正向工程中车用柴油机缸孔变形的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题紧密联系工程实际,以目前市场上应用范围广泛的493车用柴油机为研究对象,对车用柴油机正向工程开发中的重要环节——缸孔变形问题的机理、评价方法及优化设计思路进行全面深入的研究。目的是解决国内企业在车用柴油机整机开发及老机型改进过程中普遍遇到的机体缸孔变形过大从而影响机油消耗和颗粒物排放量进一步降低的难题,突破了正向工程设计中的技术难点,为由点及面的全面提高自主创新能力奠定基础。
     本文提出了整体接触多场分步耦合的研究方法,通过建立包含完整机体、缸盖、缸套、缸盖垫与缸盖螺栓的接触关系模型,避免了以往机体局部模型和单件研究的不足;通过对冷却水侧流场的CFD模拟获得缸体冷却水侧温度场的分布,减少了采用简单经验公式给出边界条件造成的误差;通过分步求解机体温度场的分布与热应力场下的变形,降低计算规模,实现了机体缸孔在机械负荷和热负荷下的耦合计算。
     根据缸盖垫各部分的不同力学特性,并结合缸盖垫载荷试验,本文提出了缸盖垫的非线性组合模型,最大限度简化模型的同时反映了零件的真实力学关系。通过在缸盖螺栓预紧力下机体缸孔变形的模拟计算与试验测量,对整体接触模型和边界条件的准确性进行了验证,在此基础上分步进行机械应力场、热应力场和耦合场下缸孔变形的模拟计算。根据耦合场模拟确定的综合优化方案,有效降低了493国Ⅲ样机的配缸间隙。性能与排放试验表明,此样机与原机相比最大扭矩增加10%,机油消耗率降低35%,ESC试验颗粒物排放量为0.09 g/kW?h,大大低于该机型国Ⅲ阶段0.13 g/kW?h的限值水平。
     不论是缸孔变形的模拟计算,还是缸孔变形的试验测量获得的都是缸孔的总变形。通过研究发现,机体缸孔的总变形可以分为位移变形和失圆变形两类,而位移变形和部分失圆变形可以被连杆侧隙或活塞环的弹力所弥补,不会造成活塞环密封环带的失效。在对缸孔各个横截面的变形应用快速傅立叶变换(FFT)的基础上,本文提出了缸孔变形的评价参数——最大有效变形?r e ffect?max,应用此参数可以更加准确的预测缸孔变形对机油消耗率和颗粒物排放的影响,为正向工程中机体缸孔变形的研究建立了行之有效的方法,具有重要的工程应用价值。
Closely linked with engineering practices, this paper uses the widely-used 493 automotive diesel engine as the research object and analyzes comprehensively an important issue in the forward engineering development of automotive diesel engines—the mechanism, evaluation methods and optimization designing of cylinder bore deformation. The objective is to solve the difficult problem of how to further decrease oil consumption and particulates emission, a thorny problem that domestic enterprises often encounter due to excessive cylinder bore deformation in the development of new diesel engines or the optimization of existing models. The paper is a breakthrough in forward engineering designing, making it possible to gradually improve independent innovation capabilities.
     The integral contact multi-field indirect coupling method is put forward and an integral contact relation model including the complete cylinder block, cylinder head, cylinder liners, cylinder head gasket and cylinder head bolts is established to avoid the disadvantages of partial model and single component researches. The temperature field of coolant is obtained through the CFD simulation of flow field to reduce the errors arising from boundary conditions given by simple empirical formulas. The temperature field and deformation under thermal stress fields are solved respectively to decrease the computational complexity and the indirect coupling calculation of cylinder bore deformation in mechanical stress fields and thermal stress fields is implemented.
