“六安瓜片”茶清洁化加工机械及其工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六安瓜片是中国十大名茶之一,但与龙井等不同的是六安瓜片属无梗无芽扁平型绿茶,长期以来,“六安瓜片”多沿用手工方式加工,劳动生产率低、产品质量不稳定,已成为“六安瓜片”产业发展的瓶颈,尽快研制出“六安瓜片”机械化清洁化加工设备及其生产工艺,对“六安瓜片”产业的可持续发展具有重要的现实意义。本论文对“六安瓜片”在制品的物理特性进行试验研究,以自动化装备与传统制茶工艺相结合的原则,对杀青、做形和烘焙等相关性工序的机器进行理论研究,并设计开发用于相应工序的新型专用装备,主要研究工作及结果如下:
     1.测定“六安瓜片”在制品物料的物理特性
     (1)鲜叶、杀青叶、揉捻叶、理条叶、毛火叶、小火叶、老火叶在制品的含水率依次为73.9%,59.4%,58.9%,28.3%,19.9%,10.1%,5.5%。
     (2)鲜叶、杀青叶、揉捻叶、毛火叶、小火叶、老火叶在制品的容重依次为60.7kg/m3,86.3kg/m3,209.8kg/m3,133.6kg/m3,141.6kg/m3,189.9kg/m3。
     (3)鲜叶、杀青叶、揉捻叶、毛火叶、小火叶、老火叶在制品的休止角依次为52.5o,50.7o,59.6o,57.2o,40.6o,35.8o。
     (4)鲜叶、杀青叶、揉捻叶、毛火叶、小火叶、老火叶在制品与不锈钢的外摩擦角依次为37.6o,38.0o,43.6o,35.8o,30.2o,30.2o。
     (5)鲜叶、杀青叶、揉捻、毛火叶、小火叶、老火叶在制品与不锈钢的动摩擦系数依次为0.77,0.78,0.95,0.72,0.58,0.57。
     (6)鲜叶、杀青叶、毛火叶、小火叶、老火叶在制品继续比热依次为3.51kJ/kg·K,3.12kJ/kg·K,2.02kJ/kg·K,1.77kJ/kg·K,1.64kJ/kg·K,干物质比热为1.50kJ/kg·K。
     2.优化设计“六安瓜片”杀青机
     (1)以双主动摩擦轮对称驱动的方式,减少了摩擦轮的滑转率,提高传动效率。驱动电机由功率原来的0.75kW降为0.5kW,推导了滚筒式杀青机主动摩擦轮接触应力数学模型,并运用该模型对摩擦轮进行了强度校核。
     (2)对用于六安瓜片杀青滚筒进行了优化设计,杀青滚筒的直径为500mm,极限转速59.8rpm。滚筒转速还会影响鲜叶在滚筒内的分布状态及抛落角度,试验表明:为适应不同采摘时期、鲜叶嫩度的杀青工艺,要求杀青时鲜叶应覆盖滚筒内表面的60-65%,鲜叶开始抛落点与水平方向夹角应为45-60°,以利于鲜叶迅速升温及较快排湿,提高杀青质量。所设计的杀青滚筒转速为20~40rpm无级调节,可以满足以上要求。
     (3)改变传统式滚筒式杀青机主要热辐射或线接触式热传导方式传热,本机采用面接触式热传导方式进行传热,并加厚了保温层厚度,传热效率由原35%提高到57%。
     3.研发“六安瓜片”做形机
     (1)对六安瓜片做形机进行运动学及动力学分析,分别运用失量法、图解法、解析法并建立了曲柄、连杆、槽锅的位置、速度、加速度等精确数学模型,同时推导了基于Maclaurin公式的用于工程运用的近似数学模型,以简化运算,并运用Matlab绘制了相关曲线同时证明近似公式的可行性。
     (2)在分析六安瓜片做形机进行运动学及动力学基础上,对连杆及槽锅的惯性力进行计算,其结论为:槽锅的最大惯性力Fqm为73.7Kgf,连杆的最大法向惯性力Fqnm为7.23Kgf,连杆的最大切向惯性力Fqtm为41.9Kgf,以上惯性力均随曲柄的转角的变化而变化,理条机的实际惯性力是以上交变的空间力系的失量和。并运用过量平衡法在连杆铰链点与曲柄回转中心反向延长线上,且距曲柄回转中心60mm处设置15kg配重时,水平与垂直方向振动分别由未加配重前的1.1mm与0.88mm减小为0.51mm与0.45mm。
     (3)以最小传动角的最大值为目标函数,结合六安瓜片制茶工艺要求建立了以曲柄长度、连杆长度、偏心距、滑块行程、辅助角等为主要参数的约束方程,并运用蚁群算法对该优化设计数学模型进行求解。优化结果为:当曲柄长度a为59.1mm,连杆长度b为341.5mm,偏心距e为57.5mm,滑块行程H为120mm,辅助角β为8.26°,极位夹角θ为3.5°时,茶叶理条幅机的最小传动角γmin从原来的50°增大到70.1°,有效地改善了做形机的传动性能,使传动更加平稳,振动减轻,噪音降低;槽锅的卡滞现象消失,做形机的成条率也有增加6%。
