带钢表面析碳的热力学分析及Zn基合金热力学数据库的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热浸镀锌是一种应用广泛的提高钢制件耐腐蚀性能的工艺。采用改良森吉米尔法的连续热镀锌机组在生产中时常出现锌层附着性差、严重时产生脱锌现象。大多数情况下这与连续退火炉中无氧化加热(NOF)工艺不佳有关。NOF段内气氛波动异常以及带钢出NOF炉段温度设定不合理都会影响带钢表面状态,引起带钢表面析碳或氧化,带钢表面这些残留物会造成后续镀锌过程中镀层粘附性不良。
     本工作通过对涟钢镀锌生产线退火炉NOF段煤气成分波动的分析,探讨了带钢表面析碳的成因,利用Factsage热化学软件的平衡模块,建立了带钢经NOF炉表面碳沉积机理的理论模型。得出了过剩空气系数、带钢温度以及带钢表面碳沉积的关系曲线,且定量地分析了焦炉煤气成分波动对碳初始析出温度的影响。模拟结果能辅助调节过剩空气系数从而控制带钢表面状态及出NOF炉温度,对合理制定工艺具有一定的理论指导意义。
     合金元素是影响镀层质量的至关重要的因素。通过热力学计算来研究锌合金体系和镀层生长规律,从而对生产过程进行预测和控制,这对于提高镀锌产品质量、优化镀锌工艺参数和促进镀锌工业的发展有着重要的意义。而在实际热镀锌过程中,基体、镀层以及锌液中各组元之间的反应相当激烈和复杂,因而不能简单地利用单个相图来分析、解决实际生产中所遇到的问题,结合实际生产工艺,从多元体系热力学的角度研究分析镀锌过程中镀层最佳组织的形成具有非常重要的作用。
     本工作收集、整理并验证了许多同热镀锌生产有关的锌合金体系热力学评估数据,并以Thermo-Calc软件数据库的形式存储了起来,初步建立了一个专门为镀锌生产服务的锌合金热力学数据库。共整理、归纳和验证了Zn-Sb、Zn-Ca、Zn-Li、Zn-Ce、Zn-Pr、Zn-Nd、Zn-Bi、Zn-Zr、Zn-Fe、Zn-Cr、Zn-Al、Zn-Sn、Zn-In、Zn-Cd、Zn-Mg二元合金体系和Zn-Al-Y、Zn-Sn-Ti、Zn-Fe-Al、Zn-Ni-Cu、Zn-Mn-Cu、Zn-Al-Pb、Zn-Fe-Si、Zn-Fe-Ni三元合金体系的热力学评估数据。并利用Therm-Calc对Sr-Si体系进行了热力学评估,得到了一套自洽的热力学模型参数,各种计算值与实验值都吻合较好。
Hot-Dip galvanizing is widely used for improving atmospheric corrosion resistant of steel parts. Imperfect adhesion of coating and Dezincification of strips always occur in modified Sendzimir-type hot-process continuous galvanizing line. In most cases this phenomenon is the result of the changes of technical parameter of nonoxidizing furnace. The fluctuation of nonoxidizing furnace (NOF) ambient atmosphere and the unreasonable tapping temperature will all affect the surface condition of the strip, causing carbon precipitation on the surface of strip or excessive oxidation. These carbon grain and oxidized film could result in imperfect adhesion.
     By analyzing the fluctuation of Coke-Oven Gas (COG) composition in annealing furnace of continuous galvanizing production line (CGL) which belonged to Liansteel, The mechanism of carbon precipitation on the surface of strip was researched, a mathematical calculation for carbon precipitation on the surface of strip was modeled using Factsage Thermochemical Software and a complete curve of relation among air ratio, strip temperature and carbon precipitation area was derived. This model also quantificationally analyzed the influence of the fluctuation of coke oven gas (COG) composition on the temperature when carbon first precipitates. This can assist in adjust air ratio to control the strip surface condition and determine the appropriate strip tapping temperature. Those conclusions afford benefit for appropriate technology selection.
     Alloy elements play a key role for controlling the coating quality. The study of zinc alloy systems and the growth law of coating from thermodynamic calculation can help us to predict and control the product process. There’s very important meaning for controlling the quality of galvanizing products, optimizing the galvanizing process parameters and facilitating the development of galvanizing industry. But during the hot-dip galvanizing process, the reactions among steel base, coating and alloy elements in the zinc bath are intense and complicated, it is impossible to analyze and solve the problems in actual production just using Microstructure Transformation and Phase Relations of single phase diagram. Therefore, it is important to analyze the formation of coating from the point of multiply system thermodynamic combining with the actual production.