     Based on the mechanical properties of different parts of the cylinder head gasket and cylinder head gasket loading tests, a non-linear combined model of the cylinder head gasket is put forward to simplify the model as well as reflect the accurate mechanical relationship between the different parts. Through numerical simulation and static measurements of cylinder bore deformation under cylinder head bolt screw pre-moment, the integral contact relation model and boundary conditions are calibrated and verified. On this basis, the simulation of cylinder bore deformation in mechanical stress fields and thermal stress fields is conducted respectively. By utilizing the comprehensive optimization designing scheme devised according to the results of coupling simulation, the clearance between the cylinder liner and the piston of the new 493 prototype diesel engine is reduced effectively. The performance and emission tests show that the optimized prototype engine has a 10% increase in maximum torque and 35% decrease in oil consumption compared with the original engine. ESC test results show that the particulates emission is 0.09 g/kW?h, far below 0.13 g/kW?h, the required level of the third phase national emission regulation.
     Both the simulation and experimental measurement results are total cylinder bore deformation. This research shows that the total deformation can be divided into two kinds: displacement deformation and out-of-roundness deformation. Displacement deformation and part of out-of-roundness deformation can be made up by the clearance between the connecting rod and the piston or the elastic forces of the piston rings, thus unable to cause the failure of the sealing circular-bands of the piston ring . Based on the fast Fourier transformation of the cross-section deformation of the cylinder bore, an evaluation parameter of cylinder bore deformation, the maximum effective deformation ?r e ffect?max, is defined. Using this parameter, the effects of bore deformation on oil consumption and particulates emission can be predicted much more accurately, making it possible to establish an effective approach to cylinder bore deformation in forward engineering, an approach of great practical value in engineering.
引文
[1]傅家骥.技术创新学[M ].北京:清华大学出版社,1998. 295 - 300.
    [2]王宝毅,张宝生.选择性反向工程战略——增强我国科技创新能力的战略选择.科学学研究,2006,24(6):971-973
    [3]陈至立.提高自主创新能力是科技工作的首要任务,求实杂志,2005(7):11-15
    [4]《国家中长期科学和技术发展规划纲要(2006-2020年)》,中华人民共和国国务院,2006年2月
    [5]中国汽车发动机行业发展研究报告(2008版),中国汽车技术研究中心,北京:2008年2月
    [6]梁荣光,朱志强,简弃非.车用柴油机环保节能技术探讨[J].车用发动机,2003,145(3):51 - 53.
    [7]阪田一郎,乘用车用柴油机技术——内部交流资料,丰田汽车技术中心,2005.
    [8]倪计民,高征等.车用柴油机4气门结构设计研究.内燃机学报,2005(4):357-362
    [9] Hawley J G, Wallace F J. Reduction of Steady-State NOx Levels from an Automotive Diesel Engine Using Optimized VGT/EGR Schedules[C].SAE Paper 1999-01-0835, 1999.
    [10] Brace C J, Cox A, Hawley J G. Statistical Methods for Solving the Fuel Consumption/Emission Conflict on DI Diesel Engines[C].SAE Paper 1999-01-1077 ,1999.
    [11]牛志明.可变喷嘴涡轮增压器喷嘴截面积对车用柴油机性能的影响.吉林大学2004
    [12] R S G Baert. Efficient EGR Technology for Future HD Diesel Engine Emission Targets[C]. SAE Paper1999-01-083, 1999.
    [13]顾宏中,郭中朝. MMPC涡轮增压系统在柴油机上的应用[ J ].柴油机, 2007 (3) 34-37
    [14]杨世友等.柴油机涡轮增压系统研究现状与进展.柴油机,2001,4
    [15]胡林峰,李德桃,梁凤标.柴油机对燃油喷射性能的要求及喷油系统的发展趋势[J].现代车用动力,2002(4):1-4.
    [16]王平,宋希庚,薛冬新.电控共轨喷油系统柴油机性能的研究.燃烧科学与技术,2006(9):241-244
    [17]许建昌,李孟良等.满足欧Ⅳ/Ⅴ排放法规的柴油机排放后处理技术[J ].车用发动机, 2006 (2): 12-16.