     4.研制“六安瓜片”烘焙机
     (1)根据六安瓜片传统拉老火工艺要求,研制转盘式六安瓜片烘焙机,机器充分利用光机电一体化技术、变频技术及温度控制技术,具有烘焙温度、连续烘焙时间、两次烘焙间隔时间及转盘转速等参数可人工设定,以满足不同的制茶工艺要求。
     (2)为了实现六安瓜片高温间歇烘焙的工艺要求,设计了基于光电开关、时间继电器及交流接触器的控制系统,与普通行程开关定位相比较,具有烘焙时间可调、定位可靠及抗干扰能力强的特点。
     (3)红外辐射波长为2-16um的板状红外辐射器用于六安瓜片茶叶烘焙,有利于水、糖类、氨基酸、果胶质等物质对红外线的吸收,与微波烘干机相比,具有非选择性烘焙特点,有利于茶叶烘焙过程中各种有益香气的析出,提高焙香效果。
     (4)基于模糊PID控制原理设计的温度控制器具有较好的动态及静态性能,温度控制精度高、超调小、鲁棒性好等特点,当用于六安瓜片叶温设置为80°C时,能得到较好的烘焙品质,碎茶率由人工烘焙的15%降低到5%。
     5.设计“六安瓜片”清洁化加工工艺
     (1)在六安瓜片传统制茶工艺的基础上,结合所研制的关键装备,设计了六安瓜片清洁化加工工艺,质量检测表明:各项理化指标达到相关国家标准要求。
     (2)感观审评表明:同一批次的机械茶与手工茶相比,机械茶的匀整度、均一性前者较好,机械茶滋味比手工茶鲜醇,但手工茶的香气、爽度要好于机械茶。
Liu’an Guapian is one of China’s ten famous teas. It is flat green tea without stalk and bud, whichis different from Westlake Longjing. Liu’an Guapian tea was processed by hand with low laborproductivity for a long time, and the product quality is unstable, which has become the bottleneck ofLiu’an Guapian industry development. The key technology and equipment of Liu’an Guapian should bedeveloped as soon as possible, which has important theoretical value and practical significance on thetea’s sustainable development. The physical properties of the tea were studied in the paper. In theprinciple of the traditional tea processing technology combining with automation equipment, the theoryof the machines for water-removing,shaping and baking process is studied. The new equipments for theabove processes were developed at the same time. The primary work and achievements are as follows:
     1. Determine the "luan GuaPian" processing material physical properties
     (1)The leaves’ moisture content is73.9%, and which will turn into59.4%,58.9%,28.3%,19.9%,10.1%,5.5%after the processing of water-removing, twisting, carding, first firing, second firing andfinal firing respectively.
