蓄热式循环瓦斯管式加热炉研发及热工特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓄热式循环瓦斯管式加热炉研发是东北大学热能与环境研究所张卫军老师课题组承担的循环瓦斯加热新工艺中的重要组成部分,是影响吉林桦甸油页岩综合开发利用项目中油页岩干馏工艺成败的关键热工设备。
     研发高效、安全的循环瓦斯加热技术成为油页岩干馏工艺的客观要求。采用石化行业中的管式加热炉可将瓦斯加热到工艺要求的温度,但是以高昂的设备投资、大燃料消耗量、低换热效率为代价的。蓄热式燃烧作为一种清洁、高效的燃烧技术,与管式加热炉的适用性值得探讨。
     本文阐述了管式加热炉热工原理和蓄热燃烧技术的优势,并论证了蓄热式燃烧技术应用于纯对流式管式加热炉的可行性。根据传热学原理并结合蓄热式管式加热炉的热工、结构特点,本文分别提出了炉膛、蓄热室各热工参数的计算方法,以此来指导结构的设计。蓄热式管式加热炉的设计结构合理解决了炉子管线复杂、炉内烟气短路、炉内换热器吊挂、换热管膨胀等问题。本文还系统地阐述了蓄热体的各项参数对热效率、温度效率、传热特性、阻力特征的影响;同时论证了炉子的各项操作参数对炉子热工特性的影响。
     通过理论分析和热工计算验证,得出以下四点:
     (1)蓄热式燃烧技术在管式加热炉中的应用,使高温压传热得以实现,提高了传热效率,确保加热温度达到工艺要求,并减小了管式加热炉的设备投资。
     (2)坑道式蓄热室结合组合式烧嘴的结构形式配合换向操作的工作制度有效地保证炉内长、宽、高各项温度分布的均匀性。
     (3)蓄热式管式加热炉提供稳定、连续的高温瓦斯,解决了供给干馏炉热载体瓦斯气不稳定的问题。
     (4)自主研发的蓄热式循环瓦斯管式加热炉的热效率为67.4%,温度效率为68.6%,其工艺技术指标达到国际领先水平。
     本文的研究内容有利于管事加热炉设计过程中更好的应用蓄热式燃烧技术,对蓄热式管式加热炉应用方案的选择、优化以及新炉型设计计算提供了一定的参考。
The R & D for regenerative tubular-furnace of cycle gas is an important part of cycle gas heating process assumed by the group leaded by ZHANG Wei-jun in the thermal energy and environmental institute of Northeastern University, it is the key to the success of the project of oil shale comprehensive utilization in Huadian, Jilin.
     Development of efficient and safe technology heating cycle gas is the external require of technics of oil shale dryly distillating.Temperature of cycle gas can meet the technical requirement by using tubular-furnace in petrochemical industry, but by the cost of high investment in equipment、high fuel consumption and low heat transfer efficiency.The applicability between regenerative combustion technology, as a sort of cleanly and efficient burning technology, and tubular-furnace is worth to discussing. The key of the application of regenerative combustion technology to tubular-furnace is to study the existent problem and find reasonable and feasible solutions.
     This paper expounds the thermal principle of tubular-furnace and advantage of regenerative combustion ,and demonstrats the feasibility of using regenerative combustion technology in tubular-furnace.According to the principle of heat transfer and combining with thermal and structural characteristics of regenerative tubular-furnace, calculative method of thermal parameters for hearth and regenerator is proposed in this article, in order to guide the design of the structure. Structure of regenerative tubular-furnace resolves problems of the complex pipeline of furnace, short circuit of gas furnace, handing of heat exchanger, expansion of heat exchanger tubes and so on. This paper systematically expounds the impact of the parameters on the thermal efficiency , temperature efficiency , characteristics of heat transfer and characteristics of resistance; At the same time, influence of the operation parameters to thermal characteristics of furnace is demonstrated.
     Base on theoretical analysis and verification of thermal calculation, We get the following four-point
     (1) The utilization of regenerative combustion technology in tubular-furnace enables thermal transfer of high-temperature come true,improves efficiency of thermal transfer, ensure the heating temperature meet the requirements, and reduces the cost of tubular-furnace
     (2) Combinative structure of tunnel-type regenerator and combined burner combining with the reversing operation ensure temperature distributing uniformitily.
     (3) The utilization of continuous working tubular heating system solute the promble of the supply of cycle gas for retort furnace instability.
     (4) The thermal efficiency and temperature efficiency ofregenerative tubular-furnace of cycle gas which is researched and desiged independently respectively are 67.4% and 68.6%, which are on the the level of a leading in the international arena.
     The content studied redounds to application of regenerative combustion technology on tubular-furnace.The results can supply certain references to selection and optimization of application schemes of regenerative tubular-furnace technology as well as design new types of furnace.
引文
1.关荐伊.油页岩一种值得重视的可替代能源[J],化学世界,2008,9:573-574.
    2.钱家麟.管式加热炉[M],北京:中国石化出版社,2003:1-207.
    3.张范斌.浅析蓄热和换热技术[J],工业炉,2003,25(4):14-15.
    4.代朝红,温冶.高温空气燃烧技术的研究现状及发展趋势[J],工业加热,2002,3:11-16.
    5.钱颂文.换热器管束流体力学及传热[M],北京:中国石化出版社,2001:162-187.