    [18] Koebel M, Elsener M, Kleemann M. Urea-SCR: a Promising Technique to Reduce NOx Emissions from Automotive Diesel Engines[J ] . Catalysis Today, 2000 (59):335-345.
    [19]黄鹏.国外车用柴油机SCR技术的应用研究[J].车用发动机,2005,157 (3):5 - 7.
    [20] Johnson T V. Diesel Emission Control: 2003 In Review[C ]. SAE Paper 2004-01-0070.
    [21] Ronny Allansson, Barry J Cooper, J ames E Thoss, etal. European Experience of High Mileage durability of Continuously Regenerating Diesel Particulate Filter Technology[C]. SAE Paper 2000-01-0480.
    [22]尹琪,卓斌等,车用柴油机降低机油耗减少颗粒排放研究动态.车用发动机,1996(1):12-17
    [23]董尧清,纪丽伟等,我国中重型车用柴油机实现欧Ⅲ排放法规的技术路径,汽车技术,2005(5):1-6
    [24] Van Dam W. Lubricant Related Factors Controlling Oil Consumption in Diesel Engines. SAE Paper 952547
    [25] Toshiyuki Yoda.Analysis of Diesel Smoke Emission at Low Engine Speed. SAE Paper 950084
    [26] Gunder Essig Hartmut kamp Erich Wacker, Diesel Engine Emissions Reduction—The Benefits of Low Oil Consumption Design,SAE 900591
    [27] W.Cartcllicri F . Ruhri P . Trltthart . Der Bcitrag des Schmicrols ZUC Partikelemission von Nutzfahrzcug-Dieselmotoren 2. Aachener Kolloquium FahrzeLtg-und Motorentechnik,1989
    [28]蒋德明著,内燃机燃烧与排放学,西安:西安交通大学出版社,2001.7.
    [29]李勤编著,现代内燃机排气污染物的测量与控制,北京:机械工业出版社,1998.
    [30]李兴虎编著,汽车排气污染与控制,北京:机械工业出版社,1999.
    [31] Frenklach M, Wang H, Detailed Modeling of Soot Particle Nucleation and Growth, 23rd Symp (Intl.) Comb, The Combustion Institute, Pittsburgh:1991, 23: 1559.
    [32] Johnson J H & etal,A Review of Diesel Particulate Control Technology and Emissions Effects——1992 Horning Memorial Award Lecture, SAE Paper,940233,1994.
    [33] Wolfgang P. Cartellieri,Wolfgang F.Wachter. Status report on a Preliminary survey of strategies to meet US-1991 HD diesel emission standards without exhaust gas aftertreatment.SAE870342, 1987
    [34] Susumu Ariga, Ping C. Sui, Syed M. Shahed. Instantaneous unburned oil consumption measurement in a diesel engine using S02 tracer technique.SAE922196, 1992
    [35] Paul T.Williams, Gordon E. Andrews, Keith D.Bartle. The role of lubricating oil in diesel particulate and particulate PAH emissions. SAE872084
    [36]邬静川等,利用高压喷射等技术解决D系列柴油机有害排放,上海交通大学学报,1999(8)
    [37]李勤,做钟表一样地精确制造发动机,2007中国汽车发动机高层研讨会
    [38]李文祥,李俊等,CA6DF2系列柴油机的开发.汽车工程,2004,26(3):266~268
    [39]赵士林主编,九十年代内燃机.上海:上海交通大学出版社1992.7
    [40]余志壮,宋正华,谢友柏等,内燃机气缸套失圆对活塞动压润滑和摩擦特性的影响.摩擦学学报,2005(5):243-246
    [41] Hideshi Hitosugi,Katsuyuki Nagoshi,Masaharu Komada,et a1.Study on mechanism of lubricating oil consumption caused by cylinder bore deformation[J].SAE Paper,960305,147—156
    [42] Ma M T, Smith E H,Sherrington I,et a1.Analysis of lubrication and friction for a complete piston—ring pack with an improved oil availability model, Part 2:circumferentially variable film[J].Part J: Journal of Engineering Tribology,1997,211(J1):17—27.