     A great deal of thermodynamic data concerning zinc-based alloy systems were collected, systematized, validated and stored after the form of Thermo-Calc database. So far, by using Thermo-Calc software, a thermodynamic database of zinc-based alloys for galvanizing production was primarily developed. 15 binary systems:Zn-Sb, Zn-Ca, Zn-Li, Zn-Ce, Zn-Pr, Zn-Nd, Zn-Bi, Zn-Zr, Zn-Fe, Zn-Cr, Zn-Al, Zn-Sn, Zn-In, Zn-Cd, Zn-Mg and 8 ternary systems: Zn-Al-Y, Zn-Sn-Ti, Zn-Fe-Al, Zn-Ni-Cu, Zn-Mn-Cu, Zn-Al-Pb, Zn-Fe-Si, Zn-Fe-Ni were included. Moreover,the Sr-Si system was optimized by Thermo-Calc software, A set of self-consistent thermodynamic model parameters was derived. Preferable agreement was obtained between the calculation and experimental results.
引文
[1]顾国成,刘邦津.热镀锌[M].北京:化学工业出版社, 1988: 1-67.
    [2]李金桂,吴再.防腐蚀表面工程技术[M].北京:化学工业出版社, 2003: 176-250.
    [3] A. R. Marder. The metallurgy of zinc-coated steel [J]. Progress in Materials Science, 2000, 45(3): 191-271.
    [4]张启富,刘邦津,黄建中.现代钢带连续热镀锌[M].北京:冶金工业出版社, 2007:223-340.
    [5]李九岭.带钢连续热镀锌[M].北京:冶金工业出版社, 2001: 76-177.
    [6]贺俊光,周旭东,李俊,等.影响连续热镀锌镀层粘附性因素的探讨[J].钢铁研究, 2005, 142(1): 41-44
    [7]朴明魁,王溪刚.提高镀层粘附性能的研究[J].鞍钢技术, 1999, (9): 48-51
    [8] JoséM. Puente, Francisco J. Alonso, Luis Andrés, et al. Influence of an Adequate Surface Conditioning on the Final Characteristics of GI for Exposed Panels Use on Automotive Sector [C]. Galvatech '04 Conference Proceedings, 2004: 457-463
    [9] N.Y.Tang, F.E. Goodwin. A study of defects in galvanized coatings [C]. Galvatech 2001 proceedings, 2001: 49-55.
    [10] Y. Kim, S. Kung, W. Sievert, R. Patil. Surface defects in exposed quality hot-dip galvanized steel [C]. Galvatech 1989 Proceedings, 1989: 120-129.
    [11] Friedrich Luther, Arbi Dimyati, Daniel Beste,et al. Surface Conditioning of a Cold-Rolled Dual-Phase Steel by Annealing inNitriding Atmospheres Prior to Hot-DipGalvanizing [J]. Advanced Engineering Materials, 2007, 9(4): 274-279.
    [12]白保安,应钺.浅析热镀锌退火炉节能的措施和发展方向[J].冶金能源, 2004, 23(2): 33-35.
    [13]田玉楚,侯春海.带钢连续热镀锌退火过程的模型化[J].控制理论与应用, 1995, 12(4): 459-464.
    [14]张赵宾,曹海瑞,梁海涛.邯钢冷轧厂连续热镀锌退火炉工艺设备综述[C]. 2006河北省轧钢技术与学术年会:129-131.
    [15]贾丽娣,吕春风,李锋,等.热镀锌退火炉热工工艺分析[J].鞍钢技术, 2005, (2): 24-26.
    [16]张理扬,李俊,左良.新型带钢连续热镀锌机组的发展[J].钢铁研究学报, 2005, 17(4): 9-13.
    [17]吴光治.带钢连续热镀锌与退火炉的技术进步[J].工业炉, 2006, 28(2): 19-21.
    [18]高玉芬.本钢冷轧厂热镀锌机组设备改造方案浅析[J].中国科技信息, 2005, (20): 117.
    [19]吕军,刘明辉.带钢表面清洁度对连续热镀锌产品质量的影响[J].轧钢,2001,18(4): 23-25.
    [20]吕军,刘明辉,沈达敏.无氧化工艺对连续热镀锌钢板锌层附着性的影响[J].钢铁, 2001, 36(7): 34-37.