     (2) The leaves’ volume weight is60.7kg/m3, and which will turn into86.3kg/m3,209.8kg/m3,133.6kg/m3,141.6kg/m3,189.9kg/m3after the processing of water-removing, twisting, first firing,second firing and final firing respectively.
     (3) The leaves’ Angle of repose is52.5o, and which will turn into50.7o,59.6o,57.2o,40.6o,35.8o after the processing of water-removing, twisting, first firing, second firing and final firingrespectively.
     (4) The friction angle of the stainless steel and the leaves was37.6o, and which will turn into38.0o,43.6o,35.8o,30.2o,30.2o after the processing of water-removing, twisting, first firing,second firing and final firing respectively.
     (5) The kinetic friction coefficient of the stainless steel and the leaves was0.77, and which willturn into0.78,0.95,0.72,0.58,0.57after the processing of water-removing, twisting, first firing, secondfiring and final firing respectively.
     (6) The specific heat of the leaves was3.51kJ/kg·K, and which will turn into3.12kJ/kg·K,2.02kJ/kg·K,1.77kJ/kg·K,1.64kJ/kg·K after the processing of water-removing, first firing, second firingand final firing respectively. The dry matter specific heat of the tea is1.50kJ/kg·K.
     2. Optimum design of water–removing machine for Liu’an Guapian
     (1)The double driving friction wheels are exactly symmetrical, which will reduce the friction wheelslip rate and improve the transmission efficiency at the same time. The power of the driving motor by isreduced from0.75kW to0.5kW. The contact stress mathematical model of the cylinder typewater–removing machine’s friction wheels was derived in this paper. The friction wheel’s strength waschecked by the model.
     (2)The double driving friction wheels are exactly symmetrical, which will reduce the friction wheelslip rate and improve the transmission efficiency at the same time. The power of the driving Motor by isreduced from0.75kW to0.5kW. The contact stress mathematical model of the cylinder typewater–removing machine’s friction wheels was derived in this paper. The friction wheel’s strength was checked by the model.
     (3)The heat conduction mode of the cylinder type water–removing machine was changed fromline-contact to face-contact and the thickness of the insulation layer was thickened, the heat transferefficiency is increased from35%to57%.
     3.Development of tea shaping machine for Liu’an Guapian
     (1)The kinematics and dynamics of Liu’an Guapian tea shaping machine is analyzed. Theaccurate mathematical model of the velocity and acceleration of the crank, connecting rod, Groove potwas established respectively. Moreover, The approximate mathematical model was derived based onMaclaurin formula for Engineering application in order to simplify the operation. The curve of thevelocity and acceleration was drawn by Matlab and the feasibility of the approximate formula wasproved at the same time.
     (2)The inertia force on the connecting rod and slot pot was calculated based on the kinematics anddynamics analysis. the conclusion is: the maximum inertial force of groove pot Fqmis73.7Kgf,maximum normal inertial force of the connecting rod Fqnmis7.23Kgf, maximum tangential inertialforce of the connecting rod Fqtm41.9Kgf, the inertial forces are changed with the crank angle change,the inertia force of carding machine is more than the alternative of space force system loss and. And inthe connecting rod and the crank rotation center reverse extension line using the excess balance method,and The15kg balance weight was adopted to the crank rotation center60mm, vertical and horizontalvibration decrease respectively by1.1mm and0.88mm without counterweight to0.51mm and0.45mm.
     (3) With the minimum transmission angle as the objective function, mathematical constraintequations for Liu’an Guapian tea shaping machine optimum design were established considering Liu’antea Guapian process. Based on the ant colony algorithms and Matlab, the realization programs regardingparameters simulation of tea carding machine were made. The programs were used in optimizationsimulation of the transmission parameters: crank length, connecting rod length, eccentricity, etc. Theoptimization results and proving trial showed: when crank length was59.1mm, connecting rod lengthwas341.5mm, eccentricity was57.5mm, slider stroke was120mm, auxiliary angle was8.26°, anglebetween the two limiting positions was3.5°, minimum transmission angle should be changed from50°to70.1°, tea carding machine transmission performance should be improved and vibration decreased,the noise decreased5dB, stripping tea rate increased6%.