    6.杨世铭,陶文铨.传热学[M],北京:高等教育出版社,2006:197-296.
    7.蔡九菊,饶荣水等.填充球蓄热室阻力特性的实验研究[J],钢铁,1998,33(6):57-59.
    8.王秉铨.工业炉设计手册[M],北京:机械工业出版社,2000:168-369.
    9.李爱菊,张仁元.新型陶瓷换热器用蓄热材料的选择[J],耐火材料,2004,38(3):62-65.
    10.Rafidi N,Blasiak W.Heat transfer characteristics of HiTAC heating furnace using regenerative burners[J],Applied Thermal Engineering,2006,26:2028-2034.
    11.张先棹,尹丹模,张建国.蓄热室新型蓄热体的选用[J],工业炉,1998,3:45-47.
    12.张法波.填充球蓄热室热工特性的研究进展[J],工业加热,2006,35(3):14-16.
    13.Kawai K,Yoshikawa K.High temperature air combustion boiler for low BTU gas[J],Energy Conversion and Management,2002,43:781-792.
    14.Weber R,Smart J P,Kamp W.On the(MILD) combustion of gaseous,liquid,and solid fuels in high temperature preheated air[J],Proceedings of the Combustion Institute,2005,30:2624-2629.
    15.沈君权.蓄热燃烧技术及其在工业窑炉上的应用[J],硅酸盐通报,2001,5:34-37.
    16.吴道洪,谢善清.蓄热式高温空气燃烧技术的应用[J],工业加热,2000,5:44-46.
    17.李朝祥,蔡九菊.填充床蓄热式热交换器的实验研究[J],工业炉,1999,21(1):1-4.
    18.温良英.高效蓄热室阻力及传热特性[J],燃烧科学与技术,2005,11(6):506-510.
    19.李国军,陈海耿,吴彬.蓄热体热过程模拟研究[J],冶金能源,2008,27(5):21-24.
    20.杨永军.新型低污染高效节能燃气燃烧系统的研究[D],北京:北京工业大学,2001:11-13.
    21.徐烈山.蓄热式燃烧技术在冶金工厂的合理应用[J],工业炉,2007,29(6):3-5.
    22.Yang W.Numerical simulation of properties of a LPG flame with high-temperature air[J],International Journal of Thermal Sciences,2005,44:1537-1542.
    23.Fuse R,Kobayashi H.NOx emission from high-temperature air/methane counterflow diffusion flame[J],International Journal of Thermal Sciences,2002,41:2656-2671.
    24.Lee K W,Choi D H.Analysis of NO formation in high temperature diluted air combustion in a coaxial jet flame using an unsteady flamelet model[J],International Journal of Heat and Mass Transfer,2009,52:1824-1831.
    25.Joo H I.Soot formation and temperature field structure in co-flow laminar methane-air diflusion flames at pressures from 10 to 60 atm[J],Proceedings of the Combustion Institute,2009,32:2721-2728.
    26.Blasiak W,Yang W H,Rafidi N.Physical properties of a LPG flame with high-temperature air on a regenerative burner[J],Combustion and Flame,2004,136:21-24.
    27.杨玉山.混合煤气成分变化对加热炉内温度场影响的数值模拟研究[J],工业加热,2008,37(5):33-34.
    28.梁晓军等.换热器强化传热的数值模拟分析[J],低温与特气,2003,21(5).
    29.李同杰.蓄热式高温空气燃烧技术对不同燃料的适应性分析[J],有色金属加工,2006,35(3):21-24.
    30.古宾斯基,陆钟武.火焰炉[M],沈阳:东北大学出版社,1996:77-118.
    31.梅炽.有色冶金炉设计手册[M],北京:冶金工业出版社,2004:98-154.
    32.钢铁厂工业炉设计编写组.钢铁厂工业炉设计参考资料[M],北京:冶金工业出版社,1979:151-624.
    33.韩昭沧.燃料与燃烧[M],北京:冶金工业出版社,1994:1-154.
    34.赵渭国,杜涛,王爱华.火焰炉设计[M],沈阳:东北大学出版社,2005:41-44
    35.谷其发.高温硫腐蚀及其对策[J],石油化工腐蚀与防护,1989,1:51-54.
    36.朱日彰,齐慧滨等.金属材料的高温硫腐蚀中的若干问题[J],石油化工腐蚀与防护,1995,4:11-14.
    37.季洪春.高炉煤气双预热蓄热式环形加热炉冷态炉内流场及暂态特性[D],重庆:重庆大学,2007:1-47.
    38.郭伯伟.采用蓄热式燃烧器的室式炉内燃料燃烧条件对物料加热均匀性的影响[J],工业加热,2001,2:18-19.
    39.罗海兵.蓄热式换热器传热过程的数值模拟[J],化学装备技术,2004,25(4):14-19.
    40.慕锐.高体积热强度辅助燃烧室的设计[J],河南化工,2005,22:12-15.
    41.李旭阳.提高管式加热炉热效率的几项措施[J],设备管理与维修,2008,3:4-11.
    42.蒋少卫.内置通道蓄热式加热炉施工技术[J],山西冶金,2009,118(2):6-8.
    43.宋小飞.空气单蓄热式均热炉内流动与换热特性的数值模拟[J],工业炉,2008,30(5).
    44.刘盛宾.列管换热器[M],北京:化学工业出版社,2000:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700