    [21] Dinsdale T. CALPHAD, 1991, 15(4): 317-425.
    [22] O. Redlich and A. T.Kister, Industrial & engineering chemistry research, 1948, 40(2): 345-348.
    [23]乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学[M].北京:冶金工业出版社, 1999.
    [24]许志宏,王珊.无机热化学数据库[M].北京:科学出版社, 1987.
    [25]尹爱君.冶金数据库系统及其研究[D].长沙:中南大学, 1996.
    [26]黄天笑.微机水溶液热力学数据库[D].长沙:中南大学, 1988.
    [27]王龙章.微机冶金热力学热化学数据库[D].长沙:中南大学, 1987.
    [28] http://www.sdb.ac.cn/
    [29] http://mole.icm.ac.zn/
    [30] B. P. Burton, P. Perrot. Fe-Zn (Iron-Zinc) [A].In: H. Okamoto, Eds. Phase Diagrams of Binary Iron Alloys[C]. Materials Park, OH: ASM International, 1993, 459–466.
    [31] G. Reumont, P. Perrot, J.M. Fiorani et al. Thermodynamic Assessment of the Fe-Zn System [J]. Journal of Phase Equilibria, 2000, 21(4): 371-378.
    [32] X. P. Su, N. Y. Tang, J. M. Toguri. Thermodynamic evaluation of the Fe–Zn system [J]. Journal of Alloys and Compounds, 2001, 325(1-2): 129–136.
    [33] J. Nakano, D. V. Malakhov, G. R. Purdy. A crystallographically consistent optimization of the Zn–Fe system [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2005, 29(3-4): 276–288.
    [34] P. Perrot, J. C. Tissier, J. Y. Dauphin. Stable and metastable equilibria in the Fe-Zn-Al system at 450℃[J]. Zeitschrift fur Metallkunde 1992, 83(11): 786–790.
    [35] S. Yamaguchi, H. Makino, A. Sakatoku, et al. Proceedings of the 3rd International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C], Galvatech, 1995: 787–794.
    [36] N. Y. Tang, X. P. Su. On the Ternary Phase in the Zinc-Rich On the Ternary Phase in the Zinc-Rich Temperatures below 450℃[J]. Metallurgical and Materials Transactions A, 2002, 33 (1): 1559–1561.
    [37] J. Nakanoa, D. V. Malakhov, S. Yamaguchi, et al. A full thermodynamic optimization of the Zn–Fe–Al system within the 420–500℃temperature range [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31(1): 125–140.
    [38] C.S. Che, J.T. Lu, G. Kong, et al. Influence of silicon in steel on galvanized coating [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(2): 85-90.
    [39] W. K?ster. The ternary system iron-silicon-zinc [J]. Metallurgia, 1969, 80(12): 219-229.
    [40] P. Perrot, J.Y. Dauphin. Calculation of the Fe-Zn-Si phase diagram between 773 and 1173K [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 1988, 12(1): 33-40.
    [41] M. Bretez, J. Y. Dauphin, J. Foct, et al. Phase relationships and diffusion paths in the system zinc vapour-iron silicon alloys at 773-973K [J]. Z.Metallkde, 1987, 78(2):137-140.
    [42] J. Foct, P. Perrot, and G. Reumont. Interpretation of the role of silicon on the galvanizing reaction based on kinetics, morphology and thermodynamics [J]. Scripta Materialia, 1993, 28 (10): 1195-1200.
    [43] X. P. Su, N. Y. Tang, and J. M. Toguri, 450°C Isothermal Section of the Fe-Zn-Si Ternary Phase Diagram [J]. Canadian Metallurgical Quarterly, 2001, 40 (3): 377.
    [44] X. P. Su, F. C. Yin, Z. Li. Thermodynamic calculation of the Fe–Zn–Si system [J]. Journal of Alloys and Compounds 2005, 396(1-2): 156–163
    [45] P. Perrot, I. W. Churg, G. Reumont, J. Y. Dauphin. Phase Equilibria in the Zn Rich Corner of the Fe-Ni-Zn system [J]. Compt. Rend. Acad. Sci. Paris, 1989, 308(16): 1413-1417.
    [46] N. Y. Tang, X. P. Su, J.M. Toguri. Experimental study and thermodynamic assessment of the Zn-Fe-Ni system [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2001, 25(2): 267-277.
    [47] X. P. Su, N. Y. Tang. The zinc-rich corner of the Zn-Fe-Ni-Si quaternary system at 450°C [J]. Journal of Phase Equilibria and Diffusion, 2002, 23(5): 424-431.