    [43]蒋文虎,发动机缸孔变形测试分析.2006年APC联合学术年会论文集:31-39
    [44]曾金玲,李康等,采用模拟缸盖时发动机缸筒变形的仿真分析.汽车技术,2005(1):19-22
    [45] De Jack M. An Overview of ABAQUS Use in Engine Engineering at Ford Motor Company [ C ]/ / ABAQUS Users’Conference. Newport : [ s. n. ]2002:1-22.
    [46] Franz Koch, Paul Decker, Robert Gulpen, et al. Cylinder liner deformation analysis measurements and calculations[C]. SAE Technical Paper Series 980567, 1998.
    [47]王彬,蒋向佩等,车用增压柴油机机体变形计算与分析,内燃机学报,1991(4):323-329
    [48]杨世文,张翼等,重载柴油机气缸套变形分析及机构参数优化,内燃机工程,2003(2):25-29
    [49]董小瑞,张翼,苏铁熊等,机体刚度对气缸盖——气缸套密封性能的影响,内燃机学报,2003(2):187-190
    [50]奚志朋,孙平等,柴油机机体有限元结构分析,拖拉机与农用运输车,2006(2):24-26
    [51]杨杰民,孙国强,车用柴油机中置式缸套的研究.内燃机学报,1995(2):184-192
    [52]刘月花,毕玉华,申中立等,柴油机气缸套温度场有限元分析.拖拉机与农用运输车,2006(6):75-77
    [53]钱作勤等,柴油机机体温度的实验测量与三维数值仿真.武汉理工大学学报,2005(3):70-73
    [54]常思勤,左孔天著,发动机缸盖内部冷却水腔的设计与流动数值模拟[J],车用发动机,2000(1):25~27.
    [55]刘巽俊,陈群等,车用柴油机冷却系统的CFD分析[J],内燃机学报,2003(2):125~129.
    [56]白敏丽,吕继祖,丁铁新等,六缸柴油机冷却系统流动与传热的数值模拟研究[J],内燃机学报,2004(6):523~531.
    [57]沈熊编著,激光多普勒测速技术及应用,北京:清华大学出版社,2004.
    [58]许振忠,李伟,吴长玉,等,CA498柴油机冷却水流LDV测量[J],汽车技术,2004(7):22~25.
    [59] Yuzo Aoyagi, Yoshihide Takenaka, Satoshi Niino , et al , Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liner in V-8 Engine , SAE Trans. , 1988,97(6):141~151.
    [60] Hiroya Fujimoto and Yuji Yuji Yoshihara.Measurement of Cylinder Bore Deformation During Actual Operating Engines,SAE 910042
    [61]沈晓雯,俞小莉,气缸垫对机体受力状态的影响.内燃机工程,2001(2):40-42
    [62]韦静思,申中立等,湿式气缸套周向应变的动态测试与分析.内燃机学报,2005(1):77-83
    [63]蒋纬城著,固体力学有限元分析,北京:北京理工大学出版社,1989.06
    [64]王勖成,邵敏著,有限单元法基本原理和数值方法,北京:清华大学出版社,1997.03
    [65] Bathe K J and Wilson E. L. Numerical Methods in Finite Element Analysis. Prentice-Hall, Inc.,1976
    [66] Methodology of STAR-CD v3.15,Computational Dynamics Limited,2002:1-1-1-8
    [67] Patankar S V, Numerical Heat Transfer and Fluid Flow,McGraw-Hill,1980
    [68] Patrnkar S V,Spalding D B,A Calculation for Heat,Mass and MomentumTransfer in Three-Dimensional Parabolic Flow,Int. J. Heat Mass Transfer,1972,(15):1787~1806
    [69]高世义,李东成,陈庆敏等,缸套瞬态温度场的有限元分析,内燃机学报,1992(3):262-266
    [70]肖永宁等编著,内燃机热负荷和热强度,北京:机械工业出版社,1988.06
    [71]唐兴轮,范群波等编著,ANSYS工程应用教程——热与电磁学篇,北京:中国铁道出版社,2003.01
    [72]张朝晖主编,ANSYS工程应用范例入门与提高,北京:清华大学出版社,2004.10
    [73]许焕然,倪行达,王裴.工程中有限元法[M].吉林:吉林工业大学出版社,1985.