     4.Development of baking machine for Liu’an Guapian tea
     (1) According to the old traditional technology of Liu’an Guapian tea requirements, therotary-baking machine was developed, which was made full use of light mechanical and electricalintegration technology, frequency conversion technology and temperature control technology, withbaking temperature, rotary speed, continuous baking time, interval baking time between adjacent bakingcan be set artificially, so as to meet the requirements of different tea process.
     (2) In order to achieve Liu’an Guapian high temperature intermittent baking process requirements,the control system was designed based on photoelectric switch, time relay and AC contactor. The systemhas the characteristics of baking time adjustable, reliable positioning and strong anti-interference abilitycompared with the general position switch.
     (3) The plate infrared radiator with wavelength2-16um are propitious to Liu’an Guapian teabaking, it can enhance on water, carbohydrate, amino acid, pectic substances infrared absorption,compared with microwave drying machine, with the non-selective baking characteristics, which should be beneficial to produce a variety of beneficial aroma in the tea baking process, improve the bakingeffect.
     (4) The leaf baking temperature was collected by Infrared temperature sensor, controlled byfuzzy PID temperature controller. The experiment result showed that: setting leaf temperature at80°C,the quality of the infrared baking tea was achieving or above the charcoal baking. Percentage0f brokentea was15%by manual charcoal baking, and it was5%by this machine.
     5.Design of the "Liu’an Guapian" clean processing technology
     (1) based on the traditional Liu’an Guapian tea processing, combined with the key equipmentdevelopment, Liu’an Guapian clean processing technology was designed, quality testing show that: therelevant Indexes meet requirements of the national standard physiochemical indexes.
     (2) Tea sensory evaluation showed that: the same batch of mechanical and manual tea, mechanical teadegree of regularity and uniformity is better than manual tea, mechanical tea taste more fresh thanmanual tea, but the manual tea the degree of aroma and bright is better than mechanical tea.
引文
[1]俞燎远.规范机制工艺提高扁茶质量[J].茶叶科学技术,1998(2):26-27.
    [2]白奎元.茶叶加工[M].北京:化学工业出版社,2001,1-120.
    [3]遂昌县经济作物站.提高机制扁茶质量试验初报[J].茶叶,1998,24(2):92-94.
    [4]孙贤斌,奚得发.六安瓜片绿色名茶可持续开发的生态环境研究[J].国土与自然资源研究,2005,(4):84-85.
    [5]张正竹,李尚庆,吴卫国等,茶叶现代化加工技术和装备的研究与推广[J].中国茶业,2009,(2):4-6
    [6]滕德文.提高“六安瓜片”品质的技术措施[J].安徽农业,2002,(1O):l8-19.
    [7]朱旗,谭济才,罗军武.日本茶叶生产加工[J].中国茶叶加工,2006,(3):49-51
    [8]李尚庆,日本茶叶加工机械[J].中国茶业,2005.6,29-30
    [9]殷鸿范茶叶的热物理特性[J].茶叶科学,1985,5(1),1-6。
    [10]胡华健,郑文佳,喻云春.三锅扁茶机在扁形茶制作中的应用技术浅析[J].贵州茶叶,2004.(7):24-25。
    [11]董士林,殷鸿范.茶叶烘干机干燥数学模型的建立[J].茶叶科学,1989,9(2):155-159.
    [12]董士林,殷鸿范.茶叶干燥过程叶温与含水率的相关性[J].中国茶叶,1985,(3),12-14.
    [13]李克彬,吕志成,王淑琴等.基于公理设计的扁茶加工设备的研究与开发[J],食品与机械,2006,22(6):104-106。
    [14]周竹定,王士钢,扁形名优茶组合加工初探[J].中国茶叶加工,2006,(4):39-40.