    [48] F. Peng, F. C. Yin, X. P Su, et al. 560℃isothermal section of Zn–Fe–Ni system at the Zn-rich corner [J]. Journal of Alloys and Compounds, 2005, 402(1-2): 124–129
    [49] T. Akiyamaa, K. Ichizena, Y. Yoshimuraa, et al. A fundamental study of non-oxidizing direct flame heating for metal treatment [J]. Fuel, 1994, 73(3): 433-438.
    [50] D. Eva, F. Anna, K. Laasolo, et al. Laboratory Experiments for Studying the Surface Preparation and Annealing Processes before Continuous Hot Dip Galvanizing [J]. Materials science forum, 2007, 537(38): 25-32.
    [51] H. Saint-Raymond, F. Bertrand, D. Huin. Kinetics of Oxidation and Reduction of High Strength steels in annealing Furnace [C]. Galvatech'04 Conference Proceedings: 383-390.
    [52] F. Bertrand, D. Huin, H. Saint-Raymond. Heating and oxidation Kinetics of Steel Sheets in Direct Fired Furnace [C]. Galvatech'04 Proceedings: 391-400
    [53] L. Bordignon, G. Angeli, H. Bolt, et al. Enhanced hot dip galvanizing by controlled oxidation in the annealing furnace [J]. ECSC final report, 7210-PR/118, 2001: 1-177.
    [54]霍国启.冷轧钢板的表面质量与碳的沉积[J].轧钢, 1997, (4): 31-33.
    [55]王铁军,李锋,吕家舜,等. NOF工艺热镀锌层附着力影响因素分析[J].鞍钢技术, 2007, 345(3): 22-25.
    [56]贾丽娣,徐烈山.热镀锌退火炉无氧化段炉内气氛合理控制[J].冶金能源, 2006, 25(3): 24-25.
    [57]肖斌,王建华,苏旭平,等.连续镀锌板镀层粘附性不良的研究[J].电镀与涂饰, 2008, 27(81): 5-17
    [58]曹战民,宋晓艳,乔芝郁.热力学模拟计算软件FactSage及其应用[J].稀有金属, 2008,32(2): 216-219.
    [59]卢锦堂,许乔瑜,陈锦虹,等.国外活性钢热镀锌技术研究的进展[J].材料保护, 2000, 33(11): 5-7
    [60] I. Obinata, Y. Takeuchi, K. Kurihara, et al. Manganese and Silicon Alloys with Alkaline and Alkaline Earth Metals [J]. Acta Metallurgica Metall, 1965, 19 (1): 21-35.
    [61] V. P. Itkin, C. B. Alcok. The Si-Sr (Silicon-Strontium) system [J]. Journal of Phase Equilibria, 1989, 10 (6): 630-634.
    [62] G. Rocktaschel, A. Weiss. On the Strontium Silicide [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 1962, 316(3-4): 231–236.
    [63] G. Nagorsen, G. Rockt?schel, H. Sch?fer, et al. Crystal Structure of the Sr5Si3 Phase [J]. Zeitschrift fur Naturforschung B, 1967, B22: 101-102.
    [64] A. Widera, B. Eisenmann, H. Schafer. Preparation and Crystal Structure of Sr2Si [J]. Zeitschrift fur Naturforschung B, 1976, B31: 520.
    [65] T.B. Massalski, P.R. Subramanian, H. Okamoto, et al. in: Binary Alloy Phase Diagrams, second ed., vol. 3, ASM International, Materials Park, OH, 1990.
    [66] R. Nesper, F. Zurcher. Redetermination of the crystal structure of pentastrontium trisilicide, Sr5Si3 [J]. Zeitschrift für Kristallographie, New crystal structures, 1999, 214(1): 19.
    [67] L. Wohler, W. Schuff. On Silicides of Alkaline Earth Metals. Zeitschrift fur Anorganische und Allgemeine Chemie, 1932, 209: 33-69.
    [68] M. P. Morozova, M-S. Li and M. V. Golomozina, Vestn, Leningrad Univ., 14, Russian Journal of Physical Chemistry, 1959, (2): 83–86.
    [69] A. Palenzona, M. Pani. The phase diagram of the Sr–Si system [J]. Journal of Alloys and Compounds, 2004, 373(1-2): 214-219.