    [74]朱仙鼎主编,中国内燃机工程师手册.上海:上海科学技术出版社,2000
    [75]高斌、宋小文、卢斌等,发动机气缸体螺纹联接强度有限元分析.工程设计学报,2005(8):227-231
    [76]山本晃著,郭可谦译,螺纹连接的理论与计算.上海:上海科学出版社,1984
    [77]王文斌等编著,机械设计手册.北京:机械工业出版社,2005
    [78]郁向东、黄健煜,装配预紧力虚拟温度应力仿真数值计算方法研究.安世亚太精益研发大会,2008
    [79]姜雪鹰,冯小氟.确定螺栓联结预紧力的新方法[J].机械设计与制造,1996(1):41~42
    [80]王娜,李同勇,沈瑞琪,三维多接触复杂非线性问题的分析与研究.机械,2004(2):1-4
    [81]石秀勇,李国祥等,基于接触分析的气缸盖/气缸套密封性能研究.润滑与密封,2006(5):111-114
    [82]毕玉华、申中立等,柴油机气缸套应变的动态测量.农业机械学报,2006(5):163-165
    [83]万欣、林大渊主编,内燃机设计.天津:天津大学出版社,1992
    [84] Tutorial Manual of STAR-CD Version 3.15, Computational Dynamics Limited,2002.
    [85]陆际清,沈祖京等编著,汽车发动机设计.北京:清华大学出版社,1993
    [86] Siders J A,Tiuey D G . Optimizing Cooling System Performance Using Computer Simulation [C].SAE Paper 971802,1997.
    [87] Liu Xunjun , Chen Qun ,Li Jun ,et al . Automotive Diesel Engine Water Jacket CFD Analysis [J].Transactions of CSICE,2003,21(2):125~129.
    [88]陈小东,詹樟松,发动机冷却水套内三维流动的数值模拟研究.汽车技术,2004:23-27
    [89]马铁犹编著,计算流体力学,北京:北京航空学院出版社,1986.
    [90]傅德薰,马延文,计算流体力学,北京:高等教育出版社,2002
    [91] Jayatilleka,C.L. The Influence of Prandtl Number and Surface Roughness on The Laminar Sub-Layer to Momentum and Heat Transfer. Progress in Heat and Mass Transfer, 1969:193-330
    [92] Maassen F. Analytical and Empirical Methods for Optimization of Cylinder Liner Bore Distortion[C]. SAE Paper 2001-01-0569.
    [93]陈海娥,孟凡臣,宋建龙,等,发动机冷却水套CFD分析[J],汽车技术,2003(8):16~20.
    [94] Clough M J,Precision cooling of a four valve per Cylinder Engine[C],SAE Paper 931123,1993.
    [95] Gy.希特凯著,内燃机的传热和热负荷,北京:中国农业机械出版社,1981.
    [96] Pflaum W,Mollenhauer K. Wrmeübergang in der Verbrennungskraft maschine [ M ].[ s. l. ]:Springer Verlag,1977.
    [97] QC/T 524-1999,汽车发动机性能试验方法
    [98] GB1105.1-87,内燃机台架性能试验方法标准环境状况及功率、燃油消耗率和机油消耗率的标定
    [99] GB1105.2-87,内燃机台架性能试验方法试验方法
    [100] AVL,Oil Consumption Test,AVL:1998
    [101] GB17691-2005,车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段),北京:中国环境科学出版社,2005-05-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700