    [15]权启爱.两种常用扁形茶炒制机的性能与优化应用[J].中国茶业,2005,(2):22-23.
    [16]权启爱.几种新形式的龙井茶炒制机[J].中国茶业,2003,(2):16-17.
    [17]肖宏儒,钟成义,宋卫东步进式连续扁形茶整形机的设计与原理分析[J].中国农机化,2007.5:78-80
    [18]肖宏儒,钟成义,宋卫东.步进式扁茶制茶机的研究与开发[J].中国农机化,2007,33(1):13-16。
    [19]茹利军,马兆林,毛国祥.电热式扁形茶焊锅提香机的试制研究报告[J].茶叶,2007,33(4):214-215.
    [20]倪德江,封晓峰,陈玉琼.热风式整形平台烘焙机[J].中国茶叶加工,2007,(1):38-39.
    [21]王景华.乌龙茶自动控制系统简介[J].中国茶叶加工2001,(2):41-42
    [22]齐桂年,谢建国,昊永刚等.微波在茶叶加工中对绿茶品质影响的初探[J].福建茶叶,2004,(3):3-4
    [23]蔡雅娟.茶叶的干燥技术研究进展[J].福建茶叶,2005.(3):22-23
    [24]曹望成,龚琦.茶叶物理特性与制茶工程技术[J].中国茶叶加工.1996,(1):19-22.
    [25]朱恒模,熊玉兰,刘鲁生.茶叶调频电场损耗测湿方法的理论与实践[J].茶业通报,1983,(1):13-15.
    [26]杜民,方志成.茶叶含水率快速测定智能仪的研究[J].仪器仪表学报,1990,11(3):313-315.
    [27] Hwang,M.P, Hayakawa K.I. A Specific Heat Calorimeter for Foods[J], J.of Food science,1979,44(2):435-438.
    [28]吴卫国,谢昌瑜.茶叶电热滚筒杀青机的研究[J].中国茶叶加工,2009,(1):30-31.
    [29]冯小兵,邓怀志.绿茶杀青过程中易出现的问题及改进技术[J].现代农业科技,2012,(8):353-354.
    [30]陈细兵,李伏桃,杨奕锋.茶叶微波杀青烘干机有关设计问题探讨[J].湖南农机,2011,(1):112-114.
    [31]周天山,余有本,李冬花等.微波杀青对绿茶品质的影响[J].中国茶叶,2010,(2):20-21.
    [32]杨晓萍,黄友谊,袁芳亭.绿茶微波杀青工艺研究[J].华中农业大学学报,2001,20(6):576-578.
    [33]刘新.茶叶微波加工设备研究初报[J].中国茶叶,1997,(5):20-21.
    [34]李远志,范绍凯,段翰英等.微波在茶叶杀青中的应用研究[J].广东茶叶,2000,(3):38-39.
    [35]刘新,殷鸿范.微波处理茶叶试验初探[J].中国茶叶,1993,(1):15-17.
    [36]肖宏儒,王立富,曹曙明等.微波-气流式干燥技术在菊花干燥中的实验研究[J].农业机械学报,2000,31(3):120-121.
    [37]肖宏儒.茶叶微波加工技术的研究[J].农业机械学报,2004,35(3):175-178.
    [38]潘科,郑文佳,何平.绿茶微波-远红外辅助杀青技术研究[J].山地农业生物学报,2009,28(6):522-525.
    [39]李帮东.微波技术在霍山黄芽生产线上的应用[J].中国茶业,2009,(11):22-24.
    [40]钟应富,李中林,袁林颖等.微波杀青对“永川秀芽”名茶品质的影响[J].中国茶业,2009,(11):22-24.
    [41]吴卫国,谢昌瑜.茶叶电加热滚筒杀青机的研究[J].中国茶叶加工,2009,(1):30-31.
    [42]王协书,钟梅.茶叶加工的节能浅析[J].中国茶叶加工,2007,(2):21-23.