    [70] G. Balducci, S. Brutti, A. Ciccioli, et al. Vapor pressures and thermodynamic properties of strontium silicides [J]. Intermetallics, 2006, 14(5): 578–583.
    [71] Y. Imai, A. Watanabe, M. Mukaida. Electronic structures of semiconducting alkaline-earth metal silicides [J]. Journal of Alloys and Compounds, 2003, 358(1-2): 257-263.
    [72] S. Brutti, D. Nguyen-Manh, D. G. Pettifor. Lattice stability of intermediate phases of the Sr–Si system [J]. Journal of Alloys and Compounds, 2008, 457 (1-2): 29-35.
    [73] Y. O. Esin, S. P. Kolesnikov, V. M. Baev, et al. Enthalpies of Formation of Liquid Alloys of Strontium and Silicon [J]. Russian Journal of Physical Chemistry, 1979, 53(6): 924.
    [74] H. Okamoto. Si-Sr (Silicon-Strontium) [J]. Journal of Phase Equilibria and Diffusion, 2006, 27(2): 204.
    [75]薛红梅,杜振民,郭翠萍,等. Thermodynamic assessment of the Si-Sr system [C].第十三届全国相图学术会议论文集,厦门: 2006: 129-132.
    [76]吴俊琳,余仲兴,朱永达.微量添加元素对热镀锌层性能的影响[J].上海有色金属, 2001, 22(2): 54-58.
    [77]郭太雄,瞿祖贵.热镀锌影响因素综述[J].轧钢, 2000, 17 (1): 48-51.
    [78] J. B. Li, M. C. Record, J. C. Tedenac. A thermodynamic assessment of the Sb–Zn system [J]. Journal of Alloys and Compounds, 2007, 438(1-2): 171–177.
    [79] C. O. Brubaker and Z. K. Liu. A Computational Thermodynamic Assessment of the Ca-Zn System [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2001, 25(3): 381-390.
    [80] Y. Liang, Z.M. Du, C. P. Guo et al. Thermodynamic Modeling of the Li-Zn System [J]. Journal of Alloys and Compounds, 2008, 455(1-2): 236–242.
    [81] C. P. Wang, X. Chen, X. J. Liu et al. Thermodynamic Modeling of the Ce-Zn and Pr-Zn Systems [J]. Journal of Alloys and Compounds, 2008, 458(1-2): 166–173.
    [82] H. O. Li, X. P. Su, Y. Liu, et al. Thermodynamic assessment of the Nd–Zn system [J]. Journal of Alloys and Compounds, 2008, 457(1-2): 344–347.
    [83] D. V. Malakhov. Thermodynamic assessment of the Bi-Zn system [J]. Computer Couplingof Phase Diagrams and Thermochemistry, 2000, 24(1): l-14.
    [84] R. Arroyave, Z .K. Liu. Thermodynamic modelling of the Zn–Zr system [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30(1): 1–13.
    [85] G. Reumont and P. Perrot. Thermodynamic Assessment of the Zinc-Rich Part of the Cr-Zn System [J]. Journal of Phase Equilibria, 2003, 24(1): 50-54.
    [86] B. J. Lee, T Thermodynamic modelling of the Sn-Zn and In-Zn binary system [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 1996, 20(4): 471-480.
    [87] S. D. Choi. A Thermodynamic analysis of the Cd-Zn system and calculation of the phase diagram [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 1990, 14(3): 307-310.
    [88] G. Shao, V. Varsani, Z. Fan. Thermodynamic modelling of the Y–Zn and Mg–Zn–Y systems [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30(2): 286–295.
    [89] X J. Liu, M. Z. Wen, C. P. Wang, et al. Thermodynamic assessment of the Zn-Y and Al-Zn-Y systems [J]. Journal of Alloys and Compounds, 2008, 452(1-2): 283–290.
    [90] K. Doi, S. Ono, H. Ohtani, et al. Thermodynamic Study of the Phase Equilibria in the Sn–Ti–Zn Ternary System [J]. Journal of Phase Equilibria and Diffusion, 2006, 27(1)63-74.
    [91] J. Miettinen. Thermodynamic description of the Cu–Ni–Zn system above 600℃[J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2003, 27(3): 263–274.
    [92] J. Miettinen. Thermodynamic Description of the Cu-Mn-Zn System in the Copper-rich Corner [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2004, 28(3): 313–320.
    [93] Y. J. Liu, D. Liang. A contribution to the Al-Pb-Zn ternary system [J]. Journal of Alloys and Compounds, 2005, 403(1-2): 110–117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700