山.深基坑支护结构变形计算[J].岩石力学与工程学报,2004,23(12):2065-2068
    [17]姜忻良,徐炳伟.狭长基坑中地下连续墙的简化计算模型[J].工程力学,2009,26(增刊):33-36
    [18]杨光华.深基坑支护结构的实用计算方法及其应用[J].岩土力学,2004,25(12):1885-1896
    [19]Meinzer OE.Outline of ground-water hydrology with definitions[J].US Geological Survey,1923,(Supp.):494-571
    [20]Lofgren BE.Analysis of stresses causing land subsidence[J].US Geological survey ProfessionalPaper,1968,(600-B):219-225
    [21]Terzaghi K.Settlement and consolidation of clay[J].Erdbaummechanic,1925,95(3):874-878
    [22]Biot,MA.General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12:155-164
    [23]Peck R B.Deep excavation and tunneling in soft ground[C]//Proceedings of the7thin ternationalconference on soilmechanics and foundation engineering.Mexico City: State-of-the-Art-Volume,1969:225-290
    [24]JEBow1es.Foundation Ana1ysis and Design(3th).MeGrwa-HillBook CoPffiany.1982:516-544
    [25]唐孟雄,赵锡宏.深基坑周围地表沉降及变形分析[J].建筑科学,1996,(4):31-35
    [26]张尚根,陈志龙,曹继勇.深基坑周围地表沉降分析[J].岩土工程技术.1999,(4):7-9
    [27]孙钧.市区基坑开挖施工的环境土工问题[J].地下空间,1999,19(4):257-265
    [28]陈华根,董荣鑫.基坑施工时地面沉降的分析与估算[J].长春科技大学学报,1999,29(2):164-166
    [29]刘长文,陈怿凡,李旭东.考虑空间效应的深基坑周围地表沉降分析[J].辽宁工程技术大学学报(自然科学版),1999,19(2):145-147
    [30]王利民,曾马荪,陈耀光.深基坑工程周围建筑及围护结构的监测分析[J].建筑科学,2000,16(2):35-37
    [31]丁仁锦.深基坑施工对邻近建筑影响的分析及对策[J].福建建设科技,2001,(1):4-5
    [32]Abdulaziz I,Mana G,Wayne Clough.Prediction of movement for braced cuts in clay[J].TheAmerican Sociery of Civil Enigineerings,1981,107(GT6):759-777
    [33]刘小丽,周贺,张占民.软土深基坑开挖地表沉降估算方法的分析[J].岩土力学,2011,32(S1):90-94
    [34]刘兴旺,益德清,施祖员等.基坑开挖地表沉陷理论分析[J].土木工程学报,2000,33(4):51-55
    [35]刘忠昌.深基坑开挖对邻近地下管线位移影响的数值模拟分析[D].北京工业大学硕士学位论文,2005
    [36]卢俊义,王成军,董光辉.深基坑工程引起的地面沉降研究[J].低温建筑技术,2009,(5):84-86
    [37]丁勇春.软土地区深基坑施工引起的变形及控制研究[D].上海交通大学博士学位论文,2009
    [38]刘均红.西安地铁车站深基坑变形规律现场监测与FLAC模拟研究[D].西安科技大学硕士学位论文,2010
    [39]庄海洋,吴祥祖,瞿英军.深软场地地铁车站深基坑开挖变形实测分析[J].铁道工程学报,2011,5(152):86-90
    [40]张昆.深基坑施工引起周围土体位移监测分析[D].西南交通大学硕士学位论文,2005
    [41]贺俊,杨平,张婷.复杂条件下深基坑施工变形控制及周边环境监测分析[J].铁道建筑,2010,7:96-99
    [42]杨敏,卢俊义.上海地区深基坑周围地面沉降特点[J].同济大学学报,2010,38(2):194-199
    [43]张永进.考虑土体性质影响的基坑地面沉降变形计算[J].建筑结构,2000,30(11):32-33
    [44]金小荣,俞建霖,祝晓晨等.基坑降水引起周围土体沉降性状分析[J].岩土力学,2005,26(10):1575-1581
    [45]周沈华,杨有海,王随新.深基坑开挖对周边地表沉降影响因素分析[J].土工基础,2008,22(2):194-199
    [46]贺猛,苏万益,李志萍.基坑降水引起的地表沉降分析及其工程预防措施研究[D].华北水利水电学院硕士学位论文,2007
    [47]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008
    [48]吴忠诚,汤连生,廖志强等.深基坑复合土钉墙支护FLAC3D模拟及大型现场原位测试研究[J].岩土工程学报,2006,28:1460-1465
    [49]丁勇春,王建华,陈锦剑.接触面单元计算方法探讨[J].岩土力学,2006,27(S1):211-213
    [50]吴静.深基坑超前钢管桩复合预应力锚杆支护数值模拟研究[D].中国地质大学硕士学位论文,2009
    [51]Potyondy,J.G.Skin friction between various soils and construction materials[J].Geotechnique,1961,11(4):339-353
    [52]Acer,Y.B.,Durgunoglu,H.T.,and Tumay,M.T.Interface properties of sands[J].Geotech.engrg.div.,1982,108(4):648-654
    [53]刘兴旺,益德清,施祖元等.基坑开挖地表沉陷理论分析[J].土木工程学报,2000,33(4):51-59
    [54]俞建霖,赵荣欣,龚晓南.软土地基基坑开挖地表沉降量的数值研究[J].浙江大学学报,1998,32(1):95-101
    [55]王保健.围护结构变形模式对土压力和坑周地表沉降的影响[D]同济大学硕士学位论文,2007
    [56]王翔.考虑渗流-应力藕合作用的基坑变形研究[D].河海大学硕士学位论文,2007
    [57]薛丽赢.土钉支护结构的侧向变形对基坑周边环境影响的实验研究[D].中国建筑科学研究院硕士学位论文,2005
    [58]David M. Potts,Zdravkovic L. Finite element analysis in Thomas Telford,1999
    [59]乔瑞龙.开挖过程中深基坑支护结构变形研究[D].西安建筑科技大学硕士学位论文,2011
    [60]高伟.基坑分步开挖及支护结构变形影响因素的有限元分析[D].河北工业大学硕士学位论文,2006
    [61]杜平.深大基坑混凝土咬合桩支护结构工作性状的研究[D].南京林业大学硕士学位论文,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700