    [43]宋志禹,李尚庆.节能型自动化控制茶叶滚筒杀青机的介绍[J].茶叶通报,2010,32(3):137-140.
    [44]赵淑娟,王坤波,傅冬和等.茶多酚氧化酶酶学性质研究[J].湖南农业大学学报,2008,34(1):84-86.
    [45]谢昌瑜,吴卫国.电热管往返式茶叶理条机[J].安徽农学通报,2007,13(14):149-150.
    [46]魏福炯.部分名茶加工机械存在的问题及改进意见[J].中国茶叶,2001,(4):11-12.
    [47]刘晓霞.理条机在扁形茶制作中的应用[J].贵州茶叶,1997,(4):28-29.
    [48]张社民,曹龙华,罗烘田.机构振动力优化平衡的一种新方法[J].西安交通大学学报,1993,27(2):109-115.
    [49]王尚礼,雷远波,舒厚华等.单缸发动机曲柄连杆机构动平衡参数调整方法探索[J].摩托车技术,2008,(8):36-39.
    [50]朱云飞,王秋晓,王德荣.曲柄连杆机构惯性力测试与校正研究[J].机床与液压,2005,(5):124-125.
    [51]丁素英.曲柄连杆机构的惯性力分析[J].昌潍师专学报,2000,19(5):68-70.
    [52]王秋晓,徐宗俊.单缸发动机测试校正理论与实验的研究[J].内燃机学报,2005,23(3):283-287.
    [53]肖鹏程.摩托发动机平衡浅谈[J].摩托车技术,2002,19(6):13-14.
    [54]郭卫建.单缸发动机平衡测试调整方法与实验的研究[J].中国机械工程,2006,17(2):131-133.
    [55]王秋晓,摩托车发动机曲柄连杆机构不平衡力分析与调整[J].摩托车技术,1999,(8):4-6.
    [56]王琦,罗福强.用平衡轴降低高速往复式内燃机的振动和噪声综述[J].江苏理工大学学报,2001,22(5):21-24.
    [57]刘运兰,王琦,罗福强.高速往复式内燃机平衡轴设计分析[J].江苏理工大学学报,2002,23(1):30-33.
    [58]陈红波.单缸摩托车发动机活塞曲柄连杆机构过量平衡计算探讨[J].中国机械工程,2006,17(2):131-133.
    [59]陈昆昌,赵匀,俞高红.全喂入水稻联合收割机的动力学分析与惯性力平衡[J].机械设计与研究,2005,(6):98-100.
    [60] Zhang S M, Chen J H. The optimum balance of shaking force and shakingmoment of linkage, Mech Mach Theory[J].1995,30(4):589-597.
    [61] Zhang S M. A constituting method of objective function for the dynamicoptimum balance of shaking forces in linkage. Mech Mach Theory[J].1994,29(6):829-835.
    [62]陈昆昌,赵匀,俞高红.全喂入水稻联合收割机的动力学分析与惯性力平衡[J].机械设计与研究,2005,(6):98-100.
    [63]张社民.平面连杆机构振动力优化加权系数的确定[J].机械科学与技术,1994,(3):26-30.
    [64]彭安华,王其兵.按最小传动角的最大值设计曲柄滑块机构[J].机械传动,2007,31(3):68-69.
    [65]张国平.基于证据理论的曲柄滑块机构可靠性优化设计[J].食品与机械,2011,(2):88-90.
    [66]赵红,张铁柱,张洪信等.三缸CPICP曲柄连杆机构的优化[J].河南科技大学学报,2008,29(5):16-21.
    [67]张春捷,于有冬.滚切剪曲柄连杆机构优化设计[J].食品与机械,2011,(2):88-90.
    [68]徐玉梁,付光琦,祖炳锋.基于虚拟方法的发动机曲柄连杆机构优化设计[J].机械科学与技术,2008,27(1):88-91.
    [69]韩晓明,薄玉成,李强.内能源转管武器曲柄连杆机构优化设计[J].火炮发射与控制学报,2010,(1):39-42.
    [70]秦峰.复摆式颚式破碎机传动角与排料口的关系[J].有色金属,2011,(10):70-71.
    [71]鲁春发.无急回特性曲柄摇杆机构的传动性能分析[J].十堰职业技术学院学报,2010,23(6):97-98.
    [72]岳丽敏,文晓娟.解析法设计摇杆机构[J].九江职业技术学院学报,2007,(4):16-17.
    [73]刘力红.一种基于最佳传动角的曲柄摇杆机构设计方法[J].长春理工大学学报,2009,32(4):603-606.
    [74]冀晓红.按最佳传动性能设计曲柄摇杆机构[J].佳木斯大学学报,2009,(6):83-84.
    [75]于春丽.基于遗传算法的曲柄摇杆机构的优化设计[J].机械与电子,2009,(9):69-71.
    [76]孟维云,鹿晓阳.曲柄摇杆机构的综合优化设计[J].机械研究与应用,2008,21(6):87-89.
    [77]王娅森,刘厚泉。基于蚁群算法多层次动态信息提取仿真研究[J].计算机仿真,2009,29(5):133-135.
    [78] Dorigo M, Maniezzo V, Colorni A. Ant System Optimization by Ant ColoniesCooperating Agents[J]. IEEE Transactions on Systerns,Man andCybernetics-Part B: Cybernetics,1996,26(1):29-41.
    [79] Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy[J].Future Generation Computer Sys2tem,2000,16(8):851-871
    [80] Gianni D C, Marco D. Ant Net Distributed Stigmergetic Control forCommunications Networks[J]. Journal of Artificial Intelligence Research,1998,(9):317-355.
    [81]张波雷,许蕴山,夏海宝。一种基于自适应蚁群算法的数据关联方法[J].计算机仿真,2009,29(5):133-135.
    [82]王周缅.武警部队开进路线问题的蚂蚁算法研究[J].武警工程学院学报,2010,26(2):8-11.
    [83]崔雪丽,朱道立,马良.模糊约定时间车辆路径问题及其蚂蚁算法求解[J].系统工程学报,2009,24(4):489-493.
    [84]孙知信夏云安.基于混合蚂蚁算法的QoS多播路由算法研究[J].通信学报,2009,30(6):142-148.
    [85]刘瑜,马良基于元胞蚁群算法的卧式内压容器优化设计[J].化工机械,2010,37(1):17-20.
    [86]金雁,赵耀.基于改进蚁群算法的船舶主尺度优化[J].华中科技大学学报,2008,36(11):104-107.
    [87]国海涛,朱庆保,司应涛.一种蚂蚁遗传融合的机器人路径规划新算法[J].小型微型计算机系统,2008,29(10):80-83.
    [88]赵勇,许可证,查建中.基于新型蚂蚁算法的传动方案优化设计研究[J].计算机集成制造系统,2007,13(5):95-100.
    [89] Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by AntColonies[C]. Proceedings of ECAL91European Conference of Artificial Life,Paris, France, Elsevier Publishing,1991:134-l44.
    [90] Bonabeau E, Dorigo M,Theraulaz G. Inspiration for optimization f romsocial insect behavior [J]. Nature,2000,406(6):39-42.
    [91]马良,王龙德.背包问题的蚂蚁算法[J].计算机应用,2001,21(8):6-7.
    [92]魏平,熊伟清.用于一般函数优化的蚁群算法[J].宁波大学学报,2001,14(4):54-57.
    [93]年四甜.按最佳传动角设计偏置曲柄滑块机构[J].机械设计,2008,25(12):48-50.
    [94]张静,张兰娣.平面低副四杆机构最小传动角位置及大小的新方法[J].河北建筑工程学院学报,2008,24(4):104-106.
    [95]谢响明.基于平面机构最小传动角的判定方法研究[J].机械工程师,2010,(9):42-43.
    [96]李兵,夏涛,李尚庆等.基于蚁群算法的茶叶理条机参数优化设计[J].农业工程学报,2011,27(10):79-82.
    [97]邓建党.平面曲柄摇杆机构最小传动角的确定[J].湖南工业职业技术学院学报,2008,8(2):15-16.
    [98]金熙哲,王玉新,郭为忠等.传动角最优的曲柄滑块机构多变量优化设计,上海交通大学学报2007,41(4):561-562.
    [99]张国华.闲话六安瓜片[J].茶叶科学技术,2006,(2):33-34.
    [100]陈锦宇.加快发展无公害茶生产实现茶叶可持续发展[J].茶叶,2000,26(4):11-13.
    [101]张燕忠,张凌云,王登良.烘焙技术在乌龙茶精制中的应用研究现状与探讨[J],茶叶,2008,34(2):57-77.
    [102]徐勇.浅谈名优烘青绿茶采制中存在的问题及解决方法[J],安徽农学通报,2008,34(2):57-77.
    [103]金慧迪,陈军,袁池.基于红外探测的果园自动喷药机控制系统[J],农机化研究,2011,33(12):154-157.
    [104]万汶灵,余淑荣,吴明亮等.利用光电开关实现螺杆泵转速的测量[J],机械制造,2012,50(6):154-157.
    [105]左兆陆,郑宾,丁高林.基于红外线光电开关的测速系统设计与应用[J],自动化与仪表,2011,26(8):82-84.
    [106]贾哲.555定时器的应用研究[J],太原大学教育学院学报,2012,(1):86-89.
    [107]张瑞峰.基于555芯片的单稳态电路设计[J],中国新技术新产品,2011,(22):152-156.
    [108]陈勇. LM567应用在超声波测距系统中对接收信号鉴频的电路设计[J],电子世界,2008,(12):28-29.
    [109]邵锋,李亚兵,刘广朝.调频红外遥控开关控制器的设计[J],河南科技学院学报,2008,(4):38-39.
    [110]邹玉娣,吴军,刘鸣.基于LM567的无线通信电路设计[J],实验室科学,2008,(6):88-90.
    [111]雷建龙,李小乐.基于LM567的实用型液位计的设计[J],自动化仪表,2007,28(10):4-6.
    [112]王哲,高雪松.六安瓜片绿色名茶可持续开发研究[J].中国农学通报,2007,23(4):505-507.
    [113]滕德文,毕玉昌.提高“六安瓜片品质”的技术措施[J].安徽农业,2002,(10):18-18.
    [114]董宏宇,杨光敏,陈晓光,等.适用于谷物干燥的红外辐射陶瓷材料[J],吉林大学学报,2007,37(4):804-806.
    [115] Das Ip sita, Das S K, Bal Satish. Drying performance of a batch typevibration aided infrared dryer[J]. Journal of Food Engineering,2004,64:129-133.
    [116] Chou S K, Chua K J. New hybrid drying technologies for heat sensitivefoodstuffs[J]. Trends in Food Science and Technology,2001,12:359-369.
    [117] Afzal T M, Abe T, Hikida Y. Energy and quality aspects during combinedFIR-convection drying of barley[J]. Journal of Food Engineering,1999,42(4):177-182.
    [118] Chua K J, Chou S K. Low-cost drying methods for developing countries[J].Trends in Food and Technology,2003,14:519-528.
    [119] Sharma G P, Verma R C, Pathare P B. Thin-layer infrared radiation dryingof onion slices [J]. Journal of FoodEngineering,2005,67(2):361-366.
    [120] Astrom K J, Hang C C, Persson P. Towards intelligent PID control[J].Automatica,1992,28(1):1-9.
    [121] Moore C G, Harris C J, Indirect adaptive fuzzy control[J]. Journal ofContorl,1992,56(2):441-468
    [122] Shi-zhong He, Shaohua Tan, Feng-Lan Xu. Fuzzy self-tuning of PIDcontrollers [J]. Fuzzy Sets and Systems,1993,56(1), Pages37-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700